Clinical Efficacies of FLT3 Inhibitors in Patients with Acute Myeloid Leukemia
Abstract
:1. Introduction
2. FLT3 Genetic Aberrations
3. Clinical Influence of FLT3 Aberrations in Newly Diagnosed or Relapsed/Refractory Settings
4. FLT3 Inhibitor Classifications
5. Front-Line Therapy for FLT3-ITD-Mutated AML
5.1. Sorafenib
5.2. Midostaurin
5.3. Lestauritinib
5.4. Crenolanib
Agent (Reference Number) | Study Design and Population | Therapeutic Schedule | Treatment Outcomes | Adverse Effects |
---|---|---|---|---|
First generation FLT3 inhibitors | ||||
Sorafenib [37] | Phase II (n = 276) ND AML, ≤60 yrs FLT3 mutation, not required Median age, 50 yrs | Induction -Cytarabine 100 mg/m2/d D1–7 -Daunorubicin 60 mg/m2/d D3–5 -Sorafenib 400 mg bid D10–19 vs. placebo Consolidation (or Allo-SCT) -HDAC +/− sorafenib 400 mg bid D8 to 3 days before next cycle Maintenance sorafenib 400 mg bid vs. placebo | In the overall group, in placebo vs. sorafenib, mOS, not different 3 yr-EFS 22% vs. 40% (p = 0.013) In FLT3-ITD+ group, mEFS (5 vs. 6 mo), mRFS (18 vs. 6 mo) and mOS (not reached vs. 19 mo)—all not different → ≤60 yrs, sorafenib with standard CTx → anti-leukemic effect. | Diarrhea Bleeding Cardiac event Hand-foot-skin reaction |
Sorafenib [38] | Phase III (n = 211) ND AML Age > 60 yrs FLT3 mutation not required Median age, 68 yrs | Standard induction/consolidation +/− sorafenib Cytarabine, 100 mg/m2/d, D1–2 Daunorubicin 60 mg/m2/d. D3–5 Sorafenib 400 mg bid on D3 vs. placebo | CR, sorafenib vs. placebo → 48% vs. 60% (p = 0.12) ORR, 57% vs. 64% (p = 0.34) In FLT3-ITD+, CR 40% vs. 72% (NS) Overally, median EFS, 5 vs. 7 mo (p = 0.88) Median OS 13 vs. 15 mo (p = 0.12) → standard CTx with sorafenib, not beneficial in elderly AML pts. | Not determined |
Midostaurin [43] | Phase IB (n = 69) Age of AML, 18–60 yrs, KPS ≥ 70 FLT3 mutation not required Median age, 39 yrs | Cytarabine 200 mg/m2/d, D1–7 Daunorubicin, 60 mg/m2/d, D1–3 Midostaurin 50/100 mg bid D1–7 → D15–21 or D8–21 | Overally, CR—80% In FLT3 mutation+ → CR 12/13 (92%) In FLT3 mutation+ → 1-yr-DFS—50%/1-yr-OS—85% 2-yr-OS—62% | Nausea, vomiting, Diarrhea |
Midostaurin [44] | Phase III (n = 717) Age of AML, 18–59 yrs FLT3 mutation, required Median age, 47.9 yrs | Cytarabine 200 mg/m2/d, D1–7 Daunorubicin 60 mg/m2/d D1–3 Midostaurin or placebo—D8–21 Midostaurin D 8–21 with HDAC Midostaurin maintenance for 12/28 for 28-day cycles | CR, 59% in midostaurin vs. 54% in placebo (p = 0.15) mOS, 74.7 mo vs. 25.6 mo (p = 0.009) 4-yr OS, 51.4% vs 44.3% (NS) mEFS, 8.2 vs. 3.0 mo (p = 0.002) 4-yr EFS, 28.2% vs. 20.6% (NS) | Anemia, rash, nausea |
Lestaurtinib [48] | Phase III (n = 500) ND AML/high risk MDS Suitable for intensive Tx Presence of FLT3 mutation, | Various intensive Tx Lestaurtinib 80 mg bid starting, Increase to 100 mg bid If tolerable. | ORR—not different, lestauritinib group vs. control 5-yr OS, 46% in lestauritinib vs. 45% in control (p = 0.3) 5 yr-RFS, 40% vs. 36% (p = 0.3) Lestaurtinib with IC, feasible but no clinical benefit | Nasea, Diarrhea, Bilirubin ↑ |
Second generation FLT3 inhibitors | ||||
Crenolanib [50] | Phase II (n = 26) Newly diagnosed AML, ≥18 yrs FLT3 mutations, required Median age, 55 yrs | Induction Cytarabine 100 mg/m2/d, D1–7 Daunorubicin 90 mg/m2/d or idarubicin 12 mg/m2/d D1–3 crenolanib 100 mg tid start on D9 until 72 hrs before next cycle | ORR, 96%, (CR, 88%) During median F/U 6.2 mo, OS rate, 88% | Periorbital edema, LFT elevation, Nausea, Rash |
6. FLT3 Inhibitors in Patients with Relapsed/Refractory Disease Unsuitable for Standard Therapy
6.1. Sorafenib
6.2. Midostaurin
6.3. Gilteritinib
6.4. Quizartinib
6.5. Crenolanib
Agent (Reference Number) | Study Design and Population | Therapeutic Schedule | Treatment Outcome | Adverse Effects |
---|---|---|---|---|
First generation FLT3 inhibitors | ||||
Sorafenib [51] | Phase I/II (n = 43) FLT3 mutation, not required Median age, 64 yrs | AZA 75 mg/m2/d D1–7 Sorafenib 400 mg bid | ORR 46%, CR 16%, CRi 27%, PR 3% DoR of CR/CRi, 2.3 mos Median OS—6.2 mos → Sorafenib with AZA, effective in relapsed AML pts with FLT3-ITD (+) | Fatigue, LFT elevation, Diarrhea |
Sorafenib [52] | Phase II (n = 27) FLT3 mutated Unsuitable for standard CTx Median age, 74 yrs (61–86 yrs) | AZA 75 mg/m2/d D1–7 Sorafenib 400 mg bid | ORR, 78% (CR, 26%; CRi/CRp, 44%; PR, 7%) mDoR—14.5 mos 3 pts, received allo-SCT OS—8.3 mo in entire group, 9.2 mos in responder → the regimen, well tolerable in elderly pts with FLT3 (+) | Infection, Hyperbilirubin Anemia, Diarrhea, Fatigue |
Midostaurin [53] | Phase IIB (n = 95) AML, MDS (RAEB, CMML FLT3 mutations, not required 64%, ≥ 65 yrs | Midostuarin, 50 or 100 mg bid | FLT3 mutation +—blast reduction, 71% FLT3-WT—blast reduction, 49% CR/Cri—0; PR—1/35 Blast reduction (≥50%)—49% → midostaurin, clinical efficacy in both pts with FLT3 (+) and WT. | Nausea, vomiting |
Midostaurin [41] | Phase I/II (n = 54) AML, high risk MDS FLT3 mutation, not required Median age, 65 yrs | AZA D1–7 and Midostaurin 25 mg bid (cohort I) or 50 mg bid (cohort II) (MTD 50 mg bid) | ORR—26% (CR 1/54, CRi 6/54, MLFS, 6/54, PR 1/54) mDoR—20 wks -pts not exposed FLT3 inhibitor, longer (p = 0.05) -pts not received SCT, longer (p = 0.01) mOS—22 wks → midostaurin with AZA, effective and safe in AML and high-risk MDS pts | Neutropenia, thromvocytopenia Anemia, EF reduction Diarrhea Nausea/vomiting |
Second generation FLT3 inhibitor | ||||
Gilteritinib [54] | Phase I/II (n = 265), R/R setting FLT mutation, not required Median age, 64 yrs | Dose-escalation cohort vs. Dose-expansion cohorts (120–200 mg, given) -MTD of gilteritinib, 300 mg/d | ORR—40% → Gilteritinib—well tolerable | Diarrhea, Anemia, Fatigue, LFT ↑ |
Gilteritinib [55] | Phase I (n = 24) Japanes patient with R/R AML | Dose-escalating, 20/40/80/120/200/300 mg MTD of gilteritinib, 200 mg | ORR in FLT3 (+)—80% ORR in FLT3 WT—4/11 (36.4%) -120 mg/d gilteritinib, recommend → gilteritinib, well tolerated and effective in Japanese R/R AML pts. | Grade 3 LDH ↑, Amylase ↑ Syncope |
Giltertinib [56] | Phase III (n = 371) R/R AML with FLT3 mutation | 2:1 ratio received gliteritinib, 120 mg/d or 1/4 salvages—MEC, FLAG-IDA, LDAC, AZA | OS in gilteritinib ↑—SC group (9.3 vs. 5.6 mos; p < 0.001) CR/CRh, gilteritinib > SC group (34 vs. 15.3%, p = 0.001) → Gilteritinib, longer survival and higher remission rate than salvage CTx in R/R pts. | Cytopenia, QTc prolongation Pancreatitis, PRES, Differentiation syndrome |
Quizartinib [60] | Phase I (n = 76) patients with R/R AML FLT3 mutation, not required Median age, 59.5 yrs | MTD of quizartinib 200 mg/d | In 17 FLT3-ITD (+) pts, -2CR, 3CRp, 5CRi, 13PR → 23 pts. In 37 FLT3-ITD (-) pts -2CRp, 3PR → 5 pts. In 22 FLT3 intermediate/not-tested status -1CR, 1CRp, 5PR → 7 pts. | Nausea, Vomiting, QTc prolongation, |
Quizartinib [62] | Phase II (n = 76) R/R FLT3-ITD mutated AML after second-line or allo-SCT | 30 mg/d (A) or 60 mg/d (B) Phase II (n = 76) R/R FLT3-ITD (+) AML after second-line or allo-SCT | CRc, 47%, DoR—22–26 wks 30 mg/d group—ORR, 61%; mOS—20.7 wks 60 mg/d group—ORR, 71%; mOS—25.4 wks | QTc prolongation, Nausea, Diarhea Vomiting |
Quizartinib [63] | Phase II (n = 52) AML, high-risk MDS, CMML, FLT3-ITD required for enrollment Median age, 67 yrs | AZA, 75 mg/m2 SC/IV for 7 days LDAC, 20 mg SC twice daily 10 days Quizartinib, 60 or 90 mg | Response, 35 → 8 of LDAC arm (23%), 27 of AZA arm (77%) ORR, 67% (CR-8, CRp-7, CRi-18, PR-18, PR-2) ORR, 73%—FLT3-ITD+ (n = 48) 11 received to allo-SCT | Hypokalemia, Hypotension, Hypophosphatemia, Hyponatremia, QTc prolongation |
Crenolanib [66] | Phase I (n = 13) R/R FLT3 mutated AML Median age, 51 yrs | Idarubicin 12 mg/m2/d D1–3 Cytarabine 1.5 g/m2/d D1–4 Crenolanib 60–100 mg tid start on D5 → continued until 72 before next cycles | ORR—36% (CR, 1/CRi, 3) mOS—259 days → full-dose crenolanib, safely combined with idarubicin and HDAC in R/R AML pts. | Nausea, Vomiting, Diarrhea, Abdominal pain |
Crenolanib [67] | Phase II (n = 8), R/R FLT3 mutation, not rquired Median age, 64 yrs | HAM—Cytarabine 1.0 g/m2/d D1–6 and mitoxantrone 10 mg/m2 D1–3 vs. Crenolanib 100 mg tid start on D8 | CR—2/6, CRi—2/6 → full-dose crenolanib, well-tolerable with HAM in R/R elderly AML pts. | AST/ALT elevation |
7. Maintenance Therapy for FLT3-ITD-Mutated AML
7.1. Midostaurin
7.2. Sorafenib
8. Resistance Mechanisms to FLT3 Inhibitor
9. Overcoming Strategy for Resistance of FLT3 Mutations
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, J.P.; Gönen, M.; Figueroa, M.E.; Fernandez, H.; Sun, Z.; Racevskis, J.; Vlierberghe, P.V.; Dolgalev, I.; Thomas, S.; Aminova, O.; et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 2012, 366, 1079–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stirewalt, D.L.; Radich, J.P. The role of FLT3 in haematopoietic malignancies. Nat. Rev. Cancer 2003, 3, 650–665. [Google Scholar] [CrossRef] [PubMed]
- Lyman, S.D.; James, L.; Bos, T.V.; de Vries, P.; Brasel, K.; Gliniak, B.; Hollingsworth, L.T.; Picha, K.S.; McKenna, H.J.; Splett, R.R.; et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: A proliferative factor for primitive hematopoietic cells. Cell 1993, 75, 1157–1167. [Google Scholar] [CrossRef]
- Drexler, H.G.; Meyer, C.; Quentmeier, H. Effects of FLT3 ligand on proliferation and survival of myeloid leukemia cells. Leuk. Lymphoma 1999, 33, 83–91. [Google Scholar] [CrossRef]
- Nakao, M.; Yokota, S.; Iwai, T.; Kaneko, H.; Horiike, S.; Kashima, K.; Sonoda, Y.; Fujimoto, T.; Misawa, S. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996, 10, 1911–1918. [Google Scholar]
- Yamamoto, Y.; Kiyoi, H.; Nakano, Y.; Suzuki, R.; Kodera, Y.; Miyawaki, S.; Asou, N.; Kuriyama, K.; Yagasaki, F.; Shimazaki, C.; et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001, 97, 2434–2439. [Google Scholar] [CrossRef] [Green Version]
- Kiyoi, H.; Naoe, T. Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with FLT3 mutation. Int. J. Hematol. 2006, 83, 301–308. [Google Scholar] [CrossRef]
- Kihara, R.; Nagata, Y.; Kiyoi, H.; Kato, T.; Yamamoto, E.; Suzuki, K.; Chen, F.; Asou, N.; Ohtake, S.; Miyawaki, S.; et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia 2014, 28, 1586–1595. [Google Scholar] [CrossRef]
- Ley, T.J.; Miller, C.; Raphael, B.J.; Mungall, A.J.; Robertson, A.G.; Hoadley, K.; Triche, T.J., Jr.; Laird, P.W.; Baty, J.D.; Fulton, L.L.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [Google Scholar]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Schlenk, R.F.; Döhner, K.; Krauter, J.; Fröhling, S.; Corbacioglu, A.; Bullinger, L.; Habdank, M.; Späth, D.; Morgan, M.; Benner, A.; et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 2008, 358, 1909–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilliland, D.G.; Griffin, J.D. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002, 100, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, C.; Schwäble, J.; Brandts, C.; Tickenbrock, L.; Sargin, T.; Kindler, T.; Fischer, T.; Berdel, W.E.; Müller-Tidow, C.; Serve, H. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood 2005, 106, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Gale, R.E.; Green, C.; Allen, C.; Mead, A.J.; Burnett, A.K.; Hills, R.K.; Linch, D.C. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 2008, 111, 2776–2784. [Google Scholar] [CrossRef] [Green Version]
- Schnittger, S.; Bacher, U.; Kern, W.; Alpermann, T.; Haferlach, C.; Haferlach, T. Prognostic impact of FLT3-ITD load in NPM1 mutated acute myeloid leukemia. Leukemia 2011, 25, 1297–1304. [Google Scholar] [CrossRef] [Green Version]
- Bataller, A.; Garrido, A.; Guijarro, F.; Oñate, G.; Diaz-Beyá, M.; Arnan, M.; Tormo, M.; Vives, S.; de Liano, P.Q.; Coll, R.; et al. European LeukemiaNet 2017 risk stratification for acute myeloid leukemia: Validation in a risk-adapted protocol. Blood Adv. 2022, 6, 1193–1206. [Google Scholar] [CrossRef]
- Fernandez, H.F.; Sun, Z.; Yao, X.; Litzow, M.R.; Luger, S.M.; Elisabeth, M.; Paietta, E.; Janis Racevskis, J.; Gordon, W.; Dewald, G.W.; et al. Anthracycline dose intensification in acute myeloid leukemia. N. Engl. J. Med. 2009, 361, 1249–1259. [Google Scholar] [CrossRef] [Green Version]
- Fröhling, S.; Schlenk, R.F.; Breitruck, J.; Benner, A.; Kreitmeier, S.; Tobis, K.; Döhner, H.; Döhner, K. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: A study of the AML Study Group Ulm. Blood 2002, 100, 4372–4380. [Google Scholar] [CrossRef] [Green Version]
- Kottaridis, P.D.; Gale, P.E.; Frew, M.E.; Harrison, G.; Langabeer Belton, A.A.; Walker, H.; Wheatley, K.; Bowen, D.T.; Burnett, A.K.; Goldstone, A.H.; et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: Analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001, 98, 1752–1759. [Google Scholar]
- Port, M.; Böttcher, M.; Thol, F.; Ganser, A.; Schlenk, R.; Wasem, J.; Neumann, A.; Pouryamout, L. Prognostic significance of FLT3 internal tandem duplication, nucleophosmin 1, and CEBPA gene mutations for acute myeloid leukemia patients with normal karyotype and younger than 60 years: A systematic review and meta-analysis. Ann. Hematol. 2014, 93, 1279–1286. [Google Scholar] [CrossRef]
- Thiede, C.; Steudel, C.; Mohr, B.; Schaich, M.; Schäkel, U.; Platzbecker, U.; Wermke, M.; Bornhäuser, M.; Ritter, M.R.; Neubauer, A.; et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: Association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002, 99, 4326–4635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlenk, R.F.; Kayser, S.; Bullinger, L.; Kobbe, G.; Casper, J.; Ringhoffer, M.; Held, G.; Brossart, P.; Lübbert, M.; Salih, H.R.; et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood 2014, 124, 3441–3449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.S.; Marcucci, G.; et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Linch, D.C.; Hills, R.K.; Burnett, A.K.; Khwaja, A.K.; Gale, R.E. Impact of FLT3(ITD) mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood 2014, 124, 273–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stirewalt, D.L.; Kopecky, K.J.; Meshinchi, S.; Engel, J.H.; Pogosova-Agadjanyan, E.L.; Linsley, J.; Slovak, M.L.; Willman, C.L.; Radich, J.P. Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood 2006, 107, 3724–3726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayser, S.; Schlenk, R.F.; Londono, M.C.; Breitenbuecher, F.; Wittke, K.; Du, J.; Groner, S.; Späth, D.; Krauter, J.; Ganser, A.; et al. Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood 2009, 114, 2386–2392. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.B.; Dong, H.J.; Bao, X.B.; Qiu, Q.C.; Li, H.Z.; Shen, H.J.; Ding, Z.X.; Wang, C.; Chu, X.L.; Yu, J.Q.; et al. Impact of FLT3-ITD length on prognosis of acute myeloid leukemia. Haematologica 2019, 104, e9–e12. [Google Scholar] [CrossRef] [Green Version]
- Kiyoi, H.; Towatari, M.; Yokota, S.; Hamaguchi, M.; Ohno, R.; Saito, H.; Naoe, T. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998, 12, 1333–1337. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.C.; Lin, K.; Stecula, A.; Sali, A.; Shah, N.P. FLT3 D835 mutations confer differential resistance to type II FLT3 inhibitors. Leukemia 2015, 29, 2390–2392. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Susan, K. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov. 2006, 5, 835–844. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.I.V.; Sabato, P.; Gobburu, J.V.S.; Greer, J.M.; Wright, J.J.; Smith, B.D.; Pratz, K.W.; Rudek, M.A. Sorafenib dose recommendation in acute myeloid leukemia based on exposure-FLT3 relationship. Clin. Trans. Sci. 2018, 11, 435–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, N.R.B.F.; Braun, L.; O’Sullivan, D.; Thomas, S.; Waterhouse, M.; Muller, T.A.; Hanke, K.; Taromi, S.; Apostolova, P.; Illert, A.L.; et al. Sorafenib promotes graft-versusleukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat. Med. 2018, 24, 282–291. [Google Scholar] [CrossRef]
- Lange, A.J.E.; Lange, J.; Dworacki, G.; Nowak, D.; Simiczyjew, A.; Mordak-Domagala, M.; Sedzimirska, M. The sorafenib anti-relapse effect after alloHSCT is associated with heightened alloreactivity and accumulation of CD8+PD-1+ (CD279+) lymphocytes in marrow. PLoS ONE 2018, 13, e0190525. [Google Scholar]
- Zhao, W.Z.T.; Qu, B.; Wu, X.; Zhu, X.; Meng, F.; Gu, Y.; Shu, Y.; Shen, Y.; Sun, Y.; Xu, Q. Sorafenib induces apoptosis in HL60 cells by inhibiting Src kinase-mediated STAT3 phosphorylation. Anti-Cancer Drugs 2011, 22, 79–88. [Google Scholar] [CrossRef]
- Feldmann, F.S.B.; Martens, S.; Vandenabeele, P.; Fulda, S. Sorafenib inhibits therapeutic induction of necroptosis in acute leukemia cells. Oncotarget 2017, 8, 68208–68220. [Google Scholar] [CrossRef] [Green Version]
- Röllig, C.; Serve, H.; Hüttmann, A.; Noppeney, R.; Müller-Tidow, C.; Krug, U.; Baldus, C.D.; Brandts, C.H.; Kunzmann, V.; Einsele, H.; et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): A multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015, 16, 1691–1699. [Google Scholar] [CrossRef]
- Serve, H.; Krug, U.; Wagner, R.; Sauerland, M.C.; Heinecke, A.; Brunnberg, U.; Schaich, M.; Ottmann, O.; Duyster, J.; Wandt, H.; et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: Results from a randomized, placebo-controlled trial. J. Clin. Oncol. 2013, 31, 3110–3118. [Google Scholar] [CrossRef]
- Mendel, D.B.; Laird, A.D.; Xin, X.; Louie, S.G.; Christensen, J.G.; Li, G.; Schreck, R.E.; Abrams, T.J.; Ngai, T.J.; Lee, L.E.; et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 2003, 9, 327–337. [Google Scholar]
- Röllig, C.; Serve, H.; Noppeney, R.; Hanoun, M.; Krug, U.; Baldus, C.D.; Brandts, C.H.; Kunzmann, V.; Einsele, H.; Krämer, A.; et al. Sorafenib or placebo in patients with newly diagnosed acute myeloid leukaemia: Long-term follow-up of the randomized controlled SORAML trial. Leukemia 2021, 35, 2517–2525. [Google Scholar] [CrossRef]
- Ravandi, F.; Alattar, M.L.; Grunwald, M.R.; Rudek, M.A.; Rajkhowa, T.; Richie, M.A.; Pierce, S.; Daver, N.; Garcia-Manero, G.; Faderl, S.; et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood 2013, 121, 4655–4662. [Google Scholar] [CrossRef] [PubMed]
- Ohanian, M.; Garcia-Manero, G.; Levis, M.; Jabbour, E.; Daver, N.; Borthakur, G.; Kadia, T.; Pierce, S.; Burger, J.; Richie, M.A.; et al. Sorafenib combined with 5-azacytidine in older patients with untreated FLT3-ITD mutated acute myeloid leukemia. Am. J. Hematol. 2018, 93, 1136–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Propper, D.J.; McDonald, A.C.; Man, A.; Thavasu, P.; Balkwill, F.; Braybrooke, J.P.; Caponigro, F.; Graf, P.; Dutreix, C.; Blackie, R.; et al. Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J. Clin. Oncol. 2001, 19, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Fabbro, D.; Buchdunger, E.; Wood, J.; Mestan, J.; Hofmann, F.; Ferrari, S.; Mett, H.; O’Reilly, T.; Meyer, T. Inhibitors of protein kinases: CGP 41251, a protein kinase inhibitor with potential as an anticancer agent. Pharmacol. Ther. 1999, 82, 293–301. [Google Scholar] [CrossRef]
- Fiedler, W.; Kayser, S.; Kebenko, M.; Janning, M.; Krauter, J.; Schittenhelm, M.; Götze, K.; Weber, D.; Göhring, G.; Teleanu, V.; et al. A phase I/II study of sunitinib and intensive chemotherapy in patients over 60 years of age with acute myeloid leukaemia and activating FLT3 mutations. Br. J. Haematol. 2015, 169, 694–700. [Google Scholar] [CrossRef]
- Loschi, M.; Sammut, R.; Chiche, E.; Cluzeau, T. FLT3 Tyrosine Kinase Inhibitors for the Treatment of Fit and Unfit Patients with FLT3-Mutated AML: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 5873. [Google Scholar] [CrossRef]
- Stone, R.M.; Fischer, T.; Paquette, R.; Schiller, G.; Schiffer, C.A.; Ehninger, G.; Cortes, J.; Kantarjian, H.M.; DeAngelo, D.J.; Huntsman-Labed, A.; et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia 2012, 26, 2061–2068. [Google Scholar] [CrossRef] [Green Version]
- Kaya, S.O.; Bir, F.; Atalay, H.; Onem, G.; Aytekin, F.O.; Saçar, M. Effect of diclofenac on experimental pleurodesis induced by tetracycline in rabbits. J. Investig. Med. 2005, 53, 267–270. [Google Scholar] [CrossRef]
- Levis, M.; Allebach, J.; Tse, K.F.; Zheng, R.; Baldwin, B.R.; Smith, B.D.; Jones-Bolin, S.; Ruggeri, B.; Dionne, C.; Small, D. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002, 99, 3885–3891. [Google Scholar] [CrossRef] [Green Version]
- Hexner, E.O.; Mascarenhas, J.; Prchal, J.; Roboz, G.J.; Baer, M.R.; Ritchie, E.K.; Leibowitz, D.; Demakos, E.P.; Miller, C.; Siuty, J.; et al. Phase I dose escalation study of lestaurtinib in patients with myelofibrosis. Leuk. Lymphoma 2015, 56, 2543–2551. [Google Scholar]
- Knapper, S.; Russell, N.; Gilkes, A.; Hills, R.K.; Gale, R.E.; Cavenagh, J.D.; Jones, G.; Kjeldsen, L.; Grunwald, M.R.; Thomas, I. A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML. Blood 2017, 129, 1143–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanis, A.; Ma, H.; Rajkhowa, T.; Ramachandran, A.; Small, D.; Cortes, J.; Levis, M. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood 2014, 123, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, E.S.; Stone, R.M.; Tallman, M.S.; Walter, R.B.; Eckardt, J.R.; Collins, R. Crenolanib, a Type I FLT3 TKI, Can be Safely Combined with Cytarabine and Anthracycline Induction Chemotherapy and Results in High Response Rates in Patients with Newly Diagnosed FLT3 Mutant Acute Myeloid Leukemia (AML). Blood 2016, 128, 1071. [Google Scholar] [CrossRef]
- Perl, A.E.; Altman, J.K.; Cortes, J.; Smith, C.; Litzow, M.; Baer, M.R.; Claxton, D.; Erba, H.P.; Gill, S.; Goldberg, S.; et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: A multicentre, first-inhuman, open-label, phase 1-2 study. Lancet Oncol. 2017, 18, 1061–1075. [Google Scholar] [CrossRef]
- Fischer, T.; Stone, R.M.; Deangelo, D.J.; Galinsky, I.; Estey, E.; Lanza, C.; Fox, E.; Ehninger, G.; Feldman, E.J.; Schiller, G.J.; et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J. Clin. Oncol. 2010, 28, 4339–4345. [Google Scholar] [CrossRef] [Green Version]
- Strati, P.; Kantarjian, H.; Ravandi, F.; Nazha, A.; Borthakur, G.; Daver, N.; Kadia, T.; Estrov, Z.; Garcia-Manero, G.; Konopleva, M.; et al. Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am. J. Hematol. 2015, 90, 276–281. [Google Scholar] [CrossRef]
- Park, I.K.; Mishra, A.; Chandler, J.; Whitman, S.P.; Marcucci, G.; Caligiuri, M.A. Inhibition of the receptor tyrosine kinase Axl impedes activation of the FLT3 internal tandem duplication in human acute myeloid leukemia: Implications for Axl as a potential therapeutic target. Blood 2013, 121, 2064–2073. [Google Scholar] [CrossRef] [Green Version]
- Usuki, K.; Sakura, T.; Kobayashi, Y.; Miyamoto, T.; Iida, H.; Morita, S.; Bahceci, E.; Kaneko, M.; Kusano, M.; Yamada, S.; et al. Clinical profile of gilteritinib in Japanese patients with relapsed/refractory acute myeloid leukemia: An open-label phase 1 study. Cancer Sci. 2018, 109, 3235–3244. [Google Scholar] [CrossRef] [Green Version]
- Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef]
- Zarrinkar, P.P.; Gunawardane, R.N.; Cramer, M.D.; Gardner, M.F.; Brigham, D.; Belli, B.; Karaman, B.W.; Pratz, K.W.; Pallares, G.; Chao, Q.; et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 2009, 114, 2984–2992. [Google Scholar] [CrossRef]
- Naqvi, K.; Ravandi, F. FLT3 inhibitor quizartinib (AC220). Leuk. Lymphoma 2019, 60, 1866–1876. [Google Scholar] [CrossRef] [PubMed]
- Chao, Q.; Sprankle, K.G.; Grotzfeld, R.M.; Lai, A.G.; Carter, T.A.; Velasco, A.M.; Gunawardane, R.N.; Cramer, M.D.; Gardner, M.F.; James, J.; et al. Identification of N-(5-tert-butyl-isoxazol-3-yl)-N’-{4-[7-(2-morpholin-4-yl-ethoxy)imidazo[2,1-b][1,3]benzothiazol-2-yl]phenyl}urea dihydrochloride (AC220), a uniquely potent, selective, and efficacious FMS-like tyrosine kinase-3 (FLT3) inhibitor. J. Med. Chem. 2009, 52, 7808–7816. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Kantarjian, H.; Foran, J.M.; Ghirdaladze, D.; Zodelava, M.; Borthakur, G.; Gammon, G.; Trone, D.; Armstrong, R.C.; James, J.; et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J. Clin. Oncol. 2013, 31, 3681–3687. [Google Scholar] [CrossRef] [PubMed]
- Schiller, G.J.; Tallman, M.S.; Goldberg, S.L.; Perl, A.E.; Marie, J.P.; Martinelli, G.; Larson, R.A.; Russell, N.; Trone, D.; Gammon, G.; et al. Final results of a randomized phase 2 study showing the clinical benefit of quizartinib (AC220) in patients with FLT3-ITD positive relapsed or refractory acute myeloid leukemia. J. Clin. Oncol. 2014, 32, 7100. [Google Scholar] [CrossRef]
- Abdelall, W.; Kantarjian, H.M.; Borthakur, G.; Garcia-Manero, G.; Patel, K.P.; Jabbour, E.J.; Daver, N.G.; Kadia, T.; Gborogen, R.A.; Konopleva, M.; et al. The Combination of Quizartinib with Azacitidine or Low Dose Cytarabine Is Highly Active in Patients (Pts) with FLT3-ITD Mutated Myeloid Leukemias: Interim Report of a Phase I/II Trial. Blood 2016, 128, 1642. [Google Scholar] [CrossRef]
- Heinrich, M.C.; Griffith, D.; McKinley, A.; Patterson, J.; Presnell, A.; Ramachandran Debiec-Rychter, A. Crenolanib inhibits the drug-resistant PDGFRA D842V mutation associated with imatinib-resistant gastrointestinal stromal tumors. Clin. Cancer Res. 2012, 18, 4375–4384. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.P.; Jethava, Y.; Karanes, C.; Eckardt, J.R.; Collins, R. Safety study of salvage chemotherapy high-dose Ara-C/mitoxantrone (HAM) and type I FLT3-TKI crenolanib in first relapsed/primary refractory AML. Blood 2016, 128, 3983. [Google Scholar] [CrossRef]
- Maro Ohanian, H.M.K.; Borthakur, G.; Kadia, T.M.; Konopleva, M.; Garcia-Manero, G.; Estrov, Z.; Ferrajoli, A.; Takahashi, K.; Jabbour, E.J.; Daver, N.; et al. Efficacy of a type I FLT3 inhibitor, crenolanib, with idarubicin and high-dose Ara-C in multiply relapsed/refractory FLT3+ AML. Blood 2016, 128, 2744. [Google Scholar] [CrossRef]
- Maziarz, R.T.; Levis, M.; Patnaik, M.M.; Scott, B.L.; Mohan, S.R.; Deol, A.; Rowley, S.D.; Kim, D.D.H.; Hernandez, D.; Rajkhowa, T.; et al. Midostaurin after Allogeneic Stem Cell Transplant in Patients with FLT3-Internal Tandem Duplication-Positive Acute Myeloid Leukemia. Bone Marrow Transpl. 2021, 56, 1180–1189. [Google Scholar] [CrossRef]
- Barry, E.V.; Clark, J.J.; Cools, J.; Roesel, J.; Gilliland, D.G. Uniform sensitivity of FLT3 activation loop mutants to the tyrosine kinase inhibitor midostaurin. Blood 2007, 110, 4476–4479. [Google Scholar] [CrossRef] [Green Version]
- Randhawa, J.K.; Kantarjian, H.M.; Borthakur, G.B.; Thompson, P.A.; Konopleva, M.; Daver, N.; Pemmaraju, N.; Jabbour, E.; Kadia, T.M.; Estrov, Z.; et al. Results of a Phase II Study of Crenolanib in Relapsed/Refractory Acute Myeloid Leukemia Patients with Activating FLT3 Mutations. Blood 2014, 124, 389. [Google Scholar] [CrossRef]
- Pratz, K.W.; Sato, T.; Murphy, K.M.; Stine, A.; Rajkhowa, T.; Levis, M. FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 2010, 115, 1425–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.C.; Wang, Q.; Chin, C.-S.; Salerno, S.; Damon, L.E.; Levis, M.J.; Perl, A.E.; Travers, K.J.; Wang, S.; Hunt, J.P.; et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012, 485, 260–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitenbuecher, F.; Markova, B.; Kasper, S.; Carius, B.; Stauder, T.; Böhmer, F.D.; Masson, K.; Rönnstrand, L.; Huber, C.; Kindler, T.; et al. A novel molecular mechanism of primary resistance to FLT3-kinase inhibitors in AML. Blood 2009, 113, 4063–4073. [Google Scholar] [CrossRef] [Green Version]
- Kohl, T.M.; Hellinger, C.; Ahmed, F.; Buske, C.; Hiddemann, W.; Bohlander, S.; Spiekermann, K. BH3 mimetic ABT-737 neutralizes resistance to FLT3 inhibitor treatment mediated by FLT3-independent expression of BCL2 in primary AML blasts. Leukemia 2007, 21, 1763–1772. [Google Scholar] [CrossRef] [PubMed]
- Man, C.H.; Fung, T.K.; Ho, C.; Han, H.H.; Chow, H.C.; Ma, A.C.; Choi, W.W.; Lok, S.; Cheung, A.M.; Eaves, C.; et al. Sorafenib treatment of FLT3-ITD+ acute myeloid leukemia: Favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood 2012, 119, 5133–5143. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, L.; Small, D.; Rassool, F. Cells expressing FLT3/ITD mutations exhibit elevated repair errors generated through alternative NHEJ pathways: Implications for genomic instability and therapy. Blood 2010, 116, 5298–5305. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, K.; Xie, Y.; Burcu, M.; Linn, D.E.; Qiu, Y.; Baer, M.R. Pim-1 kinase phosphorylates and stabilizes 130 kDa FLT3 and promotes aberrant STAT5 signaling in acute myeloid leukemia with FLT3 internal tandem duplication. PLoS ONE 2013, 8, e74653. [Google Scholar] [CrossRef]
- Green, A.S.; Maciel, T.T.; Hospital, M.-A.; Yin, C.; Mazed, F.; Townsend, E.C.; Pilorge, S.; Lambert, M.; Paubelle, E.; Jacquel, A.; et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci. Adv. 2015, 1, e1500221. [Google Scholar] [CrossRef] [Green Version]
- Traer, E.; Martinez, J.; Javidi-Sharifi, N.; Agarwal, A.; Dunlap, J.; English, I.; Kovacsovics, T.; Tyner, J.W.; Wong, M.; Druker, B.J. FGF2 from marrow microenvironment promotes resistance to FLT3 inhibitors in acute myeloid leukemia. Cancer Res. 2016, 76, 6471–6482. [Google Scholar] [CrossRef] [Green Version]
- Onishi, C.; Mori-Kimachi, S.; Hirade, T.; Abe, M.; Taketani, T.; Suzumiya, J.; Sugimoto, T.; Yamaguchi, S.; Kapur, R.; Fukuda, S. Internal tandem duplication mutations in FLT3 gene augment chemotaxis to Cxcl12 protein by blocking the down-regulation of Rho-associated kinase via the Cxcl12/Cxcr4 signaling axis. J. Biol. Chem. 2015, 290, 28356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundler, R.; Brault, L.; Gasser, C.; Bullock, A.N.; Dechow, T.; Woetzel, S.; Pogacic, V.; Villa, A.; Ehret, S.; Berridge, G.; et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J. Exp. Med. 2009, 206, 1957–1970. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.R.; Wang, H.; Walsh, K.; Bhatnagar, B.; Vasu, S.; Garzon, R.; Canning, R.; Geyer, S.; Wu, Y.Z.; Devine, S.M.; et al. Midostaurin, bortezomib and MEC in relapsed/refractory acute myeloid leukemia. Leuk. Lymphoma 2016, 57, 2100–2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagrintseva, K.; Geisenhof, S.; Kern, R.; Eichenlaub, S.; Reindl, C.; Ellwart, J.W.; Hiddemann, W.; Spiekermann, K. FLT3-ITD-TKD dual mutants associated with AML confer resistance to FLT3 PTK inhibitors and cytotoxic agents by overexpression of Bcl-x(L). Blood 2005, 105, 3679–3685. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.A.; Walker, S.R.; Xiang, M.; Weisberg, E.; Bar-Natan, M.; Barrett, R.; Liu, S.; Kharbanda, S.; Christie, A.L.; Nicolais, M.; et al. The STAT5 Inhibitor Pimozide Displays Efficacy in Models of Acute Myelogenous Leukemia Driven by FLT3 Mutations. Genes Cancer 2012, 3, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Verstovsek, S.; Odenike, O.; Singer, J.W.; Granston, T.; Al-Fayoumi, S.; Deeg, H.J. Phase 1/2 study of pacritinib, a next generation JAK2/FLT3 inhibitor, in myelofibrosis or other myeloid malignancies. J. Hematol. Oncol. 2016, 9, 137. [Google Scholar] [CrossRef]
- Darici, S.; Zavatti, M.; Braglia, L.; Accordi, B.; Serafin, V.; Horne, G.A.; Manzoli, L.; Palumbo, C.; Huang, X.; Heather GJørgensen, H.G.; et al. Synergistic cytotoxicity of dual PI3K/mTOR and FLT3 inhibition in FLT3-ITD AML cells. Adv. Biol. Regul. 2021, 82, 100830. [Google Scholar] [CrossRef]
- Chen, Y.C.; Li, H.; Wang, J. Mechanisms of metformin inhibiting cancer invasion and migration. Am. J. Transl. Res. 2020, 12, 4885–4901. [Google Scholar]
- Pavlovsky, C.; Chan, O.; Talati, C.; Pinilla-Ibarz, J. Ponatinib in the treatment of chronic myeloid leukemia and philadelphia chromosome positive acute lymphoblastic leukemia. Future Oncol. 2019, 15, 257–269. [Google Scholar] [CrossRef]
- Lu, J.W.; Wang, A.N.; Liao, H.A.; Chen, C.Y.; Hou, H.A.; Hu, C.Y.; Tien, H.F.; Ou, D.L.; Lin, L.I. Cabozantinib is selectively cytotoxic in acute myeloid leukemia cells with FLT3-internal tandem duplication (FLT3-ITD). Cancer Lett. 2016, 376, 218–225. [Google Scholar] [CrossRef]
- Smith, C.C.; Levis, M.J.; Frankfurt, O.; Pagel, J.M.; Roboz, G.J.; Stone, R.M.; Wang, E.S.; Severson, P.L.; Brian, L.; West, B.L.; et al. A phase 1/2 study of the oral FLT3 inhibitor pexidartinib in relapsed/refractory FLT3-ITD–mutant acute myeloid leukemia. Blood Adv. 2020, 4, 1711–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaura, T.; Nakatani, T.; Uda, K.; Ogura, H.; Shin, W.; Kurokawa, N.; Saito, K.; Fujikawa, N.; Date, T.; Takasaki, M.; et al. A novel irreversible FLT3 inhibitor, FF-10101, shows excellent efficacy against AML cells with FLT3 mutations. Blood 2017, 131, 426–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherry, E.M.; Abbott, D.; Amaya, M.; McMahon, C.; Schwartz, M.; Rosser, J.; Sato, A.; Schowinsky, J.; Inguva, A.; Minhajuddin, M.; et al. Venetoclax and azacitidine compared with induction chemotherapy for newly diagnosed patients with acute myeloid leukemia. Blood Adv. 2021, 5, 5565–5573. [Google Scholar] [CrossRef]
- Ferng, T.T.; Terada, D.; Ando, M.; Tarver, T.C.; Chaudhary, F.C.; Lin, K.C.; Logan, A.C.; Smith, C.C. The Irreversible FLT3 Inhibitor FF-10101 Is Active Against a Diversity of FLT3 Inhibitor Resistance Mechanisms. Mol. Cancer Ther. 2022, 21, 844–854. [Google Scholar] [CrossRef] [PubMed]
Agent (Reference Number) | Study Design and Population | Therapeutic Schedule | Treatment Outcomes | Adverse Effects |
---|---|---|---|---|
First generation FLT3 inhibitors | ||||
Midostaurin [69] | Phase II (n = 60), 18–70 yrs FLT3 mutation, required | Midostaurin -50 mg bid/d for 12 d in 4-wk cycle | 18-mo RFS—89% in midostaurin arm vs, 76% in Standard-Of-Care arm (p = 0.27). some pts with higher levels of FLT3 inhibition -prolonged RFS (p = 0.06) and improved survival (p= 0.048) → midostaurin, clinical benefit in some FLT-ITD+ pts. | Vomiting, Nausea, Fatigue, Diarrhea |
Sorafenib [70] | Phase II (n = 83) FLT3-ITD+ pts in CR after SCT | Sorafenib, 200–800 mg/d, +60–+100 d after SCT. during 24 months, Tx—continuously at 24 mo | Relapse/death risk, lower in sorafenib arm vs. placebo arm (HR = 0.39, p = 0.013) 24 mo-RFS 53.3% vs. 85.0% (HR = 0.256; p = 0.002) → Sorafenib maintenance, reduce risk of relapse and death after SCT for FLT-ITD+ AML. | |
Sorafenib [71] | Phase III (n = 202), 18–60 yrs | 400 mg bid/d at 30–60 post-SCT. | 1-yr cumulative relapse in sorafenib arm, 7.0% vs. 24.5% in control arm (p = 0.0010) → sorafenib maintenance, reduce relapse and well-tolerable | Infection, Acute/chronic GVHD, Hematologic toxicity |
Midostaurin (NCT01477606) | Phase II (n = 284), 18–70 yrs 18–60 yrs (n = 198) 61–70 yrs (n = 86) | CR/Cri—76.4% (younger, 75.8%/older, 77.9%) 2-yr CIR in SCT (18.1% and 17.6% in younger and older) -lower than CTx alone (39.2% and 56.4%) 2-yr CIR in maintenance group, 13.3% -lower than HDAC CTx alone 43.5% (p = 0.02) | QTc prolongation Lung toxicity, Diarrhea, Mucositis, Cytoepnia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.-K.; Park, B.-B.; Uhm, J.-E. Clinical Efficacies of FLT3 Inhibitors in Patients with Acute Myeloid Leukemia. Int. J. Mol. Sci. 2022, 23, 12708. https://doi.org/10.3390/ijms232012708
Song M-K, Park B-B, Uhm J-E. Clinical Efficacies of FLT3 Inhibitors in Patients with Acute Myeloid Leukemia. International Journal of Molecular Sciences. 2022; 23(20):12708. https://doi.org/10.3390/ijms232012708
Chicago/Turabian StyleSong, Moo-Kon, Byeong-Bae Park, and Ji-Eun Uhm. 2022. "Clinical Efficacies of FLT3 Inhibitors in Patients with Acute Myeloid Leukemia" International Journal of Molecular Sciences 23, no. 20: 12708. https://doi.org/10.3390/ijms232012708