Correlation between Phenotype and Genotype in CTNNB1 Syndrome: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Inclusion Criteria
2.2. Data Extraction
2.3. Quality Assessment
2.4. Genotype-Phenotype Analysis
3. Results
3.1. Prevalence of Clinical Features
3.2. Genotype
3.3. Phenotype–Genotype Correlation Analysis
3.3.1. Severe Phenotype
3.3.2. Moderate-Severe Phenotype
3.3.3. Moderate Phenotype
3.3.4. Mild Phenotype
3.3.5. Normal Phenotype
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verhoeven, W.M.A.; Egger, J.I.M.; Jongbloed, R.E.; van Putten, M.M.; de Bruin-van Zandwijk, M.; Zwemer, A.S.; Pfundt, R.; Willemsen, M.H. A de novo CTNNB1 Novel Splice Variant in an Adult Female with Severe Intellectual Disability. Int. Med. Case Rep. J. 2020, 13, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Kuechler, A.; Willemsen, M.H.; Albrecht, B.; Bacino, C.A.; Bartholomew, D.W.; van Bokhoven, H.; van den Boogaard, M.J.; Bramswig, N.; Buttner, C.; Cremer, K.; et al. De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: Expanding the mutational and clinical spectrum. Hum. Genet. 2015, 134, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, D.F. Familial exudative vitreoretinopathy and related retinopathies. Eye 2015, 29, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Ligt, J.; Willemsen, M.H.; van Bon, B.W.; Kleefstra, T.; Yntema, H.G.; Kroes, T.; Vulto-van Silfhout, A.T.; Koolen, D.A.; de Vries, P.; Gilissen, C.; et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 2012, 367, 1921–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.C.; Lewis, S.A.; Bakhtiari, S.; Zeng, X.; Sierant, M.C.; Shetty, S.; Nordlie, S.M.; Elie, A.; Corbett, M.A.; Norton, B.Y.; et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat. Genet. 2020, 52, 1046–1056. [Google Scholar] [CrossRef]
- Moreno-De-Luca, A.; Millan, F.; Pesacreta, D.R.; Elloumi, H.Z.; Oetjens, M.T.; Teigen, C.; Wain, K.E.; Scuffins, J.; Myers, S.M.; Torene, R.I.; et al. Molecular Diagnostic Yield of Exome Sequencing in Patients With Cerebral Palsy. JAMA 2021, 325, 467–475. [Google Scholar] [CrossRef]
- Li, N.; Xu, Y.; Li, G.; Yu, T.; Yao, R.E.; Wang, X.; Wang, J. Exome sequencing identifies a de novo mutation of CTNNB1 gene in a patient mainly presented with retinal detachment, lens and vitreous opacities, microcephaly, and developmental delay: Case report and literature review. Medicine 2017, 96, e6914. [Google Scholar] [CrossRef]
- Schwarz-Romond, T.; Metcalfe, C.; Bienz, M. Dynamic recruitment of axin by Dishevelled protein assemblies. J. Cell Sci. 2007, 120, 2402–2412. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Takemaru, K.; Liu, J.; Berndt, J.D.; Zheng, J.J.; Moon, R.T.; Xu, W. Crystal structure of a full-length beta-catenin. Structure 2008, 16, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Huber, A.H.; Weis, W.I. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 2001, 105, 391–402. [Google Scholar] [CrossRef]
- Huber, A.H.; Nelson, W.J.; Weis, W.I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 1997, 90, 871–882. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Liu, Z.; Niu, B.; Zhang, J.; Tan, T.K.; Lee, S.R.; Zhao, Y.; Harris, D.C.; Zheng, G. E-cadherin/beta-catenin complex and the epithelial barrier. J. Biomed. Biotechnol. 2011, 2011, 567305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, R.; Chew, T.L.; Maher, M.T.; Bellipanni, G.; Weinberg, E.S.; Gottardi, C.J. The terminal region of beta-catenin promotes stability by shielding the Armadillo repeats from the axin-scaffold destruction complex. J. Biol. Chem. 2009, 284, 28222–28231. [Google Scholar] [CrossRef] [Green Version]
- Neu-Yilik, G.; Amthor, B.; Gehring, N.H.; Bahri, S.; Paidassi, H.; Hentze, M.W.; Kulozik, A.E. Mechanism of escape from nonsense-mediated mRNA decay of human beta-globin transcripts with nonsense mutations in the first exon. RNA 2011, 17, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Wright, C.F.; Fitzgerald, T.W.; Jones, W.D.; Clayton, S.; McRae, J.F.; van Kogelenberg, M.; King, D.A.; Ambridge, K.; Barrett, D.M.; Bayzetinova, T.; et al. Genetic diagnosis of developmental disorders in the DDD study: A scalable analysis of genome-wide research data. Lancet 2015, 385, 1305–1314. [Google Scholar] [CrossRef] [Green Version]
- Segel, R.; Ben-Pazi, H.; Zeligson, S.; Fatal-Valevski, A.; Aran, A.; Gross-Tsur, V.; Schneebaum-Sender, N.; Shmueli, D.; Lev, D.; Perlberg, S.; et al. Copy number variations in cryptogenic cerebral palsy. Neurology 2015, 84, 1660–1668. [Google Scholar] [CrossRef] [PubMed]
- Nollet, F.; Berx, G.; Molemans, F.; van Roy, F. Genomic organization of the human beta-catenin gene (CTNNB1). Genomics 1996, 32, 413–424. [Google Scholar] [CrossRef]
- Murad, M.H.; Sultan, S.; Haffar, S.; Bazerbachi, F. Methodological quality and synthesis of case series and case reports. BMJ Evid. Based Med. 2018, 23, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Orrico, A.; Galli, L.; Cavaliere, M.L.; Garavelli, L.; Fryns, J.P.; Crushell, E.; Rinaldi, M.M.; Medeira, A.; Sorrentino, V. Phenotypic and molecular characterisation of the Aarskog-Scott syndrome: A survey of the clinical variability in light of FGD1 mutation analysis in 46 patients. Eur. J. Hum. Genet. 2004, 12, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanetti Drumond, V.; Sousa Salgado, L.; Sousa Salgado, C.; Oliveira, V.A.L.; de Assis, E.M.; Campos Ribeiro, M.; Furtado Valadao, A.; Orrico, A. The Prevalence of Clinical Features in Patients with Aarskog-Scott Syndrome and Assessment of Genotype-Phenotype Correlation: A Systematic Review. Genet. Res. 2021, 2021, 6652957. [Google Scholar] [CrossRef]
- Pennington, L.; Virella, D.; Mjoen, T.; da Graca Andrada, M.; Murray, J.; Colver, A.; Himmelmann, K.; Rackauskaite, G.; Greitane, A.; Prasauskiene, A.; et al. Development of The Viking Speech Scale to classify the speech of children with cerebral palsy. Res. Dev. Disabil. 2013, 34, 3202–3210. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, L.Z.; Bekheirnia, M.R.; Lewis, A.M.; Mefford, H.C.; Golden-Grant, K.; Tarczy-Hornoch, K.; Briere, L.C.; Sweetser, D.A.; Walker, M.A.; Kravets, E.; et al. Missense variants in CTNNB1 can be associated with vitreoretinopathy-Seven new cases of CTNNB1-associated neurodevelopmental disorder including a previously unreported retinal phenotype. Mol. Genet. Genom. Med. 2021, 9, e1542. [Google Scholar] [CrossRef]
- Winczewska-Wiktor, A.; Badura-Stronka, M.; Monies-Nowicka, A.; Nowicki, M.M.; Steinborn, B.; Latos-Bielenska, A.; Monies, D. A de novo CTNNB1 nonsense mutation associated with syndromic atypical hyperekplexia, microcephaly and intellectual disability: A case report. BMC Neurol. 2016, 16, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, S.; Tsang, M.H.; Fung, J.L.; Huang, H.; Chow, C.B.; Cheng, S.S.; Luk, H.M.; Chung, B.H.; Lo, I.F. CTNNB1-related neurodevelopmental disorder in a Chinese population: A case series. Am. J. Med. Genet. Part A 2021, 188, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Retterer, K.; Juusola, J.; Cho, M.T.; Vitazka, P.; Millan, F.; Gibellini, F.; Vertino-Bell, A.; Smaoui, N.; Neidich, J.; Monaghan, K.G.; et al. Clinical application of whole-exome sequencing across clinical indications. Genet. Med. 2016, 18, 696–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posey, J.E.; Harel, T.; Liu, P.; Rosenfeld, J.A.; James, R.A.; Coban Akdemir, Z.H.; Walkiewicz, M.; Bi, W.; Xiao, R.; Ding, Y.; et al. Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. N. Engl. J. Med. 2017, 376, 21–31. [Google Scholar] [CrossRef]
- Levchenko, A.; Davtian, S.; Freylichman, O.; Zagrivnaya, M.; Kostareva, A.; Malashichev, Y. Beta-catenin in schizophrenia: Possibly deleterious novel mutation. Psychiatry Res. 2015, 228, 843–848. [Google Scholar] [CrossRef]
- Tucci, V.; Kleefstra, T.; Hardy, A.; Heise, I.; Maggi, S.; Willemsen, M.H.; Hilton, H.; Esapa, C.; Simon, M.; Buenavista, M.T.; et al. Dominant beta-catenin mutations cause intellectual disability with recognizable syndromic features. J. Clin. Investig. 2014, 124, 1468–1482. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhao, Y.; Yang, L.; Han, S.; Qi, M. Identification of a novel splice mutation in CTNNB1 gene in a Chinese family with both severe intellectual disability and serious visual defects. Neurol. Sci. 2019, 40, 1701–1704. [Google Scholar] [CrossRef] [Green Version]
- Kharbanda, M.; Pilz, D.T.; Tomkins, S.; Chandler, K.; Saggar, A.; Fryer, A.; McKay, V.; Louro, P.; Smith, J.C.; Burn, J.; et al. Clinical features associated with CTNNB1 de novo loss of function mutations in ten individuals. Eur. J. Med. Genet. 2017, 60, 130–135. [Google Scholar] [CrossRef]
- Grozeva, D.; Carss, K.; Spasic-Boskovic, O.; Tejada, M.I.; Gecz, J.; Shaw, M.; Corbett, M.; Haan, E.; Thompson, E.; Friend, K.; et al. Targeted Next-Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability. Hum. Mutat. 2015, 36, 1197–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, M.K.; Geoffroy, V.; Vicaire, S.; Jost, B.; Dumas, M.; Le Gras, S.; Switala, M.; Gasse, B.; Laugel-Haushalter, V.; Paschaki, M.; et al. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J. Med. Genet. 2016, 53, 98–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Xiao, X.; Li, S.; Jia, X.; Wang, P.; Zhang, Q. Germline Mutations in CTNNB1 Associated With Syndromic FEVR or Norrie Disease. Investig. Ophthalmol. Vis. Sci. 2019, 60, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, D.; Bullivant, G.; Siriwardena, K.; Evans, A.; Kobayashi, J.; Cohn, R.D.; Mercimek-Andrews, S. Genetic landscape of pediatric movement disorders and management implications. Neurol. Genet. 2018, 4, e265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotou, E.S.; Sanjurjo Soriano, C.; Poulter, J.A.; Lord, E.C.; Dzulova, D.; Kondo, H.; Hiyoshi, A.; Chung, B.H.; Chu, Y.W.; Lai, C.H.Y.; et al. Defects in the Cell Signaling Mediator beta-Catenin Cause the Retinal Vascular Condition FEVR. Am. J. Hum, Genet. 2017, 100, 960–968. [Google Scholar] [CrossRef] [Green Version]
- Coussa, R.G.; Zhao, Y.; DeBenedictis, M.J.; Babiuch, A.; Sears, J.; Traboulsi, E.I. Novel mutation in CTNNB1 causes familial exudative vitreoretinopathy (FEVR) and microcephaly: Case report and review of the literature. Ophthalmic Genet. 2020, 41, 63–68. [Google Scholar] [CrossRef]
- Dixon, M.W.; Stem, M.S.; Schuette, J.L.; Keegan, C.E.; Besirli, C.G. CTNNB1 mutation associated with familial exudative vitreoretinopathy (FEVR) phenotype. Ophthalmic Genet. 2016, 37, 468–470. [Google Scholar] [CrossRef]
- Thevenon, J.; Duffourd, Y.; Masurel-Paulet, A.; Lefebvre, M.; Feillet, F.; El Chehadeh-Djebbar, S.; St-Onge, J.; Steinmetz, A.; Huet, F.; Chouchane, M.; et al. Diagnostic odyssey in severe neurodevelopmental disorders: Toward clinical whole-exome sequencing as a first-line diagnostic test. Clin. Genet. 2016, 89, 700–707. [Google Scholar] [CrossRef]
- Ke, Z.; Chen, Y. Case Report: A de novo CTNNB1 Nonsense Mutation Associated With Neurodevelopmental Disorder, Retinal Detachment, Polydactyly. Front. Pediatr 2020, 8, 575673. [Google Scholar] [CrossRef]
- Yoo, Y.; Jung, J.; Lee, Y.N.; Lee, Y.; Cho, H.; Na, E.; Hong, J.; Kim, E.; Lee, J.S.; Lee, J.S.; et al. GABBR2 mutations determine phenotype in rett syndrome and epileptic encephalopathy. Ann. Neurol. 2017, 82, 466–478. [Google Scholar] [CrossRef]
- Dubruc, E.; Putoux, A.; Labalme, A.; Rougeot, C.; Sanlaville, D.; Edery, P. A new intellectual disability syndrome caused by CTNNB1 haploinsufficiency. Am. J. Med. Genet. A 2014, 164A, 1571–1575. [Google Scholar] [CrossRef] [PubMed]
- Karolak, J.A.; Szafranski, P.; Kilner, D.; Patel, C.; Scurry, B.; Kinning, E.; Chandler, K.; Jhangiani, S.N.; Coban Akdemir, Z.H.; Lupski, J.R.; et al. Heterozygous CTNNB1 and TBX4 variants in a patient with abnormal lung growth, pulmonary hypertension, microcephaly, and spasticity. Clin. Genet. 2019, 96, 366–370. [Google Scholar] [CrossRef] [PubMed]
- O’Roak, B.J.; Vives, L.; Girirajan, S.; Karakoc, E.; Krumm, N.; Coe, B.P.; Levy, R.; Ko, A.; Lee, C.; Smith, J.D.; et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012, 485, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Krupp, D.R.; Barnard, R.A.; Duffourd, Y.; Evans, S.A.; Mulqueen, R.M.; Bernier, R.; Riviere, J.B.; Fombonne, E.; O’Roak, B.J. Exonic Mosaic Mutations Contribute Risk for Autism Spectrum Disorder. Am. J. Hum. Genet. 2017, 101, 369–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torella, A.; Zanobio, M.; Zeuli, R.; Del Vecchio Blanco, F.; Savarese, M.; Giugliano, T.; Garofalo, A.; Piluso, G.; Politano, L.; Nigro, V. The position of nonsense mutations can predict the phenotype severity: A survey on the DMD gene. PLoS ONE 2020, 15, e0237803. [Google Scholar] [CrossRef]
- van der Luijt, R.B.; Meera Khan, P.; Vasen, H.F.; Breukel, C.; Tops, C.M.; Scott, R.J.; Fodde, R. Germline mutations in the 3′ part of APC exon 15 do not result in truncated proteins and are associated with attenuated adenomatous polyposis coli. Hum. Genet. 1996, 98, 727–734. [Google Scholar] [CrossRef]
- Gottardi, C.J.; Peifer, M. Terminal regions of beta-catenin come into view. Structure 2008, 16, 336–338. [Google Scholar] [CrossRef] [Green Version]
- van Veelen, W.; Le, N.H.; Helvensteijn, W.; Blonden, L.; Theeuwes, M.; Bakker, E.R.; Franken, P.F.; van Gurp, L.; Meijlink, F.; van der Valk, M.A.; et al. beta-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis. Gut 2011, 60, 1204–1212. [Google Scholar] [CrossRef] [Green Version]
- Claverie, J.M. Detecting frame shifts by amino acid sequence comparison. J. Mol. Biol. 1993, 234, 1140–1157. [Google Scholar] [CrossRef]
- Vonbrull, M.; Riegel, E.; Halter, C.; Aigner, M.; Bock, H.; Werner, B.; Lindhorst, T.; Czerny, T. A Dominant Negative Antisense Approach Targeting beta-Catenin. Mol. Biotechnol. 2018, 60, 339–349. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Semenov, M.; Han, C.; Baeg, G.H.; Tan, Y.; Zhang, Z.; Lin, X.; He, X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002, 108, 837–847. [Google Scholar] [CrossRef] [Green Version]
- Yanagawa, S.; Matsuda, Y.; Lee, J.S.; Matsubayashi, H.; Sese, S.; Kadowaki, T.; Ishimoto, A. Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO J. 2002, 21, 1733–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Wang, Y.; Broaddus, R.; Sun, L.; Xue, F.; Zhang, W. Exon 3 mutations of CTNNB1 drive tumorigenesis: A review. Oncotarget 2018, 9, 5492–5508. [Google Scholar] [CrossRef] [PubMed]
Number | Search Strategy |
---|---|
#1 | CTNNB1 [Text Word] |
#2 | CTNNB1 Protein, Xenopus [MeSH Terms] |
#3 | #1 OR #2 |
#2 | de novo OR loss-of-function OR germline mutation OR novel mutation [Text Word] |
#3 | de novo OR novel mutation [Text Word] |
#4 | loss of function mutation [MeSH Terms] |
#5 | germ-line mutation [MeSH Terms] |
#6 | #3 OR #4 OR #5 |
#7 | #2 OR #6 |
#8 | #3 OR #7 |
Category | Points | |
---|---|---|
Mutational analysis | None | 0 |
Prescreening methods | 1 | |
Full sequencing | 2 | |
Demographic data | None | 0 |
Sex, age, (ethnicity) | 1 | |
Clinical assessment | No | 0 |
Neurological assessment (facial dysmorphism, achieving motor milestones) | 1 | |
Neurological and cognitive assessment | 2 | |
Cognitive assessment | None | 0 |
Diagnostic test done (autism, IQ tests) | 1 | |
Brain screening tests | None | 0 |
MR | 1 | |
MR and EEG | 2 |
Variable/Severity | Eye Contact | Speech | Cognition (ID) | Motor Development |
---|---|---|---|---|
Normal | + | No delays | Normal ID | No delays |
Mild | + | Delayed; speaking in full sentences | mild ID (55–70) | sitting before 1 year, walking before 2 years |
Mild-Moderate | + | Delayed; can speak in sentences, speaking can be unclear | mild-moderate ID (40–70) | Sitting and walking independently with difficulties (ataxic) |
Moderate | + | Delayed, speaking in simple sentences, can be unclear | mild-moderate ID (40–70) | Could be sitting and walking but with difficulties |
Moderate-Severe | + | Simple words/no words; uses sign language | moderate-severe ID (20–55) | Could be sitting and walking but with difficulties |
Severe | - | No speech | severe ID (20–40) | Could be sitting and walking but with difficulties |
Clinical Feature | n (%) | Clinical Features | n (%) |
---|---|---|---|
Primary Criteria (>50%) | Secondary Criteria (20–49%) | ||
Presence of microencephaly (valid cases: 57) | 42 (73.7) | Walking inability (valid cases: 40) | 16 (40) |
Eye abnormalities (valid cases: 57) 1 | 53 (93) | Aggression | 20 (47.6) |
Strabismus | 30 (52.6) | Stereotypic movements | 10 (23.8) |
FEVR | 13 (22.8) | Autism | 9 (21.4) |
Hyperopia | 8 (14) | Sleep problems | 8 (19) |
Astigmatism | 5 (8.8) | ADHD | 3 (7.1) |
Esotropia | 3 (5.3) | Temper tantrums | 3 (7.1) |
Myopia | 3 (5.3) | Schizophrenia | 2 (4.8) |
Speech difficulties (valid cases: 46) | 41 (89.1) | Abnormal MR (valid cases: 24) 2 | 4 (16.7) |
Non-verbal | 14 (30.4) | IGR (valid cases: 37) | 8 (21.6) |
A few words | 19 (41.3) | Additional criteria | |
Short sentences | 8 (17.4) | Scoliosis (not systematically assessed) | 2 |
Full sentences, but delayed | 3 (6.5) | Feeding problems (not systematically assessed) | 5 |
No delays | 2 (4.4) |
Genetic Mutation | Gender | Age (yrs) | Facial Dysmorphism | Eye Conditions | Microencephaly | Axial Hypotonia/Spasticity | Achieving Milestones | Behavior and IQ | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exon no. and Variant | Amino Acid Change | Mutation Type | Sitting (mo) | Crawling (mo) | Walking Independently | Speaking | |||||||
SEVERE PHENOTYPE | |||||||||||||
I5, c.734 + 1G > T | Splice mutation | Splice | F | 32 | + | Strabismus | + | +/+ | 2–5 years (40mo) | NA | No | Absent speech | Ritualistic behaviours with temper tantrums, autism, severe ID (18 months) |
I5, c.734 + 1G > A | Splice mutation | Splice | F | 49 | + | FEVR | NA | +/+ | NA | NA | NA | Absent speech | NA, IQ = 40 |
I5, c.734 + 1G > A | Splice mutation | Splice | F | 27 | + | FEVR | NA | NA | NA | NA | Walking at 49 yrs (ataxic) | Absent speech | NA, IQ = 20 |
E6, c.755delTinsAAC | p.Leu252* | Nonsense | F | 15.3 | + | Strabismus, hyperopia | - | +/+ | NA | NA | 10 yrs | 2 words | Auto-aggressive behavior, stereotypic movements, short eye contact; severe IQ |
E6, c.799_809delGAAGGAGCTAAinsGAA | p. Gly268TrpfsTer5 | Frameshift | F | 7 | + | NA | + | +/+ | 18 | NA | 3 (broad based gait) | No speech | Autism, ID |
MODERATE-SEVERE PHENOTYPE | |||||||||||||
E4, c.423_424insG | p. Tyr142Valfs*4 | Frameshift | F | 5.6 | + | Strabismus | + | +/- | NA | 24 | not yet | Severe, few words (30), sign language | Repetitive movements, ID |
E8, c.1163T > C | p.Leu388Pro | Missense | F | 6.8 | + | NA | + | +/+ | 13 | 18 | 2.5 | First word at 2 ½, 20 words at 4 years but not intelligible | ID |
E9, c.1272_1275del | p.Ser425Thrfs*11 | Frameshift | F | 29 | + | NA | + | +/+ | 24 | 3 years | 8 (progressive spasticity now with support) | Started speaking first words 9–10 years; now able to speak a few words | Aggression, auto-mutilation, and fecal smearing |
E9, c.1272_1275del | p.Ser425Thrfs*11 | Frameshift | F | 3.25 | + | Strabismus | - | +/+ | NA | NA | not yet | Babbles now, some words are understandable | Very happy and friendly, low frustration tolerance |
E9, c. 1344_1345 InsertionA | p.Arg449GlnfsTer24 | Frameshift | M | 8 | NA | Strabismus | + | NA/+ | NA | NA | 8 | First words at 3 years, at 8 years able to speak short sentences | Aggression sometimes when frustrated |
E9, c.1420C > T | p.Arg474* | Nonsense | F | 13 | NA | Strabismus | + | +/+ | N | 13 months | 42 months | First words at 4.5 years | ADHD, aggressive, teeth grinding; mouths objects |
E9, c.1420C > T | p.Arg474* | Nonsense | F | 5.25 | + | Strabismus | + | +/+ | 18 | 23 | not yet | No words | Stereotypic outbursts |
E9, c.1543C > T | p.Arg515* | Nonsense | F | 51 | + | Optic atrophy | + | +/+ | NA | NA | No | Not able to speak, but uses sign language | Normal behavior, ID, cognitive abilities gradually deteriorated |
E10, c.1603C > T | p.Arg535Ter | Nonsense | M | 3.25 | + | Strabismus | + | +/+ | 8 | NA | Unable to walk | Lots of noises but no words | NA |
E10, c.1603C > T | p.Arg535Ter | Nonsense | M | 14 | + | NA | - | -/+ | 15 | NA | not walking | Moderate; Single words at 14 years | Aggressive outbursts, self-harm |
E11, c.1801C > T | p.Gln601Ter | Nonsense | M | 6.2 | + | FEVR | + | +/NA | NA | NA | not yet | Says Mom and Dad with understanding, uses Makaton, points to body parts | Occasional temper; can bite others and self; repetitive movements |
E12, c.1923dupA | p.Glu642Argfs*6 | Frameshift | M | 8.5 | + | Strabismus, hyperopia | + | +/+ | NA | 14 | 8 years | Severe; few single words, gestures | Good social interaction, outburst of temper tantrums or crying, self/biting |
E12, c.1925_1926del | p.Glu642Valfs*5 | Frameshift | F | 14.2 | + | Strabismus | - | -/+ | not yet | NA | No | Moderate, first words at 6 years; not speaking in sentences | Rages and tantrums, friendly personality, short attention span and poor eye contact; autism |
MODERATE PHENOTYPE | |||||||||||||
E3, c.99_100delTG | p.Gly34Asnfs*15 | Frameshift | M | 5.5 | + | Strabismus | + | +/+ | 14; still head-leg | 25 | 6 yrs (cannot stand alone) | Short sentences | Social and friendly boy; no behavioral problems; concentration is limited; sensitive to noises |
E3, c.232C > T | p.Gln78* | Nonsense | M | 11 | + | Strabismus, hyperopia, astigmatism | - | +/+ | NA | Didn’t crawl | 3 yrs; at 11 yrs coordination problem | Unclear speech; at 11 yrs regression | Temper tantrums, aggression, frustration, anxiety, friendly personality, stereotypic movements |
E4, c.283C > T | p.Arg95* | Nonsense | F | 4 | + | Normal | + | +/+ | NA | 12 | 4 yrs | Speech apraxia, ~50 words | When young, biting, banging the head in the wall, this has improved now |
E5, c.705dupA | p.Gly236Argfs*35 | Frameshift | F | 14 | + | Strabismus | + | +/- | 12 | NA | 4.5 yrs | Babbling at 3 yrs, 14 yrs speaking simple sentences, read simple words | Autism, IQ = 65 |
E7, c.925C > T | p.Gln309* | Nonsense | M | 4.5 | + | Hyperopia | + | +/+ | 18 | NA | walking at 4.6 (short distances) | Started speaking at 4 years, articulation was poor and hard to understand | Happy personality |
E7, c.998dupA | p.Tyr333Ter | Nonsense | F | 9 | NA | NA | - | +/+ | 14 | NA | 4.2 (still had difficulties) | First words age 4; more fluent speech age 6; said to be 3 years behind with verbal skills | Violent outbursts associated with difficulty expressing emotions |
E7, c.999C > G | p.Tyr333Ter | Nonsense | F | 27 | + | NA | - | +/+ | 30 | NA | 4.5 (ataxic) | First words at 4.5 years; can speak in sentences but speech very unclear | Aggressive, temper tantrums, self-injurious (biting, picking) |
E7, c.1038_1044delGCTATCTinsGCT | p.Val349AlafsTer9 | Frameshift | F | 11 | + | Strabismus, hypermetropia | + | +/+ | NA | 13.5 | 3.5 (ataxic) | Single words at age 5 years, talks in sentences at age 11 years | Stereotypies (clapping repeatedly, temper tantrums, aggressive to family) |
I7, c.1081 + 1G > C | IVS6 Intron 7 | Splice | M | 3.8 | + | Normal | + | +/+ | not yet | not yet | not yet | Unclear speech | Good social interaction, very happy personality |
E10, c.1612C > T | p.Gln538Ter | Nonsense | F | 4.5 | + | Strabismus | + | +/+ | 23 | NA | 2.5–3 years | First words at 3.4 years | Autism |
333 kb incl. entire gene and ex. 35–37 of ULK4 | Gross del | None | F | 5.2 | + | Hyperopia | + | +/- | 14 | NA | 4.5 years (ataxic) | At 4.5 years could combine several words, count to 10 | Friendly, social, short focus |
505 kb incl. entire gene | Gross del | None | M | 3 | + | Esotropia | + | +/- | NA | not yet | not yet | Babbles and say “mama” and “dada”, before age 3 years | Happy, good eye contact |
MILD PHENOTYPE | |||||||||||||
E13, c.1981C > T | p.Arg661Ter | Nonsense | F | 9.2 | + | NA | + | +/- | 11 | NA | 2.5 | First words at 3,4 years | Obsessional behavior; dyspraxia |
E13, c.2038_2041dup | p.Ser681* | Nonsense | F | 13.2 | + | Strabismus, myopia | - | +/+ | 12 | NA | 1.5 | Mild, full sentences, but delayed | Social, autism, aggressive behavior, ADHD |
E13, c.2038_2041dup | p.Ser681* | Nonsense | F | 11 | + | Strabismus, myopia | + | +/+ | 12 | 17 | 2 | Mild, full sentences, but delayed | Communicative, social, aggression, ADHD |
NORMAL PHENOTYPE | |||||||||||||
E14, c.2128C > T | p.Arg710Cys | Missense | M | NA | normal | FEVR | NA | Normal | Normal | normal | normal | normal | Normal |
E15, c.2142_2157dup16 | p.His720* | Nonsense | M | NA | normal | FEVR | NA | Normal | Normal | normal | normal | normal | Normal |
Locus | Mutation Type | Number | Clinical Outcome | Remarkable Phenotypes | References |
Intron 5 | Splice | 3 | Severe | Facial dysmorphisms, small head/microcephaly, axial hypotonia, peripheral spasticity, optical alterations, absent speech, severe ID, no eye contact, behavioral difficulties | Verhoeven et al. 2020 [1], Wang et al. 2019 [29] |
Exon 6 | Nonsense, frameshift | 2 | Severe | Facial dysmorphisms, small head/microcephaly, axial hypotonia, peripheral spasticity, severe speech impairment (no speech/2 words), severe ID, behavioral difficulties | Kuechler et al. 2015 [2], Kharbanda et al. 2017 [30] |
Exon 4 | Frameshift | 1 | Moderate-Severe | Facial dysmorphisms, microcephaly, axial hypotonia, peripheral spasticity, no walking, no speech (few words), autistic behavior | Kuechler et al. 2015 [2] |
Exon 8 | Missense | 1 | Moderate-Severe | Facial dysmorphisms, epilepsy microcephaly, axial hypotonia, peripheral spasticity, delayed walking, impaired speech (words not intelligible), ID | Kuechler et al. 2015 [2] |
Exon 9 | Nonsense | 3 | Moderate-Severe | Facial dysmorphisms, small head/microcephaly, optical alterations, axial hypotonia, peripheral spasticity, severe speech impairments (no speech/single words), severe ID and can have behavioral alterations | Kuechler et al. 2015 [2], Ligt et al. 2012 [4], Tucci et al. 2014 [28], Kharbanda et al. 2017 [30] |
Exon 9 | Frameshift | 3 | Moderate-Severe | Facial dysmorphisms, small head/microcephaly, optical alterations, axial hypotonia, peripheral spasticity, moderate speech (can have understandable words, can repeat short sentences), absent walking and speech, and can have behavioral difficulties | Kuechler et al. 2015 [2], Ligt et al. 2012 [4], Tucci et al. 2014 [28], Jin et al. 2020 [5], Kharbanda et al. 2017 [30] |
Exon 10 | Nonsense | 2 | Moderate-Severe | Facial dysmorphisms, small head/microcephaly, impaired speech (noises, few words), moderate/severe ID, behavioral difficulties | Kharbanda et al. 2017 [30] |
Exon 11 | Nonsense | 1 | Moderate-Severe | Facial dysmorphisms, optical alterations, axial hypotonia, unable to walk, impaired speech (few words), severe ID, behavioral difficulties | Kharbanda et al. 2017 [30] |
Exon 12 | Frameshift | 2 | Moderate-Severe | Facial dysmorphisms, optical alterations, peripheral spasticity, impaired speech (few words), ID | Kuechler et al. 2015 [2] |
Exon 3 | Nonsense, frameshift | 2 | Moderate | Facial dysmorphisms, optical alterations, axial hypotonia, peripheral spasticity, impaired speech (short sentences, unclear speech), ID | Winczewska-Wiktor et al. 2016 [23], Kuechler et al. 2015 [2] |
Exon 4 | Nonsense | 1 | Moderate | Facial dysmorphisms, microcephaly, axial hypotonia, peripheral spasticity, delayed walking, impaired speech (at 4 and 5 years < 50 words), ID, autistic behavior | Kuechler et al. 2015 [2] |
Exon 5 | Frameshift | 1 | Moderate | Facial dysmorphisms, strabismus, microcephaly, axial hypotonia, peripheral spasticity, delayed walking, impaired speech (simple sentences, read simple words), mild ID, and autistic behavior | Tucci et al. 2014 [28] |
Exon 7 | Nonsense, frameshift | 4 | Moderate | Facial dysmorphisms, axial hypotonia, peripheral spasticity, delayed walking (average 4,2 years), impaired speech (started speaking in 4 years, speaks in sentences, articulation poor), and can have behavioral difficulties | Ligt et al. 2012 [4], Tucci et al. 2014 [28], Kharbanda et al. 2017 [30] |
Intron 7 | Splice | 1 | Moderate | Facial dysmorphisms, microcephaly, axial hypotonia, peripheral spasticity, absent walking, impaired speech, ID | Kuechler et al. 2015 [2] |
Exon 10 | Nonsense | 1 | Moderate | Facial dysmorphisms, microcephaly, axial hypotonia, peripheral spasticity, impaired speech, autism | Kharbanda et al. 2017 [30] |
Entire gene | Gross deletion | 2 | Moderate | Facial dysmorphisms, optical alterations, microcephaly, axial hypotonia, impaired walking, impaired speech, ID | Dubruc et al. 2014 [41], Kuechler et al. 2015 [2] |
Exon 13 | Nonsense | 3 | Mild | Facial dysmorphisms, axial hypotonia, delayed walking (before 24 months), mild ID, behavioral alteration (autism and aggression) | Kuechler et al. 2015 [2], Kharbanda et al. 2017 [30] |
Exon 14 and 15 | Missense and Nonsense | 2 | Normal | Normal phenotype with only optical alterations (FEVR) | Panagiotou et al. 2017 [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miroševič, Š.; Khandelwal, S.; Sušjan, P.; Žakelj, N.; Gosar, D.; Forstnerič, V.; Lainšček, D.; Jerala, R.; Osredkar, D. Correlation between Phenotype and Genotype in CTNNB1 Syndrome: A Systematic Review of the Literature. Int. J. Mol. Sci. 2022, 23, 12564. https://doi.org/10.3390/ijms232012564
Miroševič Š, Khandelwal S, Sušjan P, Žakelj N, Gosar D, Forstnerič V, Lainšček D, Jerala R, Osredkar D. Correlation between Phenotype and Genotype in CTNNB1 Syndrome: A Systematic Review of the Literature. International Journal of Molecular Sciences. 2022; 23(20):12564. https://doi.org/10.3390/ijms232012564
Chicago/Turabian StyleMiroševič, Špela, Shivang Khandelwal, Petra Sušjan, Nina Žakelj, David Gosar, Vida Forstnerič, Duško Lainšček, Roman Jerala, and Damjan Osredkar. 2022. "Correlation between Phenotype and Genotype in CTNNB1 Syndrome: A Systematic Review of the Literature" International Journal of Molecular Sciences 23, no. 20: 12564. https://doi.org/10.3390/ijms232012564
APA StyleMiroševič, Š., Khandelwal, S., Sušjan, P., Žakelj, N., Gosar, D., Forstnerič, V., Lainšček, D., Jerala, R., & Osredkar, D. (2022). Correlation between Phenotype and Genotype in CTNNB1 Syndrome: A Systematic Review of the Literature. International Journal of Molecular Sciences, 23(20), 12564. https://doi.org/10.3390/ijms232012564