Correlation between CRISPR Loci Diversity in Three Enterobacterial Taxa
Abstract
:1. Introduction
2. Results
2.1. Classification of CRISPR Loci in S. enterica, K. pneumoniae and E. coli Genomes
2.2. Frequency of CRISPR Loci among the Surveyed Enterobacterial Genomes
2.3. Characterization of Repeat/Spacer Units
2.4. PCR Primers for CRISPR Loci
3. Discussion
4. Materials and Methods
4.1. Gathering Data
4.2. CRISPR Loci Analysis
4.3. Primers Design
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakatura, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987, 169, 5429–5433. [Google Scholar] [CrossRef] [Green Version]
- Mojica, F.J.M.; Díez-Villaseñor, C.; García-Martínez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005, 60, 174–182. [Google Scholar] [CrossRef]
- Grissa, I.; Vergnaud, G.; Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform. 2007, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Makarova, K.S.; Wolf, Y.I.; Alkhnbashi, O.S.; Costa, F.; Shah, S.A.; Saunders, S.J.; Barrangou, R.; Brouns, S.J.J.; Charpentier, E.; Haft, D.H.; et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 2015, 13, 722–736. [Google Scholar] [CrossRef] [Green Version]
- Pourcel, C.; Touchon, M.; Villeriot, N.; Vernadet, J.P.; Couvin, D.; Toffano-Nioche, C.; Vergnaud, G. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Res. 2020, 48, D535–D544. [Google Scholar] [CrossRef]
- CRISPR-CAS++. Available online: https://crisprcas.i2bc.paris-saclay.fr/MainDb/StrainList (accessed on 24 July 2022).
- Doudna, J.A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Smargon, A.A.; Cox, D.B.T.; Pyzocha, N.K.; Zheng, K.; Slaymaker, I.M.; Gootenberg, J.S.; Abudayyeh, O.A.; Essletzbichler, P.; Shmakov, S.; Makarova, K.S.; et al. Cas13b Is a Type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 2017, 65, 618–630.e7. [Google Scholar] [CrossRef] [Green Version]
- Mojica, F.J.M.; Díez-Villaseñor, C.; García-Martínez, J.; Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009, 155, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Rath, D.; Amlinger, L.; Rath, A.; Lundgren, M. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie 2015, 117, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R.; Horvath, P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2017, 2, 17092. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Xu, Y.; Ou, L.; Yang, H.; Xi, Y.; Chen, S.; Duan, G. Diversity of CRISPR/Cas system in Clostridium perfringens. Mol. Genet. Genomics 2019, 294, 1263–1275. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Jiang, S.; Wang, Y.; Tian, X.; Zhao, P.; Xu, J.; Feng, M.; She, Q. CRISPR-Cas adaptive immune systems in Sulfolobales: Genetic studies and molecular mechanisms. Sci. China Life Sci. 2020, 64, 678–696. [Google Scholar] [CrossRef] [PubMed]
- Butiuc-Keul, A.; Farkas, A.; Carpa, R.; Iordache, D. CRISPR-Cas System: The Powerful Modulator of Accessory Genomes in Prokaryotes. Microb. Physiol. 2022, 32, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef]
- Pride, D.T.; Sun, C.L.; Salzman, J.; Rao, N.; Loomer, P.; Armitage, G.C.; Banfield, J.F.; Relman, D.A. Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res. 2011, 21, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Fabre, L.; Zhang, J.; Guigon, G.; Le Hello, S.; Guibert, V.; Accou-Demartin, M.; de Romans, S.; Lim, C.; Roux, C.; Passet, V.; et al. Crispr typing and subtyping for improved Laboratory surveillance of Salmonella infections. PLoS ONE 2012, 7, e36995. [Google Scholar] [CrossRef]
- Cruz-López, E.A.; Rivera, G.; Cruz-Hernández, M.A.; Martínez-Vázquez, A.V.; Castro-Escarpulli, G.; Flores-Magallón, R.; Vázquez, K.; Cruz-Pulido, W.L.; Bocanegra-García, V. Identification and Characterization of the CRISPR/Cas System in Staphylococcus aureus Strains From Diverse Sources. Front. Microbiol. 2021, 12, 656996. [Google Scholar] [CrossRef]
- Liu, F.; Barrangou, R.; Gerner-Smidt, P.; Ribot, E.M.; Knabel, S.J.; Dudley, E.G. Novel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica. Appl. Environ. Microbiol. 2011, 77, 1946–1956. [Google Scholar] [CrossRef] [Green Version]
- Shariat, N.; Timme, R.E.; Pettengill, J.B.; Barrangou, R.; Dudley, E.G. Characterization and evolution of Salmonella CRISPR-Cas systems. Microbiology 2015, 161, 374–386. [Google Scholar] [CrossRef]
- Mendes, R.J.; Luz, J.P.; Santos, C.; Tavares, F. CRISPR genotyping as complementary tool for epidemiological surveillance of Erwinia amylovora outbreaks. PLoS ONE 2021, 16, e0250280. [Google Scholar] [CrossRef]
- Sorek, R.; Kunin, V.; Hugenholtz, P. CRISPR-A widespread system that provides acquired resistance against phages in bacteria and archaea. Nat. Rev. Microbiol. 2008, 6, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Skennerton, C.T.; Imelfort, M.; Tyson, G.W. Crass: Identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 2013, 41, e105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, G.; Jain, A. Next Generation Sequencing; Head, S.R., Ordoukhanian, P., Salomon, D.R., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2020; Volume 41, ISBN 978-1-4939-7512-9. [Google Scholar]
- Rousset, F.; Bikard, D. CRISPR screens in the era of microbiomes. Curr. Opin. Microbiol. 2020, 57, 70–77. [Google Scholar] [CrossRef]
- Grissa, I.; Vergnaud, G.; Pourcel, C. CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007, 35, W52–W57. [Google Scholar] [CrossRef] [Green Version]
- Abby, S.S.; Néron, B.; Ménager, H.; Touchon, M.; Rocha, E.P.C. MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems. PLoS ONE 2014, 9, e110726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Néron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.; Pourcel, C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018, 46, W246–W251. [Google Scholar] [CrossRef] [Green Version]
- Kukurba, K.R.; Montgomery, S.B. RNA Sequencing and Analysis. Cold Spring Harb. Protoc. 2015, 2015, pdb.top084970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NGS vs. qPCR. Available online: https://emea.illumina.com/science/technology/next-generation-sequencing/ngs-vs-qpcr.html (accessed on 19 September 2022).
- Zhao, M.; Wang, Q.; Wang, Q.; Jia, P.; Zhao, Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: Features and perspectives. BMC Bioinform. 2013, 14, S1. [Google Scholar] [CrossRef]
- Pavlopoulos, G.A.; Oulas, A.; Iacucci, E.; Sifrim, A.; Moreau, Y.; Schneider, R.; Aerts, J.; Iliopoulos, I. Unraveling genomic variation from next generation sequencing data. BioData Min. 2013, 6, 13. [Google Scholar]
- Medina-Aparicio, L.; Dávila, S.; Rebollar-Flores, J.; Calva, E.; Hernández-Lucas, I. The CRISPR-Cas system in Enterobacteriaceae. Pathog. Dis. 2018, 76, fty002. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Lv, L.; Wang, X.; Xiu, Z.; Chen, G. Comparative analysis of CRISPR-Cas systems in Klebsiella genomes. J. Basic Microbiol. 2017, 57, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Díez-Villaseñor, C.; Almendros, C.; García-Martínez, J.; Mojica, F.J.M. Diversity of CRISPR loci in Escherichia coli. Microbiology 2010, 156, 1351–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touchon, M.; Charpentier, S.; Clermont, O.; Rocha, E.P.C.; Denamur, E.; Branger, C. CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection. J. Bacteriol. 2011, 193, 2460–2467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Song, G.; Xu, Y. Association of CRISPR/Cas System with the Drug Resistance in Klebsiella pneumoniae. Infect. Drug Resist. 2020, 13, 1929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ye, Y. Not all predicted CRISPR–Cas systems are equal: Isolated cas genes and classes of CRISPR like elements. BMC Bioinform. 2017, 18, 92. [Google Scholar] [CrossRef] [Green Version]
- Kamruzzaman, M.; Iredell, J.R. CRISPR-Cas System in Antibiotic Resistance Plasmids in Klebsiella pneumoniae. Front. Microbiol. 2020, 10, 2934. [Google Scholar] [CrossRef]
- García-Gutiérrez, E.; Almendros, C.; Mojica, F.J.M.; Guzmán, N.M.; García-Martínez, J. CRISPR Content Correlates with the Pathogenic Potential of Escherichia coli. PLoS ONE 2015, 10, e0131935. [Google Scholar] [CrossRef]
- Alonso, C.A.; de Toro, M.; de la Cruz, F.; Torres, C. Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife. Microorganisms 2021, 9, 999. [Google Scholar] [CrossRef]
- Fabre, L.; Le Hello, S.; Roux, C.; Issenhuth-Jeanjean, S.; Weill, F.-X. CRISPR is an optimal target for the design of specific PCR assays for Salmonella enterica serotypes Typhi and Paratyphi A. PLoS Negl. Trop. Dis. 2014, 8, e2671. [Google Scholar] [CrossRef]
- Lin, T.L.; Pan, Y.J.; Hsieh, P.F.; Hsu, C.R.; Wu, M.C.; Wang, J.T. Imipenem represses CRISPR-Cas interference of DNA acquisition through H-NS stimulation in Klebsiella pneumoniae. Sci. Rep. 2016, 6, 31644. [Google Scholar] [CrossRef] [PubMed]
- Mackow, N.A.; Shen, J.; Adnan, M.; Khan, A.S.; Fries, B.C.; Diago-Navarro, E. CRISPR-Cas influences the acquisition of antibiotic resistance in Klebsiella pneumoniae. PLoS ONE 2019, 14, e0225131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalendar, R.; Khassenov, B.; Ramankulov, Y.; Samuilova, O.; Ivanov, K.I. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 2017, 109, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Tm Calculator | Thermo Fisher Scientific-RO. Available online: https://www.thermofisher.com/ro/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/tm-calculator.html (accessed on 5 August 2022).
- Hammer, D.A.T.; Ryan, P.D.; Hammer, Ø.; Harper, D.A.T. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 178. [Google Scholar]
Continent of Origin | Source of Isolation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Africa | Asia | Australia/Oceania | Europe | North America | South America | Plant | Environ mental | Human | Animal | Food | Laboratory | |
S. enterica | ||||||||||||
N | 15 | 202 | 14 | 153 | 821 | 21 | 38 | 30 | 355 | 291 | 198 | 5 |
(%) | 1.22 | 16.48 | 1.14 | 12.48 | 66.97 | 1.71 | 4.19 | 3.31 | 39.14 | 32.08 | 21.83 | 0.55 |
Average | 32.33 | 35.85 | 37.57 | 18.20 | 32.75 | 47.86 | 39.37 | 31.27 | 32.74 | 32.30 | 32.97 | 58.4 |
Median | 36 | 34 | 35.5 | 7 | 27 | 49 | 29 | 25 | 34 | 26 | 24.5 | 55 |
SD | 21.72 | 20.33 | 18.24 | 17.85 | 19.98 | 18.90 | 24.26 | 14.99 | 19.34 | 18.93 | 18.30 | 21.53 |
Minimum | 6 | 2 | 6 | 3 | 2 | 9 | 4 | 9 | 3 | 3 | 2 | 31 |
Maximum | 80 | 87 | 66 | 86 | 140 | 94 | 92 | 78 | 87 | 94 | 87 | 86 |
E. coli | ||||||||||||
N | 17 | 376 | 39 | 488 | 465 | 24 | 2 | 82 | 394 | 534 | 33 | 11 |
(%) | 1.21 | 26.69 | 2.77 | 34.63 | 60.33 | 1.70 | 0.19 | 7.77 | 37.31 | 50.57 | 3.13 | 1.04 |
Average | 19.12 | 21.08 | 23.62 | 19.89 | 31.55 | 20.79 | 18 | 20.11 | 18.95 | 21.53 | 16.91 | 20.64 |
Median | 19 | 18 | 24 | 18 | 30 | 17.5 | 18 | 17.5 | 17 | 20 | 15 | 18 |
SD | 8.58 | 11.32 | 11.53 | 10.78 | 21.00 | 13.63 | 0 | 11.01 | 11.39 | 11.30 | 7.70 | 10.81 |
Minimum | 2 | 2 | 5 | 2 | 2 | 2 | 18 | 2 | 2 | 2 | 4 | 14 |
Maximum | 33 | 65 | 52 | 66 | 140 | 48 | 18 | 53 | 65 | 66 | 33 | 53 |
K. pneumoniae | ||||||||||||
N | 3 | 142 | 20 | 41 | 43 | 2 | 0 | 10 | 194 | 5 | 0 | 0 |
(%) | 1.20 | 56.57 | 7.97 | 16.33 | 17.13 | 0.80 | 0 | 4.78 | 92.82 | 2.39 | 0 | 0 |
Average | 27 | 26.96 | 30.15 | 31.39 | 33.42 | 14.5 | - | 25.8 | 28.62 | 25.4 | - | - |
Median | 22 | 21 | 25 | 35 | 33 | 14.5 | - | 24 | 24 | 17 | - | - |
SD | 24.88 | 13.26 | 15.97 | 12.39 | 13.41 | 7.78 | 17.97 | 12.58 | 15.52 | |||
Minimum | 5 | 2 | 7 | 8 | 6 | 9 | - | 2 | 5 | 13 | - | - |
Maximum | 54 | 64 | 64 | 64 | 64 | 20 | - | 64 | 64 | 51 | - | - |
Locus | Primers | Ta (°C) | Elongation Time 1 |
---|---|---|---|
Se1 | f: 5′-AAATTGTTGCGATTATGTTGGTAG r: 5′-CTGGTACACAGATTATGATTATGC | 55.0 | 3 min |
Se2a | f: 5′-AAAGTTGGTGGGTTTTTTGTGC r: 5′-ATGCTGCCGTTGGTAAAAGAG | 59.9 | 3 min |
Se2b | f: 5′-ATAATGCTGCCGTTGGTAAAAGG r: 5′-ATGCTGCCGTTGGTAAAAGAG | 59.9 | 3 min |
Se2c | f: 5′-GGAAAAGTTGGTGGGTTTTTTG r: 5′-ATGCTGCCGTTGGTAAAAGAG | 59.0 | 45 s |
Ec1 | f: 5′-CTCTTTAACATAATGGATGTGT r: 5′-CTTGAGAAAGAGATAACGGG | 52.3 | 2.25 min |
Ec2a | f: 5′-ATTGTTGCGATTATGTTGGTAG r: 5′-TTGATGGGTTTGAAAATGAGAG | 55.3 | 2.25 min |
Ec2b | f: 5′-ATGTTACATTAAGGTTGGTGGG r: 5′-TTGATGGGTTTGAAAATGAGAG | 56.3 | 2.25 min |
Ec3a | f: 5′-TTAACAACGGGCTAAACGTG r: 5′-AATGGTTTGAAGTTGAGAGTG | 55.5 | 3 min |
Ec4 | f: 5′- AAAAAGGGTTTGAATCTGCG r: 5′-CTGATGGGCGAAGAGAAAG | 54.1 | 3 min |
Ec3b | f: 5′-TATTAACAACGAGCTAAACGTG r: 5′-CCCCTCACCGTCATATTTAA | 54.1 | 3 min |
Kp1 | f: 5′-TTGTCCACTAACGTTATCGA r: 5′-GTAGCGATATTTATTCTCCGC | 53.3 | 3 min |
Kp2 | f: 5′-GTTAAACTCTCGCTCTTTCAC r: 5′-ATTCCGCTTATTGCTAAGTCC | 56.3 | 1.5 min |
Kp3 | f: 5′-CCGCTAAACACAATATGCTG r: 5′-CTTGTCGTCACTTGAAAGG | 53.1 | 1.5 min |
Kp4-Pl | f: 5′-AGTCCCATCTGCTTGTAGG r: 5′-TTTGATTTCACTGCCCGCT | 56.9 | 1.5 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iordache, D.; Baci, G.-M.; Căpriță, O.; Farkas, A.; Lup, A.; Butiuc-Keul, A. Correlation between CRISPR Loci Diversity in Three Enterobacterial Taxa. Int. J. Mol. Sci. 2022, 23, 12766. https://doi.org/10.3390/ijms232112766
Iordache D, Baci G-M, Căpriță O, Farkas A, Lup A, Butiuc-Keul A. Correlation between CRISPR Loci Diversity in Three Enterobacterial Taxa. International Journal of Molecular Sciences. 2022; 23(21):12766. https://doi.org/10.3390/ijms232112766
Chicago/Turabian StyleIordache, Dumitrana, Gabriela-Maria Baci, Oana Căpriță, Anca Farkas, Andreea Lup, and Anca Butiuc-Keul. 2022. "Correlation between CRISPR Loci Diversity in Three Enterobacterial Taxa" International Journal of Molecular Sciences 23, no. 21: 12766. https://doi.org/10.3390/ijms232112766
APA StyleIordache, D., Baci, G. -M., Căpriță, O., Farkas, A., Lup, A., & Butiuc-Keul, A. (2022). Correlation between CRISPR Loci Diversity in Three Enterobacterial Taxa. International Journal of Molecular Sciences, 23(21), 12766. https://doi.org/10.3390/ijms232112766