Blood Reflux-Induced Epigenetic Factors HDACs and DNMTs Are Associated with the Development of Human Chronic Venous Disease
Abstract
:1. Introduction
2. Results
2.1. High Levels of Class I HDACs Are Expressed in Venous ECs in Response to Blood Reflux in Varicose Veins, but Low Levels Are Expressed in Response to Normal Venous Flow in Normal Veins
2.2. Class II HDACs in Venous ECs Are Upregulated in Response to Blood Reflux in Human Varicose Veins, but Downregulated in Response to Normal Venous Flow in Human Normal Veins
2.3. Expression Levels of DNMTs in Venous ECs Are Overexpressed in Response to Blood Reflux in Varicose Veins, but Inhibited in Response to Normal Venous Flow in Normal Veins
3. Discussion
4. Materials and Methods
4.1. Human Veins
4.2. Detection of Class I HDACs (HDAC-1, -2, and -3), Class II HDACs (HDAC-5 and -7), and DNMTs (DNMT1 and DNMT3a) in Human Varicose Veins with Blood Reflux in Comparison with Human Normal Veins with Normal Venous Flow
4.3. Immunostaining
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ligi, D.; Croce, L.; Mannello, F. Chronic Venous Disorders: The Dangerous, the Good, and the Diverse. Int. J. Mol. Sci. 2018, 19, 2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raffetto, J.D.; Mannello, F. Pathophysiology of chronic venous disease. Int. Angiol. 2014, 33, 212–221. [Google Scholar]
- Mansilha, A.; Sousa, J. Pathophysiological mechanisms of chronic venous disease and implications for venoactive drug therapy. Int. J. Mol. Sci. 2018, 19, 1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDaniel, J.C. Dietary supplement use by older adults with chronic venous leg ulcers: A retrospective, descriptive study. Wound Repair Regen. 2020, 28, 561–572. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, J.C.; Kemmner, K.G.; Rusnak, S. Nutritional profile of older adults with chronic venous leg ulcers: A pilot study. Geriatr. Nurs. 2015, 36, 381–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, G.A.; Weller, C.D.; Gibson, S.J. Effects and associations of nutrition in patients with venous leg ulcers: A systematic review. J. Adv. Nurs. 2018, 74, 774–787. [Google Scholar] [CrossRef]
- Brøndum-Jacobsen, P.; Benn, M.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. 25-Hydroxyvitamin D concentrations and risk of venous thromboembolism in the general population with 18791 participants. J. Thromb. Haemost. 2013, 11, 423–431. [Google Scholar] [CrossRef]
- Glynn, R.J.; Ridker, P.M.; Goldhaber, S.Z.; Zee, R.Y.L.; Buring, J.E. Effects of random allocation to vitamin E supplementation on the occurrence of venous thromboembolism. Circulation 2007, 116, 1497–1503. [Google Scholar] [CrossRef] [Green Version]
- Jawien, A.; Bouskela, E.; Allaert, F.A.; Nicolaïdes, A.N. The place of Ruscus extract, hesperidin methyl chalcone, and vitamin C in the management of chronic venous disease. Int. Angiol. 2017, 36, 31–41. [Google Scholar] [CrossRef]
- Mozos, I.; Stoian, D.; Luca, C.T. Crosstalk between Vitamins A, B12, D, K, C, and E status and arterial stiffness. Dis. Markers 2017, 2017, 8784971. [Google Scholar] [CrossRef]
- Belin, S.; Kaya, F.; Burtey, S.; Fontes, M. Ascorbic acid and gene expression: Another example of regulation of gene expression by small molecules? Curr. Genom. 2010, 11, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Rhee, E.J.; Nallamshetty, S.; Plutzky, J. Retinoid metabolism and its effects on the vasculature. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2012, 1821, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Margariti, A.; Zeng, L.; Xu, Q. Role of histone deacetylases in vascular cell homeostasis and arteriosclerosis. Cardiovasc. Res. 2011, 90, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.Y.; Chiu, J.J. Atherosclerosis and flow: Roles of epigenetic modulation in vascular endothelium. J. Biomed. Sci. 2019, 26, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seuter, S.; Heikkinen, S.; Carlberg, C. Chromatin acetylation at transcription start sites and vitamin D receptor binding regions relates to effects of 1α,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene expression. Nucleic Acids Res. 2013, 41, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Dewanjee, S.; Vallamkondu, J.; Kalra, R.S.; Chakraborty, P.; Gangopadhyay, M.; Sahu, R.; Medala, V.; John, A.; Reddy, P.H.; De Feo, V.; et al. The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells 2021, 10, 1340. [Google Scholar] [CrossRef]
- Costantino, S.; Mohammed, S.A.; Ambrosini, S.; Paneni, F. Epigenetic processing in cardiometabolic disease. Atherosclerosis 2019, 281, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Feinberg, M.W. Regulation of endothelial cell metabolism: Just go with the flow. Arter. Thromb. Vasc. Biol. 2015, 35, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.Y.; Lin, T.E.; Lee, C.I.; Zhou, J.; Huang, Y.H.; Lee, P.L.; Shih, Y.T.; Chien, S.; Chiu, J.J. MicroRNA-10a is crucial for endothelial response to different flow patterns via interaction of retinoid acid receptors and histone deacetylases. Proc. Natl. Acad. Sci. USA 2017, 114, 2072–2077. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.Y.; Lee, C.I.; Lin, T.E.; Lim, S.H.; Zhou, J.; Tseng, Y.C.; Chien, S.; Chiu, J.J. Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow. Proc. Natl. Acad. Sci. USA 2012, 109, 1967–1972. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Ha, C.H.; Jhun, B.S.; Wong, C.; Jain, M.K.; Jin, Z.G. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood 2010, 115, 2971–2979. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Z.; Jimenez, J.M.; Ou, K.; McCormick, M.E.; Zhang, L.D.; Davies, P.F. Hemodynamic disturbed flow induces differential DNA methylation of endothelial kruppel-like factor 4 (klf4) promoter in vitro and in vivo. Circ. Res. 2014, 115, 32–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Li, Y.S.; Wang, K.C.; Chien, S. Epigenetic mechanism in regulation of endothelial function by disturbed flow: Induction of DNA hypermethylation by dnmt1. Cell. Mol. Bioeng. 2014, 7, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.P.; Huang, Y.T.; Huang, T.S.; Pang, W.; Zhu, J.J.; Liu, Y.F.; Tang, R.Z.; Zhao, C.R.; Yao, W.J.; Li, Y.S.; et al. The mammalian target of rapamycin and DNA methyltransferase 1 axis mediates vascular endothelial dysfunction in response to disturbed flow. Sci. Rep. 2017, 7, 14996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, J.J.; Chien, S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol. Rev. 2011, 91, 327–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamboni, P.; Spath, P.; Tisato, V.; Tessari, M.; Dalla Caneva, P.; Menegatti, E.; Occhionorelli, S.; Gianesini, S.; Secchiero, P. Oscillatory flow suppression improves inflammation in chronic venous disease. J. Surg. Res. 2016, 205, 238–245. [Google Scholar] [CrossRef]
- Eklöf, B.; Rutherford, R.B.; Bergan, J.J.; Carpentier, P.H.; Gloviczki, P.; Kistner, R.L.; Meissner, M.H.; Moneta, G.L.; Myers, K.; Padberg, F.T.; et al. Revision of the CEAP classification for chronic venous disorders: Consensus statement. J. Vasc. Surg. 2004, 40, 1248–1252. [Google Scholar] [CrossRef] [Green Version]
- Spinedi, L.; Broz, P.; Engelberger, R.P.; Staub, D.; Uthoff, H. Clinical and duplex ultrasound evaluation of lower extremities varicose veins- a practical guideline. Vasa 2017, 46, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Neglen, P.; Egger, J.F.; Olivier, J.; Raju, S. Hemodynamic and clinical impact of ultrasound-derived venous reflux parameters. J. Vasc. Surg. 2004, 40, 303–310. [Google Scholar] [CrossRef]
- Tobon, J.; Whitney, J.D.; Jarrett, M. Nutritional status and wound severity of overweight and obese patients with venous leg ulcers: A pilot study. J. Vasc. Nurs. 2008, 26, 43–52. [Google Scholar] [CrossRef]
- Burkievcz, C.J.C.; Skare, T.L.; Malafaia, O.; Nassif, P.A.; Ribas, C.S.; Santos, L.R. Vitamin D deficiency in patients with chronic venous ulcers. Rev. Col. Bras. Cir. 2012, 39, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Clouaire, T.; de Las Heras, J.I.; Merusi, C.; Stancheva, I. Recruitment of mbd1 to target genes requires sequence-specific interaction of the mbd domain with methylated DNA. Nucleic Acids Res. 2010, 38, 4620–4634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamaluddin, M.S.; Yang, X.; Wang, H. Hyperhomocysteinemia, DNA methylation and vascular disease. Clin. Chem. Lab. Med. 2007, 45, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Kuo, J.T.; Tsai, H.E.; Lin, C.T.; Lee, C.I.; Lee, P.L.; Ruan, Y.R.; Chiu, J.J.; Lee, D.Y. Low levels of microRNA-10a in cardiovascular endothelium and blood serum are related to human atherosclerotic disease. Cardiol. Res. Pract. 2021, 2021, 1452917. [Google Scholar] [CrossRef]
Normal Vein | Varicose Vein F1 | Varicose Vein F2 | |
---|---|---|---|
HDAC-1 | - | + | +++ |
HDAC-2 | - | + | +++ |
HDAC-3 | - | + | +++ |
HDAC-5 | - | + | +++ |
HDAC-7 | - | + | +++ |
DNMT1 | - | + | +++ |
DNMT3a | - | + | +++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.-F.; Tsai, H.-E.; Kuo, J.-T.; Ruan, Y.-R.; Chen, C.-Y.; Wang, S.-Y.; Liu, P.-Y.; Lee, D.-Y. Blood Reflux-Induced Epigenetic Factors HDACs and DNMTs Are Associated with the Development of Human Chronic Venous Disease. Int. J. Mol. Sci. 2022, 23, 12536. https://doi.org/10.3390/ijms232012536
Chang S-F, Tsai H-E, Kuo J-T, Ruan Y-R, Chen C-Y, Wang S-Y, Liu P-Y, Lee D-Y. Blood Reflux-Induced Epigenetic Factors HDACs and DNMTs Are Associated with the Development of Human Chronic Venous Disease. International Journal of Molecular Sciences. 2022; 23(20):12536. https://doi.org/10.3390/ijms232012536
Chicago/Turabian StyleChang, Shun-Fu, Hsiao-En Tsai, Jong-Tar Kuo, Yu-Rong Ruan, Chiu-Yen Chen, Shin-Yi Wang, Po-Yu Liu, and Ding-Yu Lee. 2022. "Blood Reflux-Induced Epigenetic Factors HDACs and DNMTs Are Associated with the Development of Human Chronic Venous Disease" International Journal of Molecular Sciences 23, no. 20: 12536. https://doi.org/10.3390/ijms232012536
APA StyleChang, S. -F., Tsai, H. -E., Kuo, J. -T., Ruan, Y. -R., Chen, C. -Y., Wang, S. -Y., Liu, P. -Y., & Lee, D. -Y. (2022). Blood Reflux-Induced Epigenetic Factors HDACs and DNMTs Are Associated with the Development of Human Chronic Venous Disease. International Journal of Molecular Sciences, 23(20), 12536. https://doi.org/10.3390/ijms232012536