Trilinolein, a Natural Triacylglycerol, Protects Cerebral Ischemia through Inhibition of Neuronal Apoptosis and Ameliorates Intimal Hyperplasia via Attenuation of Migration and Modulation of Matrix Metalloproteinase-2 and RAS/MEK/ERK Signaling Pathway in VSMCs
Abstract
:1. Introduction
2. Results
2.1. TriL Reduced Cerebral Ischemia-Induced Brain Injury in Rats
2.2. TriL Alleviated Carotid Ligation Induced Intimal Hyperplasia in Mice
2.3. TriL Inhibited PDGF-BB-Stimulated A7r5 VSMC Migration
2.4. TriL Inhibited PDGF-BB-Stimulated A7r5 VSMC Migration via Modulation of Ras/MEK/ERK Signaling Pathway and MMP-2 Protein Expression Level
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Animals
4.3. Transient Focal Cerebral Ischemia/Reperfusion Model
4.4. Immunofluorescence Staining of Apoptotic Cells
4.5. Carotid Ligation Model and Hematoxylin-Eosin Staining and PCNA Antibody Staining of the Carotid Artery
4.6. Vascular Smooth Cell Line and In Vitro Wound Healing Assay
4.7. Transwell Migration Assay
4.8. Protein Preparation and Western Blot Analysis
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef] [PubMed]
- Phipps, M.S.; Cronin, C.A. Management of acute ischemic stroke. BMJ 2020, 368, l6983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Stroke Organization (WSO): Global Stroke Fact Sheet. 2022. Available online: https://journals.sagepub.com/doi/10.1177/17474930211065917 (accessed on 5 January 2022). [CrossRef]
- Colin-Castelan, D.; Zaina, S. Associations between atherosclerosis and neurological diseases, beyond ischemia-induced cerebral damage. Rev. Endocr. Metab. Disord. 2019, 20, 15–25. [Google Scholar] [CrossRef]
- Sommer, C.J. Ischemic stroke: Experimental models and reality. Acta Neuropathol. 2017, 133, 245–261. [Google Scholar] [CrossRef] [Green Version]
- Arnold, S.A.; Platt, S.R.; Gendron, K.P.; West, F.D. Imaging Ischemic and Hemorrhagic Disease of the Brain in Dogs. Front. Vet. Sci. 2020, 7, 279. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Amor, M.; Klonaris, C.; Henry, I.; Masson, I.; Chati, Z.; Leborgne, E.; Hugel, M. Angioplasty and Stenting of the Extracranial Carotid Arteries. Tex. Heart Inst. J. 2000, 27, 150–158. [Google Scholar]
- Marx, S.O.; Totary-Jain, H.; Marks, A.R. Vascular Smooth Muscle Cell Proliferation in Restenosis. Circ. Cardiovasc. Interv. 2011, 4, 104–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerthoffer, W.T. Mechanisms of vascular smooth muscle cell migration. Circ. Res. 2007, 100, 607–621. [Google Scholar] [CrossRef] [Green Version]
- Jawien, A.; Bowen-Pope, D.F.; Lindner, V.; Schwartz, S.M.; Clowes, A.W. Platelet-derived Growth Factor Promotes Smooth Muscle Migration and Intimal Thickening in a Rat Model of Balloon Angioplasty. J. Clin. Investig. 1992, 89, 507–511. [Google Scholar] [CrossRef]
- Chandrasekar, B.; Tanguay, J.F. Platelets and restenosis. J. Am. Coll. Cardiol. 2000, 35, 555–562. [Google Scholar] [CrossRef]
- Mellgren, A.M.; Smith, C.L.; Olsen, G.S.; Eskiocak, B.; Zhou, B.; Kazi, M.N.; Ruiz, F.R.; Pu, W.T.; Tallquist, M.D. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ. Res. 2008, 103, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
- Klinghoffer, R.A.; Mueting-Nelsen, P.F.; Faerman, A.; Shani, M.; Soriano, P. The two PDGF receptors maintain conserved signaling in vivo despite divergent embryological functions. Mol. Cell 2001, 7, 343–354. [Google Scholar] [CrossRef]
- Raines, E.W. PDGF and cardiovascular disease. Cytokine Growth Factor Rev. 2004, 15, 237–254. [Google Scholar] [CrossRef]
- Abe, J.; Deguchi, J.; Takuwa, Y.; Hara, K.; Ikari, Y.; Tamura, T.; Ohno, M.; Kurokawa, K. Tyrosine phosphorylation of platelet derived growth factor beta receptors in coronary artery lesions: Implications for vascular remodelling after directional coronary atherectomy and unstable angina pectoris. Heart 1998, 79, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Bornfeldt, K.E.; Raines, E.W.; Nakano, T.; Graves, T.M.; Krebs, E.G.; Ross, R. Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J. Clin. Investig. 1994, 93, 1266–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newby, A.C. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc. Res. 2006, 69, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Dollery, C.M.; McEwan, J.R.; Henney, A.M. Matrix metalloproteinases and cardiovascular disease. Circ. Res. 1995, 77, 863–868. [Google Scholar] [CrossRef]
- Zempo, N.; Koyama, N.; Kenagy, R.D.; Lea, H.J.; Clowes, A.W. Regulation of vascular smooth muscle cell migration and proliferation in vitro and in injured rat arteries by a synthetic matrix metalloproteinase inhibitor. Arterioscler. Thromb. Vasc. Biol. 1996, 16, 28–33. [Google Scholar] [CrossRef]
- Buccheri, D.; Piraino, D.; Andolina, G.; Cortese, B. Understanding and managing in-stent restenosis: A review of clinical data, from pathogenesis to treatment. J. Thorac. Dis. 2016, 8, E1150–E1162. [Google Scholar] [CrossRef] [Green Version]
- Chan, P.; Hong, C.Y.; Tomlinson, B.; Chang, N.C.; Chen, J.P.; Lee, S.T.; Cheng, J.T. Myocardial protective effect of trilinolein: An antioxidant isolated from the medicinal plant Panax pseudoginseng. Life Sic. 1997, 61, 1999–2006. [Google Scholar] [CrossRef]
- Wang, Y.H.; Hong, C.Y.; Chen, C.F.; Tsai, T.H. Determination of Trilinolein in the Vasoactive and Antithrombotic herbs by HPLC. J. Chin. Med. 1996, 7, 203–210. [Google Scholar]
- Jeon, H.J.; Noda, M.; Maruyama, M.; Matoba, Y.; Kumagai, T.; Sugiyama, M. Identification and Kinetic Study of dentification and Kinetic Study of Tyrosinase Inhibitors Found in Sake Lees. J. Agric. Food Chem. 2006, 54, 9827–9833. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Lau, E.; Tay, D. Antioxidant and NF-κB inhibitory constituents isolated from Morchella esculenta. Nat. Prod. Res. 2011, 25, 1412–1417. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.; Cheng, J.T.; Tsao, C.W.; Niu, C.S.; Hong, C.Y. The In Vitro Antioxidant activity of Trilinolein and Other Lipid-related Natural Substances as Measured by Enhanced Chemiluminescence. Life Sci. 1996, 59, 2067–2073. [Google Scholar] [CrossRef]
- Chan, P.; Chang, J.J.; Chen, F.C.; Wu, M.S.; Tomlinson, B.; Cheng, J.T. Effect of Trilinolein on Superoxide dismutase activity and mRNA levels in Aortic Smooth Muscle Cells. Clin. Exp. Pharmacol. Physiol. 2000, 27, 1002–1006. [Google Scholar] [CrossRef]
- Chen, S.C.; Cheng, J.J.; Hsieh, M.H.; Chu, Y.L.; Kao, P.F.; Cheng, T.H.; Chan, P. Molecular mechanism of the inhibitory effect of trilinolein on endothelin-1-induced hypertrophy of cultured neonatal rat cardiomyocytes. Planta Med. 2005, 71, 525–529. [Google Scholar] [CrossRef]
- Huang, S.S.; Deng, J.S.; Lin, J.G.; Lee, C.Y.; Huang, J.G. Anti-inflammatory Effects of Trilinolein from Panax notoginseng Through the Suppression of NF-κB and MAPK Expression and Proinflammatory Cytokine Expression. Am. J. Chin. Med. 2014, 42, 1485–1506. [Google Scholar] [CrossRef]
- Chan, P.; Tsai, S.K.; Chiang, B.N.; Hong, C.Y. Trilinolein reduces infarct size and suppresses ventricular arrhythmias in rats subjected to coronary ligation. Pharmacology 1995, 51, 118–126. [Google Scholar] [CrossRef]
- Franke, M.; Bieber, M.; Kraft, P.; Weber, A.N.R.; Stoll, G.; Schuhmann, M.K. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav. Immun. 2021, 92, 221–231. [Google Scholar] [CrossRef]
- Huang, J.; Upadhyay, U.M.; Tamargo, R.J. Inflammation in stroke and focal cerebral ischemia. Surg. Neurol. 2006, 66, 232–245. [Google Scholar] [CrossRef]
- Marti-Vilalta, J.L.; Marti-Fabregas, J. Atherosclerosis and cerebral ischemia. A systemic process. Rev. Neurol. 1999, 28, 1016–1020. [Google Scholar] [PubMed]
- Kumar, A.; Hoover, J.L.; Simmons, C.A.; Lindner, V.; Shebuski, R.J. Remodeling and neointimal formation in the carotid artery of normal and P-selectin-deficient mice. Circulation 1997, 96, 4333–4342. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, V.; Vickneson, K.; Kofidis, T.; Woo, C.C.; Lin, X.Y.; Foo, R.; Shanahan, C.M. Role of Vascular Smooth Muscle Cell Plasticity and Interactions in Vessel Wall Inflammation. Front. Immunol. 2020, 11, 599415. [Google Scholar] [CrossRef]
- Rohaina, C.M.; Nadiah, S.; Mohamad, F.I.; Ruszymah, B.H.I.; Mohd, R.A.R.; Muhammad, D.Y. The Effects of Pro-Inflammatory and Anti- Inflammatory Agents for the Suppression of Intimal Hyperplasia: An Evidence-Based Review. Int. J. Environ. Res. Public Health 2020, 17, 7825. [Google Scholar] [CrossRef]
- Worssam, M.D.; Jorgensen, H.F. Mechanisms of vascular smooth muscle cell investment and phenotypic diversification in vascular diseases. Biochem. Soc. Trans. 2021, 49, 2101–2111. [Google Scholar] [CrossRef] [PubMed]
- Park, E.S.; Lee, K.P.; Jung, S.H.; Lee, D.Y.; Won, K.J.; Yun, Y.P.; Kim, B. Compound K, an intestinal metabolite of ginsenosides, inhibits PDGF-BB-induced VSMC proliferation and migration through G1 arrest and attenuates neointimal hyperplasia after arterial injury. Atherosclerosis 2013, 228, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, C.J.; Longenecker, J.Z.; Accornero, F. ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. Biology 2021, 10, 346. [Google Scholar] [CrossRef]
- Kong, T.; Liu, M.; Ji, B.; Bai, B.; Cheng, B.; Wang, C. Role of the Extracellular Signal-Regulated Kinase 1/2 Signaling Pathway in Ischemia-Reperfusion Injury. Front. Physiol. 2019, 10, 1038. [Google Scholar] [CrossRef] [Green Version]
- Minutoli, L.; Antonuccio, P.; Romeo, C.; Nicotina, P.A.; Bitto, A.; Arena, S.; Polito, F.; Altavilla, D.; Turiaco, N.; Cutrupi, A.; et al. Evidence for a role of mitogen-activated protein kinase 3/mitogen-activated protein kinase in the development of testicular ischemia-reperfusion injury. Biol. Reprod. 2005, 73, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.F.; Tang, L.L.; Yan, H.; Wang, Y.J.; Tang, X.C. Effects of huperzine A on memory deficits and neurotrophic factors production after transient cerebral ischemia and reperfusion in mice. Pharmacol. Biochem. Behav. 2006, 83, 603–611. [Google Scholar] [CrossRef]
- Cui, H.; Li, X.; Li, N.; Qi, K.; Li, Q.; Jin, C.; Zhang, Q.; Jiang, L.; Yang, Y. Induction of autophagy by Tongxinluo through the MEK/ERK pathway protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury. J. Cardiovasc. Pharmacol. 2014, 64, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Gennaro, G.; Ménard, C.; Michaud, S.E.; Deblois, D.; Rivard, A. Inhibition of vascular smooth muscle cell proliferation and neointima formation in injured arteries by a novel, oral mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor. Circulation 2004, 110, 3367–3371. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.H.; Zaltsman, A.B.; George, S.J.; Newby, A.C. Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J. Clin. Investig. 1998, 101, 1478–1487. [Google Scholar] [CrossRef] [Green Version]
- Galis, Z.S.; Sukhova, G.K.; Lark, M.W.; Libby, P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Investig. 1994, 94, 2493–2503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzui, H.; Lee, J.D.; Shimizu, H.; Tsutani, H.; Ueda, T. The role of protein-tyrosine phosphorylation and gelatinase production in the migration and proliferation of smooth muscle cells. Atherosclerosis 2000, 149, 51–59. [Google Scholar] [CrossRef]
- Hall, P.A.; Levison, D.A.; Woods, A.L.; Yu, C.C.; Kellock, D.B.; Watkins, J.A.; Barnes, D.M.; Gillett, C.E.; Camplejohn, R.; Dover, R. Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: An index of cell proliferation with evidence of deregulated expression in some neoplasms. J. Pathol. 1990, 162, 285–294. [Google Scholar] [CrossRef]
- Wu, K.J.; Hsieh, M.T.; Wu, C.R.; Wood, W.G.; Chen, Y.F. Green Tea Extract Ameliorates Learning and Memory Deficits in Ischemic Rats via Its Active Component Polyphenol Epigallocatechin-3-gallate by Modulation of Oxidative Stress and Neuroinflammation. Evid. Based Complement. Alternat. Med. 2012, 2012, 163106. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.J.; Chen, Y.F.; Tsai, H.Y.; Wu, C.R.; Wood, W.G. Guizhi-Fuling-Wan, a Traditional Chinese Herbal Medicine, Ameliorates Memory Deficits and Neuronal Apoptosis in the Streptozotocin-Induced Hyperglycemic Rodents via the Decrease of Bax/Bcl2 Ratio and Caspase-3 Expression. Evid. Based Complement. Alternat. Med. 2012, 2012, 656150. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.F.; Wu, K.J.; Wood, W.G. Paeonia lactiflora extract attenuating cerebral ischemia and arterial intimal hyperplasia is mediated by paeoniflorin via modulation of VSMC migration and Ras/MEK/ERK signaling pathway. Evid. Based Complement. Alternat. Med. 2013, 2013, 482428. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-F.; Wu, K.-J.; Siao, L.-R.; Tsai, H.-Y. Trilinolein, a Natural Triacylglycerol, Protects Cerebral Ischemia through Inhibition of Neuronal Apoptosis and Ameliorates Intimal Hyperplasia via Attenuation of Migration and Modulation of Matrix Metalloproteinase-2 and RAS/MEK/ERK Signaling Pathway in VSMCs. Int. J. Mol. Sci. 2022, 23, 12820. https://doi.org/10.3390/ijms232112820
Chen Y-F, Wu K-J, Siao L-R, Tsai H-Y. Trilinolein, a Natural Triacylglycerol, Protects Cerebral Ischemia through Inhibition of Neuronal Apoptosis and Ameliorates Intimal Hyperplasia via Attenuation of Migration and Modulation of Matrix Metalloproteinase-2 and RAS/MEK/ERK Signaling Pathway in VSMCs. International Journal of Molecular Sciences. 2022; 23(21):12820. https://doi.org/10.3390/ijms232112820
Chicago/Turabian StyleChen, Yuh-Fung, Kuo-Jen Wu, Lian-Ru Siao, and Huei-Yann Tsai. 2022. "Trilinolein, a Natural Triacylglycerol, Protects Cerebral Ischemia through Inhibition of Neuronal Apoptosis and Ameliorates Intimal Hyperplasia via Attenuation of Migration and Modulation of Matrix Metalloproteinase-2 and RAS/MEK/ERK Signaling Pathway in VSMCs" International Journal of Molecular Sciences 23, no. 21: 12820. https://doi.org/10.3390/ijms232112820
APA StyleChen, Y.-F., Wu, K.-J., Siao, L.-R., & Tsai, H.-Y. (2022). Trilinolein, a Natural Triacylglycerol, Protects Cerebral Ischemia through Inhibition of Neuronal Apoptosis and Ameliorates Intimal Hyperplasia via Attenuation of Migration and Modulation of Matrix Metalloproteinase-2 and RAS/MEK/ERK Signaling Pathway in VSMCs. International Journal of Molecular Sciences, 23(21), 12820. https://doi.org/10.3390/ijms232112820