Recent Advances in the Synthesis, Characterization, and Application of Carbon Nanomaterials for the Removal of Endocrine-Disrupting Chemicals: A Review
Abstract
:1. Introduction
1.1. Endocrine-Disrupting Chemicals and Their Damaging Effects
1.2. Distribution and Regularity of EDC Pollution
1.3. Treatment of EDC Pollution
2. Development of Carbon Nanomaterials
2.1. Carbon Nanofiber
2.2. Carbon Nanotubes (CNTs)
2.3. Graphene Family
2.4. Magnetic Carbon Nanocomposites
2.5. Carbon Membranes
2.6. Carbon Dots
2.7. Carbon Sponges
3. Innovative Methods of Carbon Nanocomposite Synthesis
3.1. In Situ Polymerization
3.2. Direct Compounding
3.3. Solvothermal Synthesis
3.4. Electrospinning
4. Characterization Techniques
4.1. Morphological and Microstructural Analysis
4.2. Magnetic Properties
5. Application in Wastewater
5.1. Regeneration and Reuse
5.2. Carbon Nanoadsorbent Patents
5.3. Comparison with Other Adsorbents
6. Factors Affecting the Adsorption of Pollutants on Carbon Nanocomposites
6.1. Effects of Solution pH
6.2. Effects of Adsorbent Dosage and the Initial Concentration of EDC Pollutants
6.3. Effects of Adsorption Equilibrium Duration
6.4. Effects of Temperature
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, L.; Regan, F. Endocrine Disrupting Chemicals. Encycl. Anal. Sci. 2019, 3, 31–38. [Google Scholar] [CrossRef]
- Green, M.P.; Harvey, A.J.; Finger, B.J.; Tarulli, G.A. Endocrine Disrupting Chemicals: Impacts on Human Fertility and Fecundity during the Peri-conception Period. Environ. Res. 2021, 194, 110694. [Google Scholar] [CrossRef]
- Campbell, C.E.; Mezher, A.F.; Tyszka, J.M.; Nagel, B.J.; Eckel, S.P.; Herting, M.M. Associations Between Testosterone, Estradiol, and Androgen Receptor Genotype with Amygdala Subregions in Adolescents. Psychoneuroendocrinology 2022, 137, 105604. [Google Scholar] [CrossRef]
- Folley, S.J.; Greenbaum, A.L. Effects of Adrenalectomy and of Treatment with Adrenal Cortex Hormones on the Arginase and Phosphatase Levels of Lactating Rats. Biochem. J. 1946, 40, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Ismanto, A.; Hadibarata, T.; Kristanti, R.A.; Maslukah, L.; Safinatunnajah, N.; Kusumastuti, W. Endocrine Disrupting Chemicals (EDCs) in Environmental Matrices: Occurrence, Fate, Health Impact, Physio-chemical and Bioremediation Technology. Environ. Pollut. 2022, 302, 119061. [Google Scholar] [CrossRef] [PubMed]
- Routti, H.; Harju, M.; Lühmann, K.; Aars, J.; Ask, A.; Goksøyr, A.; Kovacs, K.M.; Lydersen, C. Concentrations and Endocrine Disruptive Potential of Phthalates in Marine Mammals from the Norwegian Arctic. Environ. Int. 2021, 152, 106458. [Google Scholar] [CrossRef] [PubMed]
- Esteban, S.; Moreno-Merino, L.; Matellanes, R.; Catalá, M.; Gorga, M.; Petrovic, M.; López de Alda, M.; Barceló, D.; Silva, A.; Durán, J.J.; et al. Presence of Endocrine Disruptors in Freshwater in the Northern Antarctic Peninsula Region. Environ. Res. 2016, 147, 179–192. [Google Scholar] [CrossRef]
- Ren, J.; Wang, X.; Wang, C.; Gong, P.; Wang, X.; Yao, T. Biomagnification of Persistent Organic Pollutants along a High-Altitude Aquatic Food Chain in the Tibetan Plateau: Processes and Mechanisms. Environ. Pollut. 2017, 220, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.X.; Sun, Y.; Xie, X.D.; Yang, B.Z.; Cao, L.Y.; Luo, S.; Wang, Y.Y.; Mai, B.X. Bioaccumulation and Human Health Risk Assessment of DDT and Its Metabolites (DDTs) in Yellowfin Tuna (Thunnus Albacares) and Their Prey from the South China Sea. Mar. Pollut. Bull. 2020, 158, 111396. [Google Scholar] [CrossRef]
- Xiang, D.; Yang, J.; Xu, Y.; Lan, L.; Li, G.; Zhang, C.; Liu, D. Estrogen Cholestasis Induces Gut and Liver Injury in Rats Involving in Activating PI3K/Akt and MAPK Signaling Pathways. Life Sci. 2021, 276, 119367. [Google Scholar] [CrossRef]
- Charlet, L.; Chapron, Y.; Faller, P.; Kirsch, R.; Stone, A.T.; Baveye, P.C. Neurodegenerative Diseases and Exposure to the Environmental Metals Mn, Pb, and Hg. Coord. Chem. Rev. 2012, 256, 2147–2163. [Google Scholar] [CrossRef]
- Vichit, S.; Chutima, J.; Wichit, N.; Sopon, P.; Suttipong, W.; Olle, S. Increased Levels of Bisphenol A (BPA) in Thai Girls with Precocious Puberty. J. Pediatr. Endocrinol. Metab. 2016, 29, 1233–1239. [Google Scholar] [CrossRef]
- Matuszczak, E.; Komarowska, M.D.; Debek, W.; Hermanowicz, A. The Impact of Bisphenol A on Fertility, Reproductive System, and Development: A Review of the Literature. Int. J. Endocrinol. 2019, 2019, 4068717. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, P.F.; Weinstock, R.S.; Silverstone, A.E.; Sjodin, A.; Pavuk, M. Metabolic Syndrome is Associated with Exposure to Organochlorine Pesticides in Anniston, AL, United States. Environ. Int. 2017, 108, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaynab, M.; Fatima, M.; Sharif, Y.; Sughra, K.; Sajid, M.; Khan, K.A.; Sneharani, A.H.; Li, S. Health and Environmental Effects of Silent Killers Organochlorine Pesticides and Polychlorinated Biphenyl. J. King Saud Univ. Sci. 2021, 33, 101511. [Google Scholar] [CrossRef]
- Zeng, J.Y.; Miao, Y.; Liu, C.; Deng, Y.L.; Chen, P.P.; Zhang, M.; Cui, F.P.; Shi, T.; Lu, T.T.; Liu, C.J.; et al. Serum Multiple Organochlorine Pesticides in Relation to Testosterone Concentrations among Chinese Men from an Infertility Clinic. Chemosphere 2022, 299, 134469. [Google Scholar] [CrossRef]
- Dwivedi, N.; Mahdi, A.A.; Deo, S.; Ahmad, M.K.; Kumar, D. Assessment of Genotoxicity and Oxidative Stress in Pregnant Women Contaminated to Organochlorine Pesticides and Its Correlation with Pregnancy Outcome. Environ. Res. 2022, 204, 112010. [Google Scholar] [CrossRef]
- Patel, B.; Priefer, R. Impact of Chronic Obstructive Pulmonary Disease, Lung Infection, and/or Inhaled Corticosteroids Use on Potential Risk of Lung Cancer. Life Sci. 2022, 294, 120374. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.H.; Chou, J.C.; Chao, K.P.; Chang, H.C.; Lieu, F.K.; Wang, P.S. 17α-Ethynylestradiol and 4-Nonylphenol Stimulate Lung Adenocarcinoma Cell Production in Xenoestrogenic Way. Chemosphere 2019, 218, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Herman, H.G.; Volodarsky-Perel, A.; Nu, T.N.T.; Machado-Gedeon, A.; Cui, Y.; Shaul, J.; Dahan, M.H. The Effect of Higher Estradiol Levels during Stimulation on Pregnancy Complications and Placental Histology. Placenta 2022, 126, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Omar, T.F.T.; Ahmad, A.; Aris, A.Z.; Yusoff, F.M. Endocrine Disrupting Compounds (EDCs) in Environmental Matrices: Review of Analytical Strategies for Pharmaceuticals, Estrogenic Hormones, and Alkylphenol Compounds. TrAC Trends Anal. Chem. 2016, 85, 241–259. [Google Scholar] [CrossRef]
- Kim, R.; Kim, S.W.; Kim, H.; Ku, S.Y. The Impact of Sex Steroids on Osteonecrosis of the Jaw. Osteoporos. Sarcopenia 2022, 8, 58–67. [Google Scholar] [CrossRef]
- Palmer, J.R.; Herbst, A.L.; Noller, K.L.; Boggs, D.A.; Troisi, R.; Titus-Ernstoff, L.; Hatch, E.E.; Wise, L.A.; Strohsnitter, W.C.; Hoover, R.N. Urogenital Abnormalities in Men Exposed to Diethylstilbestrol in Utero: A Cohort Study. Environ. Health 2009, 8, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Fénichel, P.; Chevalier, N. Environmental Endocrine Disruptors: New Diabetogens? C. R. Biol. 2017, 340, 446–452. [Google Scholar] [CrossRef]
- Lin, C.Y.; Hwang, Y.T.; Chen, P.C.; Sung, F.C.; Su, T.C. Association of Serum Levels of 4-Tertiary-Octylphenol with Cardiovascular Risk Factors and Carotid Intima-Media Thickness in Adolescents and Young Adults. Environ. Pollut. 2019, 246, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Rubin, B.S. Bisphenol A: An Endocrine Disruptor with Widespread Exposure and Multiple Effects. J. Steroid Biochem. Mol. Biol. 2011, 127, 27–34. [Google Scholar] [CrossRef]
- Wen, H.J.; Chang, T.C.; Ding, W.H.; Tsai, S.F.; Wang, S.L. Exposure to Endocrine Disruptor Alkylphenols and the Occurrence of Endometrial Cancer. Environ. Pollut. 2020, 267, 115475. [Google Scholar] [CrossRef]
- Bhandari, G.; Bagheri, A.R.; Bhatt, P.; Bilal, M. Occurrence, Potential Ecological Risks, and Degradation of Endocrine Disrupter, Nonylphenol, from the Aqueous Environment. Chemosphere 2021, 275, 130013. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Wang, J.; Zheng, Z.; Ji, F.; Yan, L.; Yang, L.; Zha, J. Environmentally Relevant Concentrations of Benzophenones Triggered DNA Damage and Apoptosis in Male Chinese Rare Minnows (Gobiocypris Rarus). Environ. Int. 2022, 164, 107260. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Zhu, X.; Guan, G.; Hui, R.; Zhu, L.; Wang, J. Association of N,N-Diethyl-m-Toluamide (DEET) with Obesity among Adult Participants: Results from NHANES 2007–2016. Chemosphere 2022, 307, 135669. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wei, X.; Zhang, Z.; Chen, X.; Zhu, R.; Oh, Y.; Gu, N. Tris (2-Chloroethyl) Phosphate (TCEP) Induces Obesity and Hepatic Steatosis via FXR-Mediated Lipid Accumulation in Mice: Long-Term Exposure As a Potential Risk for Metabolic Diseases. Chem.-Biol. Interact. 2022, 363, 110027. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, J.E.; Scirica, C.V.; Rifas-Shiman, S.L.; Gillman, M.W.; Bunyavanich, S.; Camargo, C.A.; Weiss, S.T.; Gold, D.R.; Litonjua, A.A. Prenatal and Infant Exposure to Acetaminophen and Ibuprofen and the Risk for Wheeze and Asthma in Children. J. Allergy Clin. Immunol. 2015, 135, 441–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orrell, K.A.; Cices, A.D.; Guido, N.; Majewski, S.; Ibler, E.; Huynh, T.; Rangel, S.M.; Laumann, A.E.; Martini, M.C.; Rademaker, A.W.; et al. Malignant Melanoma Associated with Chronic Once-Daily Aspirin Exposure in Males: A Large, Single-Center, Urban, US Patient Population Cohort Study from the “Research on Adverse Drug events And Report” (RADAR) Project. J. Am. Acad. Dermatol. 2018, 79, 762–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meseguer-Ripolles, J.; Lucendo-Villarin, B.; Tucker, C.; Ferreira-Gonzalez, S.; Homer, N.; Wang, Y.; Lewis, P.J.S.; Toledo, E.M.; Mellado-Gomez, E.; Simpson, J.; et al. Dimethyl Fumarate Reduces Hepatocyte Senescence Following Paracetamol Exposure. iScience 2021, 24, 102552. [Google Scholar] [CrossRef] [PubMed]
- Hammers, A.L.; Sanchez-Ramos, L.; Kaunitz, A.M. Antenatal Exposure to Indomethacin Increases the Risk of Severe Intraventricular Hemorrhage, Necrotizing Enterocolitis, and Periventricular Leukomalacia: A Systematic Review with Metaanalysis. Am. J. Obstet. Gynecol. 2015, 212, 505.e1–505.e13. [Google Scholar] [CrossRef]
- Geng, M.; Gao, H.; Wang, B.; Huang, K.; Wu, X.; Liang, C.; Yan, S.; Han, Y.; Ding, P.; Wang, W.; et al. Urinary Tetracycline Antibiotics Exposure During Pregnancy and Maternal Thyroid Hormone Parameters: A Repeated Measures Study. Sci. Total Environ. 2022, 838, 156146. [Google Scholar] [CrossRef] [PubMed]
- Adenan, N.H.; Lim, Y.Y.; Ting, A.S.Y. Removal of Triphenylmethane Dyes by Streptomyces Bacillaris: A Study on Decolorization, Enzymatic Reactions and Toxicity of Treated Dye Solutions. J. Environ. Manag. 2022, 318, 115520. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.; Zahid, M.; Govindwar, S.; Khandare, R.; Vyavahare, G.; Gurav, R.; Desai, N.; Pandit, S.; Jadhav, J. Constructed Wetland: A Promising Technology for the Treatment of Hazardous Textile Dyes and Effluent. In Development in Wastewater Treatment Research and Processes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 173–198. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Lu, Y.; Lu, K.; Bai, H.; Ren, H. Metabolomics Evaluation of the in Vivo Toxicity of Bromoacetonitriles: One Class of High-Risk Nitrogenous Disinfection Byproducts. Sci. Total Environ. 2017, 579, 107–114. [Google Scholar] [CrossRef]
- Bond, T.; Huang, J.; Templeton, M.R.; Graham, N. Occurrence and Control of Nitrogenous Disinfection By-Products in Drinking Water—A Review. Water Res. 2011, 45, 4341–4354. [Google Scholar] [CrossRef]
- Plewa, M.J.; Wagner, E.D. Risks of Disinfection Byproducts in Drinking Water: Comparative Mammalian Cell Cytotoxicity and Genotoxicity. Encycl. Environ. Health 2019, 559–566. [Google Scholar] [CrossRef]
- Soriano, J.J.; Mathieu-Denoncourt, J.; Norman, G.; Solla, S.R.; Langlois, V.S. Toxicity of the Azo Dyes Acid Red 97 and Bismarck Brown Y to Western Clawed Frog (Silurana Tropicalis). Environ. Sci. Pollut. Res. 2013, 21, 3582–3591. [Google Scholar] [CrossRef] [PubMed]
- Koyu, A.; Gokcimen, A.; Ozguner, F.; Bayram, D.S.; Kocak, A. Evaluation of the Effects of Cadmium on Rat Liver. Mol. Cell. Biochem. 2006, 284, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cui, W.; Wang, M.; Liang, Y.; Chen, X. The Association Between Life-Time Dietary Cadmium Intake from Rice and Chronic Kidney Disease. Ecotoxicol. Environ. Saf. 2021, 211, 111933. [Google Scholar] [CrossRef] [PubMed]
- Staessen, J.A.; Roels, H.A.; Emelianov, D.; Kuznetsova, T.; Thijs, L.; Vangronsveld, J.; Fagard, R. Environmental Exposure to Cadmium, Forearm Bone Density, and Risk of Fractures: Prospective Population Study. Lancet 1999, 353, 1140–1144. [Google Scholar] [CrossRef]
- Liang, Y.; Yi, L.; Deng, P.; Wang, L.; Yue, Y.; Wang, H.; Tian, L.; Xie, J.; Chen, M.; Luo, Y.; et al. Rapamycin Antagonizes Cadmium-Induced Breast Cancer Cell Proliferation and Metastasis Through Directly Modulating ACSS2. Ecotoxicol. Environ. Saf. 2021, 224, 112626. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, Y.; Li, Z.; Tao, Y.; Yang, Y. Hazards of Phthalates (PAEs) Exposure: A Review of Aquatic Animal Toxicology Studies. Sci. Total Environ. 2021, 771, 145418. [Google Scholar] [CrossRef] [PubMed]
- Bey, L.; Coumoul, X.; Kim, M.J. TCDD Aggravates the Formation of the Atherosclerotic Plaque in ApoE KO Mice with a Sexual Dimorphic Pattern. Biochimie 2022, 195, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Dickman, R.A.; Aga, D.S. A Review of Recent Studies on Toxicity, Sequestration, and Degradation of Per- and Polyfluoroalkyl Substances (PFAS). J. Hazard. Mater. 2022, 436, 129120. [Google Scholar] [CrossRef] [PubMed]
- Pinson, A.; Franssen, D.; Gérard, A.; Parent, A.S.; Bourguignon, J.P. Neuroendocrine Disruption without Direct Endocrine Mode of Action: Polychloro-Biphenyls (PCBs) and Bisphenol A (BPA) As Case Studies. C. R. Biol. 2017, 340, 432–438. [Google Scholar] [CrossRef]
- Patisaul, H.B. Endocrine Disrupting Chemicals (EDCs) and the Neuroendocrine System: Beyond Estrogen, Androgen, and Thyroid. Adv. Pharmacol. 2021, 92, 101–150. [Google Scholar] [CrossRef]
- Ali, I.; Liu, B.; Farooq, M.A.; Islam, F.; Gan, Y. Toxicological Effects of Bisphenol A on Growth and Antioxidant Defense System in Oryza Sativa As Revealed by Ultrastructure Analysis. Ecotoxicol. Environ. Saf. 2015, 124, 277–284. [Google Scholar] [CrossRef]
- Tolussi, C.E.; Gomes, A.D.O.; Kumar, A.; Ribeiro, C.S.; Nostro, F.L.L.; Bain, P.A.; Souza, G.B.; Cuña, R.D.; Honji, R.M.; Moreira, R.G. Environmental Pollution Affects Molecular and Biochemical Responses during Gonadal Maturation of Astyanax fasciatus (Teleostei: Characiformes: Characidae). Ecotoxicol. Environ. Saf. 2018, 147, 926–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Wang, J.; Wei, Y.; Chen, J.; Kang, L.; Long, C.; Wu, S.; Shen, L.; Wei, G. Maternal Exposure to Endocrine Disrupting Chemicals (EDCs) and Preterm Birth: A Systematic Review, Meta-Analysis, and Meta-Regression Analysis. Environ. Pollut. 2022, 292, 118264. [Google Scholar] [CrossRef] [PubMed]
- Batt, A.L.; Kincaid, T.M.; Kostich, M.S.; Lazorchak, J.M.; Olsen, A.R. Evaluating the Extent of Pharmaceuticals in Surface Waters of the United States Using a National-Scale Rivers and Streams Assessment Survey. Environ. Toxicol. Chem. 2016, 35, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Shi, Y.J.; Lu, Y.L.; Johnson, A.C.; Sarvajayakesavalu, S.; Liu, Z.Y.; Su, C.; Zhang, Y.Q.; Juergens, M.D.; Jin, X.W. The Relative Risk and its Distribution of Endocrine Disrupting Chemicals, Pharmaceuticals and Personal Care Products to Freshwater Organisms in the Bohai Rim, China. Sci. Total Environ. 2017, 590, 633–642. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Qin, X.; Xiao, N.; Yao, Y.; Duan, Y.; Cui, X.; Zhang, S.; Luo, H.; Sun, H. Phthalate Exposure and Semen Quality in Infertile Male Population from Tianjin, China: Associations and Potential Mediation by Reproductive Hormones. Sci. Total Environ. 2020, 744, 140673. [Google Scholar] [CrossRef] [PubMed]
- Azizi, D.; Arif, A.; Blair, D.; Dionne, J.; Filion, Y.; Ouarda, Y.; Pazmino, A.G.; Pulicharla, R.; Rilstone, V.; Tiwari, B.; et al. A Comprehensive Review on Current Technologies for Removal of Endocrine Disrupting Chemicals from Wastewaters. Environ. Res. 2021, 207, 112196. [Google Scholar] [CrossRef]
- Gadd, J.B.; Northcott, G.L.; Tremblay, L.A. Passive Secondary Biological Treatment Systems Reduce Estrogens in Dairy Shed Effluent. Environ. Sci. Technol. 2010, 44, 7601–7606. [Google Scholar] [CrossRef]
- Srivastava, A.; Singh, M.; Karsauliya, K.; Mondal, D.P.; Khare, P.; Singh, S.; Singh, S.P. Effective Elimination of Endocrine Disrupting Bisphenol A and S from Drinking Water Using Phenolic Resin-Based Activated Carbon Fiber: Adsorption, Thermodynamic and Kinetic Studies. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100316. [Google Scholar] [CrossRef]
- Singh, N.B.; Garima, N.; Sonal, A. Rachna Water Purification by Using Adsorbents: A Review. Environ. Technol. Innov. 2018, 11, 187–240. [Google Scholar] [CrossRef]
- Goswami, A.D.; Trivedi, D.H.; Jadhav, N.L.; Pinjari, D.V. Sustainable and Green Synthesis of Carbon Nanomaterials: A Review. J. Environ. Chem. Eng. 2021, 9, 106118. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Bystrzejewski, M.; De Adhikari, A.; Huczko, A.; Wang, N. Methods for the Conversion of Biomass Waste into Value-Added Carbon Nanomaterials: Recent Progress and Applications. Prog. Energy Combust. Sci. 2022, 92, 101023. [Google Scholar] [CrossRef]
- Srivastava, A.; Gupta, B.; Majumder, A.; Gupta, A.K.; Nimbhorkar, S.K. A Comprehensive Review on the Synthesis, Performance, Modifications, and Regeneration of Activated Carbon for the Adsorptive Removal of Various Water Pollutants. J. Environ. Chem. Eng. 2021, 9, 106177. [Google Scholar] [CrossRef]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Abu-Nada, A.; Abdala, A.; McKay, G. Removal of Phenols and Dyes from Aqueous Solutions Using Graphene and Graphene Composite Adsorption: A Review. J. Environ. Chem. Eng. 2021, 9, 105858. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots, and Polymer Dots): Current State and Future Perspective. Nano Res. 2015, 8, 355–381. [Google Scholar] [CrossRef]
- Li, H.; Gui, X.; Zhang, L.; Wang, S.; Ji, C.; Wei, J.; Wang, K.; Zhu, H.; Wu, D.; Cao, A. Carbon Nanotube Sponge Filters for Trapping Nanoparticles and Dye Molecules from Water. Chem. Commun. 2010, 46, 7966–7968. [Google Scholar] [CrossRef]
- Murayama, H.; Moriyama, N.; Mitobe, H.; Mukai, H.; Takase, Y.; Shimizu, K.; Kitayama, Y. Evaluation of Activated Carbon Fiber Filter for Sampling of Organochlorine Pesticides in Environmental Water Samples. Chemosphere 2003, 52, 825–833. [Google Scholar] [CrossRef]
- Teng, Y.; Zhu, J.; Xiao, S.; Ma, Z.; Huang, T.; Liu, Z.; Xu, Y. Exploring Chitosan-loaded Activated Carbon Fiber for the Enhanced Adsorption of Pb(II)-EDTA Complex from Electroplating Wastewater in Batch and Continuous Processes. Sep. Purif. Technol. 2022, 299, 121659. [Google Scholar] [CrossRef]
- Duan, J.; Ji, H.; Xu, T.; Pan, F.; Liu, X.; Liu, W.; Zhao, D. Simultaneous Adsorption of Uranium(VI) and 2-Chlorophenol by Activated Carbon Fiber Supported/Modified Titanate Nanotubes (TNTs/ACF): Effectiveness and Synergistic Effects. Chem. Eng. J. 2021, 406, 126752. [Google Scholar] [CrossRef]
- Flor, M.P.; Camarillo, R.; Martínez, F.; Jiménez, C.; Quiles, R.; Rincón, J. Synthesis and Characterization of Bimetallic TiO2/CNT/Pd-Cu for Efficient Remediation of Endocrine Disruptors under Solar Light. J. Environ. Chem. Eng. 2022, 10, 107245. [Google Scholar] [CrossRef]
- Gao, Q.; Chen, W.; Chen, Y.; Werner, D.; Cornelissen, G.; Xing, B.; Tao, S.; Wang, X. Surfactant Removal with Multiwalled Carbon Nanotubes. Water Res. 2016, 106, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, A.A.; Dehghani, M.H.; Mesdaghinia, A.; Yaghmaian, K.; Es’haghi, Z. Adsorptive Removal of Endocrine Disrupting Compounds from Aqueous Solutions Using Magnetic Multi-wall Carbon Nanotubes Modified with Chitosan Biopolymer Based on Response Surface Methodology: Functionalization, Kinetics, and Isotherms Studies. Int. J. Biol. Macromol. 2019, 155, 1019–1029. [Google Scholar] [CrossRef]
- Bassyouni, M.; Mansi, A.E.; Elgabry, A.; Ibrahim, B.A.; Kassem, O.A.; Alhebeshy, R. Utilization of Carbon Nanotubes in Removal of Heavy Metals from Wastewater: A Review of the CNTs’ Potential and Current Challenges. Appl. Phys. A 2019, 126, 1–33. [Google Scholar] [CrossRef]
- Khaliha, S.; Bianchi, A.; Kovtun, A.; Tunioli, F.; Boschi, A.; Zambianchi, M.; Paci, D.; Bocchi, L.; Valsecchi, S.; Polesello, S.; et al. Graphene Oxide Nanosheets for Drinking Water Purification by Tandem Adsorption and Microfiltration. Sep. Purif. Technol. 2022, 300, 121826. [Google Scholar] [CrossRef]
- Peng, W.; Li, H.; Liu, Y.; Song, S. A Review on Heavy Metal Ions Adsorption from Water by Graphene Oxide and Its Composites. J. Mol. Liq. 2017, 230, 496–504. [Google Scholar] [CrossRef]
- Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M. Fabrication of Novel Magnetic Chitosan Grafted with Graphene Oxide to Enhance Adsorption Properties for Methyl Blue. J. Hazard. Mater. 2012, 215–216, 272–279. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, A. Most Recent Developments in Electrospun Magnetic Nanofibers: A Review. J. Eng. Fibers Fabr. 2020, 15, 1–14. [Google Scholar] [CrossRef]
- Sharma, V.K.; McDonald, T.J.; Kim, H.; Garg, V.K. Magnetic Graphene-Carbon Nanotube Iron Nanocomposites As Adsorbents and Antibacterial Agents for Water Purification. Adv. Colloid Interface Sci. 2015, 225, 229–240. [Google Scholar] [CrossRef]
- Bharath, G.; Alhseinat, E.; Ponpandian, N.; Khan, M.A.; Alsharaeh, E.H. Development of Adsorption and Electrosorption Techniques for Removal of Organic and Inorganic Pollutants from Wastewater Using Novel Magnetite/Porous Graphene-Based Nanocomposites. Sep. Purif. Technol. 2017, 188, 206–218. [Google Scholar] [CrossRef]
- Zhang, J.; Nguyen, M.N.; Li, Y.; Yang, C.; Schäfer, A.I. Steroid Hormone Micropollutant Removal from Water with Activated Carbon Fiber-Ultrafiltration Composite Membranes. J. Hazard. Mater. 2020, 391, 122020. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Sadeghi, N.; Tyagi, I.; Gupta, V.K.; Fakhri, A. Adsorption of Toxic Carbamate Pesticide Oxamyl from Liquid Phase by Newly Synthesized and Characterized Graphene Quantum Dots Nanomaterials. J. Colloid Interface Sci. 2016, 478, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Nuengmatcha, P.; Mahachai, R.; Chanthai, S. Removal of Hg(II) from Aqueous Solution Using Graphene Oxide as Highly Potential Adsorbent. Asian J. Chem. 2014, 26, S85–S88. [Google Scholar] [CrossRef]
- Mohammad-Rezaei, R.; Jaymand, M. Graphene Quantum Dots Coated on Quartz Sand as Efficient and Low-Cost Adsorbent for Removal of Hg2+ and Pb2+ from Aqueous Solutions. Environ. Prog. Sustain. Energy 2018, 38, S24–S31. [Google Scholar] [CrossRef]
- Deng, Y.; Ok, Y.S.; Mohan, D.; Pittman, C.U.; Dou, X. Carbamazepine Removal from Water by Carbon Dot-Modified Magnetic Carbon Nanotubes. Environ. Res. 2019, 169, 434–444. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, W.; Chen, W.; Wang, J.; Yang, Q.; Zhu, W.; Wang, J. One-Pot Synthesis of NiFe2O4 Integrated with EDTA-Derived Carbon Dots for Enhanced Removal of Tetracycline. Chem. Eng. J. 2017, 310, 187–196. [Google Scholar] [CrossRef]
- Li, X.; Liu, T.; Wang, D.; Li, Q.; Liu, Z.; Li, N.; Zhang, Y.; Xiao, C.; Feng, X. Superlight Adsorbent Sponges Based on Graphene Oxide Cross-Linked with Poly(vinyl alcohol) for Continuous Flow Adsorption. ACS Appl. Mater. Interfaces 2018, 10, 21672–21680. [Google Scholar] [CrossRef]
- Yang, J.; Juan, P.; Shen, Z.; Guo, R.; Jia, J.; Fang, H.; Wang, Y. Removal of Carbon Disulfide (CS2) from Water via Adsorption on Active Carbon Fiber (ACF). Carbon 2006, 44, 1367–1375. [Google Scholar] [CrossRef]
- Ghasemi, S.S.; Hadavifar, M.; Maleki, B.; Mohammadnia, E. Adsorption of Mercury Ions from Synthetic Aqueous Solution Using Polydopamine Decorated SWCNTs. J. Water Process Eng. 2019, 32, 100965. [Google Scholar] [CrossRef]
- Mashkoor, F.; Nasar, A. Inamuddin Carbon Nanotube-Based Adsorbents for the Removal of Dyes from Waters: A Review. Environ. Chem. Lett. 2020, 18, 605–629. [Google Scholar] [CrossRef]
- Hua, S.; Gong, J.L.; Zeng, G.M.; Yao, F.B.; Guo, M.; Ou, X.M. Remediation of Organochlorine Pesticides Contaminated Lake Sediment Using Activated Carbon and Carbon Nanotubes. Chemosphere 2017, 177, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.G.; Yu, L.Y.; Yang, H.; Liu, Q.; Chen, X.H.; Jiang, X.Y.; Chen, X.Q.; Jiao, F.P. Graphene Nanosheets as Novel Adsorbents in Adsorption, Preconcentration and Removal of Gases, Organic Compounds and Metal Ions. Sci. Total Environ. 2015, 502, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.F.; Li, H.P.; Yang, Y.; Lin, H.J.; Yang, Z.G. Adsorption of 17α-Ethinylestradiol from Aqueous Solution onto a Reduced Graphene Oxide-Magnetic Composite. J. Taiwan Inst. Chem. Eng. 2017, 80, 797–804. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, L.; Qin, Y.; Xu, M.; Jia, X.; Chen, Z. Removal of Aqueous Cr(VI) by a Magnetic Biochar Derived from Melia Azedarach Wood. Bioresour. Technol. 2018, 256, 1–10. [Google Scholar] [CrossRef]
- Mehta, D.; Mazumdar, S.; Singh, S.K. Magnetic Adsorbents for the Treatment of Water/Wastewater—A Review. J. Water Process Eng. 2015, 7, 244–265. [Google Scholar] [CrossRef]
- Mao, N.; Yang, L.; Zhao, G.; Li, X.; Li, Y. Adsorption Performance and Mechanism of Cr(VI) Using Magnetic PS-EDTA Resin from Micro-polluted Waters. Chem. Eng. J. 2012, 200–202, 480–490. [Google Scholar] [CrossRef]
- Panida, P.; Parnuch, H.; Patiparn, P. Amino-Functionalized Mesoporous Silica-Magnetic Graphene Oxide Nanocomposites As Water-Dispersible Adsorbents for the Removal of the Oxytetracycline Antibiotic from Aqueous Solutions: Adsorption Performance, Effects of Coexisting Ions, and Natural Organic Matter. Environ. Sci. Pollut. Res. Int. 2020, 27, 6560–6576. [Google Scholar] [CrossRef]
- Ji, Y.L.; Yin, M.J.; An, Q.F.; Gao, C.J. Recent Developments in Polymeric Nano-based Separation Membranes. Fundam. Res. 2021, 2, 254–267. [Google Scholar] [CrossRef]
- Ji, Y.L.; Lu, H.H.; Gu, B.X.; Ye, R.F.; Gao, C.J. Tailoring the Asymmetric Structure of Polyamide Reverse Osmosis Membrane with Self-assembled Aromatic Nanoparticles for High-Efficient Removal of Organic Micropollutants. Chem. Eng. J. 2021, 416, 129080. [Google Scholar] [CrossRef]
- Kolbasov, A.; Sinha-Ray, S.; Yarin, A.L.; Pourdeyhimi, B. Heavy Metal Adsorption on Solution-Blown Biopolymer Nanofiber Membranes. J. Membr. Sci. 2017, 530, 250–263. [Google Scholar] [CrossRef]
- Beck, R.J.; Zhao, Y.; Fong, H.; Menkhaus, T.J. Electrospun Lignin Carbon Nanofiber Membranes with Large Pores for Highly Efficient Adsorptive Water Treatment Applications. J. Water Process Eng. 2017, 16, 240–248. [Google Scholar] [CrossRef]
- Kappen, J.; Aravind, M.K.; Varalakshmi, P.; Ashokkumar, B.; John, S.A. Quantitative Removal of Hg(II) as Hg(0) Using Carbon Cloths Coated Graphene Quantum Dots and Their Silver Nanoparticles Composite and Application of Hg(0) for the Sensitive Determination of Nitrobenzene. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128542. [Google Scholar] [CrossRef]
- Tshangana, C.S.; Muleja, A.A.; Kuvarega, A.T.; Malefetse, T.J.; Mamba, B.B. The Applications of Graphene Oxide Quantum Dots in the Removal of Emerging Pollutants in Water: An Overview. J. Water Process Eng. 2021, 43, 102249. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Zhou, J.B.; Zhao, R.S. Carbon Nanotube Sponges as a Solid-Phase Extraction Adsorbent for the Enrichment and Determination of Polychlorinated Biphenyls at Trace Levels in Environmental Water Samples. Talanta 2016, 160, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Bang, J.; Seon, Y.S.; You, D.W.; Oh, J.S.; Jung, K.W. Carbon Nanotube Sponges as an Enrichment Material for Aromatic Volatile Organic Compounds. J. Chromatogr. A 2020, 1617, 460840. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.P.; Dwivedi, A.D.; Kim, I.; Sillanpaa, M.; Kwon, Y.N.; Lee, C.H. Synthesis of Graphene-Carbon Sphere Hybrid Aerogel with Silver Nanoparticles and its Catalytic and Adsorption Applications. Chem. Eng. J. 2014, 244, 160–167. [Google Scholar] [CrossRef]
- Mao, H.N.; Wang, X.G. Use of In-Situ Polymerization in the Preparation of Graphene/Polymer Nanocomposites. New Carbon Mater. 2020, 35, 336–343. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Naggar, M.E.; Malhat, F.M.; Sharkawi, H.E. Efficient Removal of Pesticides and Heavy Metals from Wastewater and the Antimicrobial Activity of f-MWCNTs/PVA Nanocomposite Film. J. Clean. Prod. 2019, 206, 315–325. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Du, Q.; Sun, J.; Chen, L.; Hu, S.; Wang, Z.; Xia, Y.; Xia, L. Highly Effective Removal of Basic Fuchsin from Aqueous Solutions by Anionic Polyacrylamide/Graphene Oxide Aerogels. J. Colloid Interface Sci. 2015, 453, 107–114. [Google Scholar] [CrossRef]
- Lai, L.; Chen, L.; Zhan, D.; Sun, L.; Liu, J.; Lim, S.H.; Poh, C.K.; Shen, Z.; Lin, J. One-Step Synthesis of NH2-Graphene from in Situ Graphene-Oxide Reduction and Its Improved Electrochemical Properties. Carbon 2011, 49, 3250–3257. [Google Scholar] [CrossRef]
- Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W. Synthesis of Amino Functionalized Magnetic Graphenes Composite Material and Its Application to Remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from Contaminated Water. J. Hazard. Mater. 2014, 278, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Bai, L.; Li, J.; Huang, L.; Sun, H.; Gao, X. Robust Preparation of Flexibly Super-hydrophobic Carbon Fiber Membrane by Electrospinning for Efficient Oil-Water Separation in Harsh Environments. Carbon 2021, 182, 11–22. [Google Scholar] [CrossRef]
- Li, L.; Hu, J.; Shi, X.; Fan, M.; Luo, J.; Wei, X. Nanoscale Zero-Valent Metals: A Review of Synthesis, Characterization, and Applications to Environmental Remediation. Environ. Sci. Pollut. Res. 2016, 23, 17880–17900. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Khulbe, K.C.; Matsuura, T.; Tabe, S.; Ismail, A.F. Preparation and Characterization of Electro-spun Nanofiber Membranes and Their Possible Applications in Water Treatment. Sep. Purif. Technol. 2013, 102, 118–135. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Y.; Li, Z.; Zhang, L.; Liu, Z.; Long, Z.; Li, Y.; Liu, Y.; Fan, R.; Sun, K.; et al. Synthesis of Carbon/SiO2 Core-Sheath Nanofibers with Co-Fe Nanoparticles Embedded in via Electrospinning for High-Performance Microwave Absorption. Adv. Compos. Hybrid Mater. 2021, 5, 513–524. [Google Scholar] [CrossRef]
- Wang, J.; Lu, X.; Ng, P.F.; Lee, K.I.; Fei, B.; Xin, J.H.; Wu, J. Polyethylenimine Coated Bacterial Cellulose Nanofiber Membrane and Application As Adsorbent and Catalyst. J. Colloid Interface Sci. 2015, 440, 32–38. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Zhou, S.; Yang, Z.; Zhang, X. Ag Nanoparticle-Decorated Carbon Nanotube Sponges for Removal of Methylene Blue from Aqueous Solution. New J. Chem. 2020, 44, 7096–7104. [Google Scholar] [CrossRef]
- Wang, B.; Chen, P.Y.; Zhao, R.X.; Zhang, L.; Chen, Y.; Yu, L.P. Carbon-Dot Modified Polyacrylonitrile Fibers: Recyclable Materials Capable of Selectively and Reversibly Adsorbing Small-Sized Anionic Dyes. Chem. Eng. J. 2020, 391, 123484. [Google Scholar] [CrossRef]
- Pirhaji, J.Z.; Moeinpour, F.; Dehabadi, A.M.; Ardakani, S.A.Y. Synthesis and Characterization of Halloysite/Graphene Quantum Dots Magnetic Nanocomposite as a New Adsorbent for Pb(II) Removal from Water. J. Mol. Liq. 2020, 300, 112345. [Google Scholar] [CrossRef]
- Maldonado-Orozco, M.C.; Ochoa-Lara, M.T.; Sosa-Márquez, J.E.; Talamantes-Soto, R.P.; Hurtado-Macías, A.; Antón, R.L.; González, J.A.; Holguín-Momaca, J.T.; Olive-Méndez, S.F.; Espinosa-Magaña, F. Absence of Ferromagnetism in Ferroelectric Mn-Doped BaTiO3 Nanofibers. J. Am. Ceram. Soc. 2019, 102, 2800–2809. [Google Scholar] [CrossRef]
- Toński, M.; Paszkiewicz, M.; Doonek, J.; Flejszar, M.; Biak-Bielińska, A. Regeneration and Reuse of the Carbon Nanotubes for the Adsorption of Selected Anticancer Drugs from Water Matrices. Colloids Surf. A 2021, 618, 126355. [Google Scholar] [CrossRef]
- Katubi, K.M.M.; Alsaiari, N.S.; Alzahrani, F.M.; Siddeeg, S.M.; Tahoon, M.A. Synthesis of Manganese Ferrite/Graphene Oxide Magnetic Nanocomposite for Pollutants Removal from Water. Processes 2021, 9, 589. [Google Scholar] [CrossRef]
- Jinendra, U.; Bilehal, D.; Nagabhushana, B.M.; Kumar, A.P. Adsorptive Removal of Rhodamine B Dye from Aqueous Solution by Using Graphene–Based Nickel Nanocomposite. Heliyon 2021, 7, e06851. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Z.; Zeng, G.; Liu, Y.; Shao, B.; Li, Z.; Liu, Y.; Zhang, W.; He, Q. Polyaniline-Based Adsorbents for Removal of Hexavalent Chromium from Aqueous Solution: A Mini Review. Environ. Sci. Pollut. Res. 2018, 25, 6158–6174. [Google Scholar] [CrossRef]
- Souza, C.C.; Souza, L.Z.M.; Yılmaz, M.; Oliveira, M.A.; Bezerra, A.C.S.; Silva, E.F.; Dumont, M.R.; Machado, A.R.T. Activated Carbon of Coriandrum Sativum for Adsorption of Methylene Blue: Equilibrium and Kinetic Modeling. Clean. Mater. 2022, 3, 100052. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Zheng, X.; Tian, M. Activated Carbon Fiber Derived from the Seed Hair Fibers of Metaplexis Japonica: Novel Efficient Adsorbent for Methylene Blue. Ind. Crop. Prod. 2020, 148, 112319. [Google Scholar] [CrossRef]
- Sharabati, M.A.; Abokwiek, R.; Al-Othman, A.; Tawalbeh, M.; Karaman, C.; Orooji, Y.; Karimi, F. Biodegradable Polymers and Their Nano-composites for the Removal of Endocrine-Disrupting Chemicals (EDCs) from Wastewater: A Review. Environ. Res. 2021, 202, 111694. [Google Scholar] [CrossRef]
- Ussia, M.; Di Mauro, A.; Mecca, T.; Cunsolo, F.; Cerruti, P.; Nicotra, G.; Spinella, C.; Impellizzeri, G.; Privitera, V.; Carroccio, S.C. ZnO-pHEMA Nanocomposites: An Eco-Friendly and Reusable Material for Water Remediation. ACS Appl. Mater. Interfaces 2018, 10, 40100–40110. [Google Scholar] [CrossRef]
- El-Sayed, M.E.A. Nanoadsorbents for Water and Wastewater Remediation. Sci. Total Environ. 2020, 739, 139903. [Google Scholar] [CrossRef]
- Pillay, K.; Cukrowska, E.M.; Coville, N.J. Multi-walled Carbon Nanotubes As Adsorbents for the Removal of Parts per Billion Levels of Hexavalent Chromium from Aqueous Solution. J. Hazard. Mater. 2009, 166, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Gadd, G.M. Biosorption: Critical Review of Scientific Rationale, Environmental Importance and Significance for Pollution Treatment. J. Chem. Technol. Biotechnol. 2010, 84, 13–28. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and Non-conventional Adsorbents for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Using Zeolitic Adsorbents to Cleanup Special Wastewater Streams: A Review. Microporous Mesoporous Mater. 2015, 214, 224–241. [Google Scholar] [CrossRef]
- Dixit, F.; Dutta, R.; Barbeau, B.; Berube, P.; Mohseni, M. PFAS Removal by Ion Exchange Resins: A Review. Chemosphere 2021, 272, 129777. [Google Scholar] [CrossRef]
- Caltran, I.; Heijman, S.G.J.; Shorney-Darby, H.L.; Rietveld, L.C. Impact of Removal of Natural Organic Matter from Surface Water by Ion Exchange: A Case Study of Pilots in Belgium, United Kingdom and the Netherlands. Sep. Purif. Technol. 2020, 247, 116974. [Google Scholar] [CrossRef]
- Berber, M.R. Current Advances of Polymer Composites for Water Treatment and Desalination. J. Chem. 2020, 2020, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Akpomie, K.G.; Conradie, J. Efficient Synthesis of Magnetic Nanoparticle-Musa Acuminata Peel Composite for the Adsorption of Anionic Dye. Arab. J. Chem. 2020, 13, 7115–7131. [Google Scholar] [CrossRef]
- Saxena, M.; Lochab, A.; Saxena, R. Asparagine Functionalized MWCNTs for Adsorptive Removal of Hazardous Cationic Dyes: Exploring Kinetics, Isotherm and Mechanism. Surf. Interface 2021, 25, 101187. [Google Scholar] [CrossRef]
- Kumar, K.A.; Venkata Mohan, V. Removal of Natural and Synthetic Endocrine Disrupting Estrogens by Multi-walled Carbon Nanotubes (MWCNT) as Adsorbent: Kinetic and Mechanistic Evaluation. Sep. Purif. Technol. 2012, 87, 22–30. [Google Scholar] [CrossRef]
- Baharum, N.A.; Nasir, H.M.; Ishak, M.Y.; Isa, N.M.; Hassan, M.A.; Aris, A.Z. Highly Efficient Removal of Diazinon Pesticide from Aqueous Solutions by Using Coconut Shell-Modified Biochar. Arab. J. Chem. 2020, 13, 6106–6121. [Google Scholar] [CrossRef]
- Hameed, B.H.; Salman, J.M.; Ahmad, A.L. Adsorption Isotherm and Kinetic Modeling of 2,4-D Pesticide on Activated Carbon Derived from Date Stones. J. Hazard. Mater. 2009, 163, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Mahar, F.K.; He, L.; Wei, K.; Mehdi, M.; Zhu, M.; Gu, J.; Zhang, K.; Khatri, Z.; Kim, I. Rapid Adsorption of Lead Ions Using Porous Carbon Nanofibers. Chemosphere 2019, 225, 360–367. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Xu, W.; Cui, M.; Wang, M.; Chen, B.; Sun, Y.; Chen, K.; Li, L.; Du, Q.; et al. Filtration and Adsorption of Tetracycline in Aqueous Solution by Copper Alginate-Carbon Nanotubes Membrane Which Has the Muscle-Skeleton Structure. Chem. Eng. Res. Des. 2022, 183, 424–438. [Google Scholar] [CrossRef]
- Yadav, N.; Maddheshiaya, D.N.; Rawat, S.; Singh, J. Adsorption and Equilibrium Studies of Phenol and Para-nitrophenol by Magnetic Activated Carbon Synthesised from Cauliflower Waste. Environ. Eng. Res. 2019, 25, 742–752. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Jiang, X.; Zhao, J.; Zhang, S. Graphene Oxide: A Promising Nanomaterial for Energy and Environmental Applications. Nano Energy 2015, 16, 488–515. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xing, J.; Xia, Z.; Chen, J. Preparation of Coaxial Heterogeneous Graphene Quantum Dot-Sensitized TiO2 Nanotube Arrays via Linker Molecule Binding and Electrophoretic Deposition. Carbon 2015, 81, 474–487. [Google Scholar] [CrossRef]
EDC Class | Example | Negative Impact | Refs |
---|---|---|---|
Pesticides | Dichlorodiphenyltrichloro-ethane (DDT) 2,4-dichlorophenoxyacetic acid(2,4-D) Polychlorinated biphenyl (PCBs) Methoxychlor (MXC) Cyhalothrin Organophosphate pesticide | Disturb hormonal balance in women, harm to the liver, Parkinson’s, preterm birth (PTB) metabolic syndrome, infertility, testosterone concentration reduction. | [14,15,16,17] |
Steroidal pharmaceuticals | Estradiol Ethynylestradiol Testosterone Androstenedione Corticosteroids Progesterones | Osteonecrosis of the jaw, interferes with the thyroid endocrine system, placenta previa, lung cancer, stimulates lung adenocarcinoma cell production. | [18,19,20,21,22] |
Detergents and Surfactants | Alkylphenols (APs) Bisphenol A Diethylstilbestrol (DES) Nonyphenol Alkylphenol Ethoxylates (APEO) Perfluorooctanoic acid (PFOA) Perfluorooctane sulphonate (PFOS) Alkylphenol carboxylates | Cardiovascular risk factors, ovarian, uterine, pituitary, testicular cancers, diabetes, low sperm count, recurrent miscarriages. | [23,24,25,26,27,28] |
Personal care products | Benzophenone Oxybenzone Chlorophene N,N-Diethyl-m-toluamide (DEET) tris(2-chloroethyl)phosphate (TCEP) | DNA damage, obesity, hepatic steatosis. | [29,30,31] |
Nonsteroid pharmaceuticals | Paracetamol Indomethacin Aspirin Ibuprofen Tetracycline | Wheeze and asthma risk in children, hepatocyte senescence, risk of severe intraventricular hemorrhage, interference with the endocrine activity of the thyroid gland. | [32,33,34,35,36] |
Dyes | Methylene blue (MB) Aniline yellow Rhodamine B (RB) Thiazine | Reduce soil fertility and the photosynthetic activity of aquatic plants, potentially promoting toxicity, mutagenicity, and carcinogenicity. | [37,38,39] |
Disinfection by-products | Haloacetamides Bromoacetonitriles Cyanoformaldehyde Bromoaldehydes | Induced liver and kidney injury, mammalian cell cytotoxicity and genotoxicity. | [40,41,42] |
Heavy Metals | Ni2+, Pb2+, As3+, Cr3+, Hg2+, Cd2+ | Prostate cancer, hepatotoxicity, nephrotoxicity, skeletal toxicity. | [43,44,45,46,47] |
Industrial additives and agents | Polybrominateddiphenyl ethers (PBDEs) 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) Polyfluoroalkyl substances (PFAS) Phthalate Esters (PAEs) Polyfluoroalkyl | Risk of diabetes, alteration of cognitive functions, risk of atherosclerosis, various cancers, elevated cholesterol levels, decreased immune and liver functionalities, birth defects. | [48,49,50] |
Classification | Category | Type of EDCs | Refs |
---|---|---|---|
Carbon nanofiber | Activated carbon fiber (ACF) | Organochlorine pesticides | [70] |
Chitosan-loaded activated carbon fiber | Pb2+-EDTA complex | [71] | |
Activated carbon fiber supported/modified nanotubes | 2-Chlorophenol | [72] | |
Carbon nanotubes | Multiwalled carbo nanotubes (MWCNTs) | Triton X-100, 17β-Estradiol, Sodium dodecylbenzene, Hg2+, Cr3+, As3+, Bisphenol A | [73,74,75] |
Single-wall carbon nanotubes (SWCNTs) | Hg2+, Cr3+, As3+, Hexachlorocyclohexane, Dichloro-diphenyl-trichloroethane | [76] | |
Graphene family | Graphene oxide (GO) and other nanocomposites | Perfluoroalkyl substances Pb2+, Hg2+, As5+, Cr6+, Methylene blue | [77,78,79] |
Magnetic carbon- nanomaterials | Magnetic carbon nanofibers | Phenol, Rhodamine B | [80] |
Magnetite/porous graphene-base nanocomposites | Cr6+, Pb2+, Cd2+, As3+, Polychlorinated biphenyl, Dye | [81] | |
Magnetic graphene–carbon nanotubes iron nanocomposites | Pb2+, Cd2+ | [82] | |
Carbon nanomembranes | Carbon fiber ultrafiltration composite membranes | Steroid hormones | [83] |
Carbon dots | Graphene quantum dots (GQDs) Carbon quantum dots (CQDs) Carbonized polymer dots (CPDs) | carbamate pesticide oxamyl, Cd2+, Hg2+, Pb2+, tetracycline, Carbamazepine | [84,85,86,87,88] |
Carbon sponge | Graphene sponges | Methylene blue, Pb2+ | [89] |
Carbon nanotube sponges | Polychlorinated biphenyl | [69] |
Classification | Category | Characterizations | Synthesis | References |
---|---|---|---|---|
Carbon nano tubes (CNTs) | Activated carbon fiber-supported/modified titanate nanotubes | TEM, FE-SEM, XRD, FTIR, XPS, UV-vis | Hydrothermal method | [72] |
Graphene | Graphene oxide (GO) | XPS, FTIR, AFM, SEM, TEM | Chemical reduction Hummer’s method | [77,78] |
Magnetic chitosan and graphene oxide (MCGO) | TGA, FTIR, TG, SEM, DSC | Hummer’s method Ultrasonic dispersion | [79] | |
Magnetic carbon-nanomaterials | Magnetic carbon nanotube iron nanocomposites | BET, XRD, XPS, TEM, SEM, AFM, SAED, μXRF | Solvothermal synthesis Microwave irradiation | [81] |
Magnetite/porous graphene-based nanocomposites | FE-SEM, EDX, XRD, FTIR, RAM, VSM, UV-vis, XPS, SSA | Sonication Solvothermal synthesis | [82] | |
Electrospun magnetic carbon nanofibers | SQUID, AGM, VSM, MOKE | Electrospinning Field-assisted electrospinning Solvothermal technique | [80] | |
Carbon membranes | Carbon fiber ultrafiltration composite membranes | FE-SEM, BET, FTIR | Filtration process Sonication mixing | [83] |
Carbon dots | Graphene quantum dots (GQDs) Carbon quantum dots (CQDs) Carbonized polymer dots (CPDs) | XRD, AFM, TEM, UV-vis, XPS, FTIR | Solvothermal technique Hydrothermal method | [120,121,122] |
Carbon sponge | Graphene aerogel Carbon nanotube sponges | XRD, XPS, FTIR, FE-SEM | Solvothermal technique | [119] |
Adsorbents | Advantages | Disadvantages | Refs |
---|---|---|---|
Carbon nanomaterials | Large specific surface, surface multi-functionality, regenerative capabilities, eco–friendly, high adsorption capacity, biodegradability | High cost to realize large-scale production and application | [130,131,132] |
Biomass | Abundant in nature, available in large quantities, inexpensive, have potential as complexing materials | At the laboratory stage | [133,134] |
Natural zeolites | Easily available and relatively cheap | Low permeability, continuous need for amendments (pH adjustment) | [135,136] |
Conventional ion exchange resins | Effectiveness, ease of operation, large available exchange capacities, small footprint, regenerative capabilities | Mostly operated only in low pH ranges | [137,138] |
Biodegradable polymers | Biodegradability, high local availability, low cost, high surface area, high chemical stability, remarkable flexibility | Risk of contamination, possible release of methane, costly regeneration | [129,139] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Zi, Y.; Zhou, C.; Zeng, W.; Luo, W.; Zeng, H.; Xia, M.; Luo, Z. Recent Advances in the Synthesis, Characterization, and Application of Carbon Nanomaterials for the Removal of Endocrine-Disrupting Chemicals: A Review. Int. J. Mol. Sci. 2022, 23, 13148. https://doi.org/10.3390/ijms232113148
Liao Z, Zi Y, Zhou C, Zeng W, Luo W, Zeng H, Xia M, Luo Z. Recent Advances in the Synthesis, Characterization, and Application of Carbon Nanomaterials for the Removal of Endocrine-Disrupting Chemicals: A Review. International Journal of Molecular Sciences. 2022; 23(21):13148. https://doi.org/10.3390/ijms232113148
Chicago/Turabian StyleLiao, Ze, Yang Zi, Chunyan Zhou, Wenqian Zeng, Wenwen Luo, Hui Zeng, Muqing Xia, and Zhoufei Luo. 2022. "Recent Advances in the Synthesis, Characterization, and Application of Carbon Nanomaterials for the Removal of Endocrine-Disrupting Chemicals: A Review" International Journal of Molecular Sciences 23, no. 21: 13148. https://doi.org/10.3390/ijms232113148