Legumain Activity Is Controlled by Extended Active Site Residues and Substrate Conformation
Abstract
:1. Introduction
2. Results
2.1. Asn42 Is Essential for Legumain Protease Activity but Less for Its Ligase Activity
2.2. Fine-Tuning of Clan CD Protease Activity Is Achieved by pKa Modulation of the Catalytic Cysteine Residue
2.3. Ser215 Is Extending the Legumain Active Site
2.4. Legumain’s Enzymatic Activity Is Controlled by Substrate Conformation
3. Discussion
4. Materials and Methods
4.1. Cloning
4.2. Expression and Purification of Human Legumain
4.3. Expression and Purification of Human Cystatin M/E
4.4. Expression and Purification of Human ΔCARD Caspase-9
4.5. Enzymatic Activity Assays
4.6. Ki Determination
4.7. Testing pH-Dependent Cleavage of Cystatin M/E by Legumain
4.8. Testing Re-Ligation of Cystatin M/E and the Cystatin M/E-K75A Mutant by Legumain
4.9. Testing Cleavage and Re-Ligation of Cystatin M/E by Different Legumain Variants
4.10. Thermal Shift Assay
4.11. Size Exclusion Chromatography Experiments
4.12. Preparation of Sequence Alignments
4.13. Preparation of Figures Illustrating Protein Structures
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mason, S.D.; Joyce, J.A. Proteolytic networks in cancer. Trends Cell Biol. 2011, 21, 228–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Strooper, B. Proteases and proteolysis in Alzheimer disease: A multifactorial view on the disease process. Physiol. Rev. 2010, 90, 465–494. [Google Scholar] [CrossRef] [PubMed]
- Manoury, B.; Hewitt, E.W.; Morrice, N.; Dando, P.M.; Barrett, A.J.; Watts, C. An asparaginyl endopeptidase processes a microbial antigen for class II MHC presentation. Nature 1998, 396, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Manoury, B.; Mazzeo, D.; Fugger, L.; Viner, N.; Ponsford, M.; Streeter, H.; Mazza, G.; Wraith, D.C.; Watts, C. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nat. Immunol. 2002, 3, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda, F.E.; Maschalidi, S.; Colisson, R.; Heslop, L.; Ghirelli, C.; Sakka, E.; Lennon-Dumenil, A.M.; Amigorena, S.; Cabanie, L.; Manoury, B. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity 2009, 31, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Shirahama-Noda, K.; Yamamoto, A.; Sugihara, K.; Hashimoto, N.; Asano, M.; Nishimura, M.; Hara-Nishimura, I. Biosynthetic processing of cathepsins and lysosomal degradation are abolished in asparaginyl endopeptidase-deficient mice. J. Biol. Chem. 2003, 278, 33194–33199. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, G.; Brandenburg, J.; Reich, M.; Burster, T.; Driessen, C.; Kalbacher, H. Characterization of legumain. Biol. Chem. 2002, 383, 1813–1816. [Google Scholar] [CrossRef]
- Chen, J.M.; Dando, P.M.; Rawlings, N.D.; Brown, M.A.; Young, N.E.; Stevens, R.A.; Hewitt, E.; Watts, C.; Barrett, A.J. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J. Biol. Chem. 1997, 272, 8090–8098. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Hua, T.; Crowley, C.; Ru, H.; Ni, X.; Shaw, N.; Jiao, L.; Ding, W.; Qu, L.; Hung, L.W.; et al. Structural analysis of asparaginyl endopeptidase reveals the activation mechanism and a reversible intermediate maturation stage. Cell Res. 2014, 24, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Dall, E.; Stanojlovic, V.; Demir, F.; Briza, P.; Dahms, S.O.; Huesgen, P.F.; Cabrele, C.; Brandstetter, H. The Peptide Ligase Activity of Human Legumain Depends on Fold Stabilization and Balanced Substrate Affinities. ACS Catal. 2021, 11, 11885–11896. [Google Scholar] [CrossRef]
- Dall, E.; Fegg, J.C.; Briza, P.; Brandstetter, H. Structure and mechanism of an aspartimide-dependent peptide ligase in human legumain. Angew. Chem. Int. Ed. Engl. 2015, 54, 2917–2921. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Sun, C.Z.; Huang, H.N.; Janda, K.; Edgington, T. Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Res. 2003, 63, 2957–2964. [Google Scholar] [PubMed]
- Gawenda, J.; Traub, F.; Luck, H.J.; Kreipe, H.; von Wasielewski, R. Legumain expression as a prognostic factor in breast cancer patients. Breast Cancer Res. Treat. 2007, 102, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Haugen, M.H.; Johansen, H.T.; Pettersen, S.J.; Solberg, R.; Brix, K.; Flatmark, K.; Maelandsmo, G.M. Nuclear legumain activity in colorectal cancer. PLoS ONE 2013, 8, e52980. [Google Scholar] [CrossRef]
- Kovalyova, Y.; Bak, D.W.; Gordon, E.M.; Fung, C.; Shuman, J.H.B.; Cover, T.L.; Amieva, M.R.; Weerapana, E.; Hatzios, S.K. An infection-induced oxidation site regulates legumain processing and tumor growth. Nat. Chem. Biol. 2022, 18, 698–705. [Google Scholar] [CrossRef]
- Basurto-Islas, G.; Grundke-Iqbal, I.; Tung, Y.C.; Liu, F.; Iqbal, K. Activation of Asparaginyl Endopeptidase Leads to Tau Hyperphosphorylation in Alzheimer Disease. J. Biol. Chem. 2013, 288, 17495–17507. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Tian, Y.; Ye, K. Delta-secretase in neurodegenerative diseases: Mechanisms, regulators and therapeutic opportunities. Transl. Neurodegener 2020, 9, 1. [Google Scholar] [CrossRef]
- Li, D.N.; Matthews, S.P.; Antoniou, A.N.; Mazzeo, D.; Watts, C. Multistep autoactivation of asparaginyl endopeptidase in vitro and in vivo. J. Biol. Chem. 2003, 278, 38980–38990. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Fernandez, M.; Barrett, A.J.; Gerhartz, B.; Dando, P.M.; Ni, J.; Abrahamson, M. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 1999, 274, 19195–19203. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Prior, P.; Salvesen, G.S. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 2004, 384, 201–232. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Salvesen, G.S. Handbook of Proteolytic Enzymes; Academic Press: Cambridge, MA, USA, 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Dall, E.; Brandstetter, H. Mechanistic and structural studies on legumain explain its zymogenicity, distinct activation pathways, and regulation. Proc. Natl. Acad. Sci. USA 2013, 110, 10940–10945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, N.; Kadowaki, T.; Okamoto, K.; Nakayama, K.; Ohishi, M.; Yamamoto, K. Biochemical and functional properties of lysine-specific cysteine proteinase (Lys-gingipain) as a virulence factor of Porphyromonas gingivalis in periodontal disease. J. Biochem. 1998, 123, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Krem, M.M.; Di Cera, E. Molecular markers of serine protease evolution. EMBO J. 2001, 20, 3036–3045. [Google Scholar] [CrossRef] [Green Version]
- Krem, M.M.; Prasad, S.; Di Cera, E. Ser(214) is crucial for substrate binding to serine proteases. J. Biol. Chem. 2002, 277, 40260–40264. [Google Scholar] [CrossRef] [Green Version]
- Dall, E.; Brandstetter, H. Activation of legumain involves proteolytic and conformational events, resulting in a context- and substrate-dependent activity profile. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Denault, J.-B.S.; Salvesen, G.S. Expression, Purification, and Characterization of Caspases. Curr. Protoc. Protein Sci. 2002, 21, 1–15. [Google Scholar] [CrossRef]
- Dall, E.; Zauner, F.B.; Soh, W.T.; Demir, F.; Dahms, S.O.; Cabrele, C.; Huesgen, P.F.; Brandstetter, H. Structural and functional studies of Arabidopsis thaliana legumain beta reveal isoform specific mechanisms of activation and substrate recognition. J. Biol. Chem. 2020, 295, 13047–13064. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wilkinson, M.F. Deletion mutagenesis of large (12-kb) plasmids by a one-step PCR protocol. Biotechniques 2001, 31, 722–724. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Ericsson, U.B.; Hallberg, B.M.; Detitta, G.T.; Dekker, N.; Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem. 2006, 357, 289–298. [Google Scholar] [CrossRef]
- Niesen, F. Excel Script for the Analysis of Protein Unfolding Data Acquired by Differential Scanning Fluorimetry (DSF), 3.0; Structural Genomics Consortium: Oxford, UK, 2010. [Google Scholar]
- Sippl, M.J.; Wiederstein, M. A note on difficult structure alignment problems. Bioinformatics 2008, 24, 426–427. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Schrodinger LLC. The PyMOL Molecular Graphics System, Version 1.8; Schrodinger LLC: New York, NY, USA, 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elamin, T.; Brandstetter, H.; Dall, E. Legumain Activity Is Controlled by Extended Active Site Residues and Substrate Conformation. Int. J. Mol. Sci. 2022, 23, 12548. https://doi.org/10.3390/ijms232012548
Elamin T, Brandstetter H, Dall E. Legumain Activity Is Controlled by Extended Active Site Residues and Substrate Conformation. International Journal of Molecular Sciences. 2022; 23(20):12548. https://doi.org/10.3390/ijms232012548
Chicago/Turabian StyleElamin, Tasneem, Hans Brandstetter, and Elfriede Dall. 2022. "Legumain Activity Is Controlled by Extended Active Site Residues and Substrate Conformation" International Journal of Molecular Sciences 23, no. 20: 12548. https://doi.org/10.3390/ijms232012548
APA StyleElamin, T., Brandstetter, H., & Dall, E. (2022). Legumain Activity Is Controlled by Extended Active Site Residues and Substrate Conformation. International Journal of Molecular Sciences, 23(20), 12548. https://doi.org/10.3390/ijms232012548