Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1
Abstract
:1. Introduction
2. Evolution of the Chemistries and Pharmaceutical Properties of ASOs
2.1. First-Generation ASOs
2.2. Second-Generation ASOs
2.3. Third-Generation ASOs
2.4. Pharmacokinetics and Cell Distribution of ASOs
3. In Vitro Models of DM1 for ASOs Screening
4. Mice Models of RNA Toxicity for the Investigation of Antisense Therapy
4.1. The HSALR Mouse Model
4.2. The DMSXL Mouse Model
4.3. Inducible Mouse Models of RNA Toxicity
5. Targeting DMPK mRNAs with Antisense Therapy
5.1. Steric Blocking ASOs to Restore MBNL Function
5.2. ASOs with Catalytic Activity for Degrading CUG-Expanded RNAs
6. Systemic Therapy for DM1 with Naked ASOs
6.1. Systemic ASOs Administration for Targeting Skeletal Muscles
6.2. Systemic ASO Administration for Targeting Cardiac Pathology
7. Cell-Penetrating Peptide ASOs for DM1
8. Lipid-Conjugated ASOs Targeting Skeletal and Cardiac Muscles
9. Antibody-Conjugated ASOs to Enhance Cell Uptake via the Transferrin Receptor
10. Improving ASO Delivery in the Brain
11. Safety and Tolerability of DMPK-Targeting Antisense Therapy
11.1. Sequence-Dependent Toxicity of DMPK Targeting ASOs
11.2. Nephrotoxicity and Hepatotoxicity of ASOs
12. Targeting Mechanisms Downstream of RNA Toxicity with Antisense Therapy
12.1. AntagomiR and BlockmiR ASOs
12.2. Splice-Switching ASOs for Correcting Myotonia
13. Alternative RNA-Based Strategies for Treating DM1
13.1. Short Interfering RNAs
13.2. Single-Guide RNA and Cas9 Ribonucleoproteins
13.3. Hammerhead Ribozymes
13.4. Small Nuclear RNAs
14. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roberts, T.C.; Langer, R.; Wood, M.J.A. Advances in Oligonucleotide Drug Delivery. Nat. Rev. Drug Discov. 2020, 19, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Search Results|DrugBank Online. Available online: https://go.drugbank.com/unearth/q?searcher=drugs&query=antisense&approved=1&us=0&ca=0&eu=0&commit=Apply+Filter (accessed on 6 October 2022).
- Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1723–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messina, S.; Sframeli, M. New Treatments in Spinal Muscular Atrophy: Positive Results and New Challenges. J. Clin. Med. 2020, 9, 2222. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.A. Golodirsen: First Approval. Drugs 2020, 80, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.R.Q.; Maruyama, R.; Yokota, T. Eteplirsen in the Treatment of Duchenne Muscular Dystrophy. Drug Des. Dev. Ther. 2017, 11, 533–545. [Google Scholar] [CrossRef] [Green Version]
- Charleston, J.S.; Schnell, F.J.; Dworzak, J.; Donoghue, C.; Lewis, S.; Chen, L.; David Young, G.; Milici, A.J.; Voss, J.; Dealwis, U.; et al. Eteplirsen Treatment for Duchenne Muscular Dystrophy: Exon Skipping and Dystrophin Production. Neurology 2018, 90, e2135–e2145. [Google Scholar] [CrossRef]
- Frank, D.E.; Schnell, F.J.; Akana, C.; El-Husayni, S.H.; Desjardins, C.A.; Morgan, J.; Charleston, J.S.; Sardone, V.; Domingos, J.; Dickson, G.; et al. Increased Dystrophin Production with Golodirsen in Patients with Duchenne Muscular Dystrophy. Neurology 2020, 94, e2270–e2282. [Google Scholar] [CrossRef] [Green Version]
- Harley, H.G.; Rundle, S.A.; Reardon, W.; Myring, J.; Crow, S.; Harper, P.S.; Shaw, D.J.; Brook, J.D. Unstable DNA Sequence in Myotonic Dystrophy. Lancet 1992, 339, 1125–1128. [Google Scholar] [CrossRef]
- Mankodi, A.; Urbinati, C.R.; Yuan, Q.P.; Moxley, R.T.; Sansone, V.; Krym, M.; Henderson, D.; Schalling, M.; Swanson, M.S.; Thornton, C.A. Muscleblind Localizes to Nuclear Foci of Aberrant RNA in Myotonic Dystrophy Types 1 and 2. Hum. Mol. Genet. 2001, 10, 2165–2170. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Compton, S.A.; Sobczak, K.; Stenberg, M.G.; Thornton, C.A.; Griffith, J.D.; Swanson, M.S. Muscleblind-like 1 Interacts with RNA Hairpins in Splicing Target and Pathogenic RNAs. Nucleic Acids Res. 2007, 35, 5474–5486. [Google Scholar] [CrossRef]
- Wei, C.; Stock, L.; Valanejad, L.; Zalewski, Z.A.; Karns, R.; Puymirat, J.; Nelson, D.; Witte, D.; Woodgett, J.; Timchenko, N.A.; et al. Correction of GSK3β at Young Age Prevents Muscle Pathology in Mice with Myotonic Dystrophy Type 1. FASEB J. 2018, 32, 2073–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, D.C.; Guan, X.; Xia, Z.; Cooper, T.A. Increased Nuclear but Not Cytoplasmic Activities of CELF1 Protein Leads to Muscle Wasting. Hum. Mol. Genet. 2020, 29, 1729. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.H.; Bundman, D.; Armstrong, D.L.; Cooper, T.A. Transgenic Mice Expressing CUG-BP1 Reproduce Splicing Mis-Regulation Observed in Myotonic Dystrophy. Hum. Mol. Genet. 2005, 14, 1539–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mankodi, A.; Logigian, E.; Callahan, L.; McClain, C.; White, R.; Henderson, D.; Krym, M.; Thornton, C.A. Myotonic Dystrophy in Transgenic Mice Expressing an Expanded CUG Repeat. Science 2000, 289, 1769–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huguet, A.; Medja, F.; Nicole, A.; Vignaud, A.; Guiraud-Dogan, C.; Ferry, A.; Decostre, V.; Hogrel, J.Y.; Metzger, F.; Hoeflich, A.; et al. Molecular, Physiological, and Motor Performance Defects in DMSXL Mice Carrying >1000 CTG Repeats from the Human DM1 Locus. PLoS Genet. 2012, 8, e1003043. [Google Scholar] [CrossRef] [Green Version]
- Mahadevan, M.S.; Yadava, R.S.; Yu, Q.; Balijepalli, S.; Frenzel-Mccardell, C.D.; Bourne, T.D.; Phillips, L.H. Reversible Model of RNA Toxicity and Cardiac Conduction Defects in Myotonic Dystrophy. Nat. Genet. 2006, 38, 1066. [Google Scholar] [CrossRef] [Green Version]
- Ionis Pharmaceuticals—Industry Updates On Drug Development (2018 MDF Annual Conference)|Myotonic Dystrophy Foundation. Available online: https://www.myotonic.org/digital-academy/ionis-pharmaceuticals-industry-updates-drug-development-2018-mdf-annual-conference (accessed on 5 September 2022).
- de Clercq, E.; Eckstein, F.; Merigan, T.C. Interferon Induction Increased through Chemical Modification of a Synthetic Polyribonucleotide. Science 1969, 165, 1137–1139. [Google Scholar] [CrossRef]
- Brautigam, C.A.; Steitz, T.A. Structural Principles for the Inhibition of the 3′-5′ Exonuclease Activity of Escherichia Coli DNA Polymerase I by Phosphorothioates. J. Mol. Biol. 1998, 277, 363–377. [Google Scholar] [CrossRef]
- Stein, C.A.; Subasinghe, C.; Shinozuka, K.; Cohen, J.S. Physicochemical Properties of Phosphorothioate Oligodeoxynucleotides. Nucleic Acids Res. 1988, 16, 3209–3221. [Google Scholar] [CrossRef]
- Walder, R.Y.; Walder, J.A. Role of RNase H in Hybrid-Arrested Translation by Antisense Oligonucleotides. Proc. Natl. Acad. Sci. USA 1988, 85, 5011. [Google Scholar] [CrossRef]
- Kiełpiński, Ł.J.; Funder, E.D.; Schmidt, S.; Hagedorn, P.H. Characterization of Escherichia Coli RNase H Discrimination of DNA Phosphorothioate Stereoisomers. Nucleic Acid Ther. 2021, 31, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Crooke, S.T.; Seth, P.P.; Vickers, T.A.; Liang, X.H. The Interaction of Phosphorothioate-Containing RNA Targeted Drugs with Proteins Is a Critical Determinant of the Therapeutic Effects of These Agents. J. Am. Chem. Soc. 2020, 142, 14754–14771. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; de Hoyos, C.L.; Migawa, M.T.; Vickers, T.A.; Sun, H.; Low, A.; Bell, T.A.; Rahdar, M.; Mukhopadhyay, S.; Hart, C.E.; et al. Chemical Modification of PS-ASO Therapeutics Reduces Cellular Protein-Binding and Improves the Therapeutic Index. Nat. Biotechnol. 2019, 37, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.; Spiller, D.G.; Dubertret, C.; Nelson, J.S.; White, M.R.H.; Scherman, D.; Hélène, C.; Giovannangeli, C. Phosphoramidate Oligonucleotides as Potent Antisense Molecules in Cells and in Vivo. Nat. Biotechnol. 2001, 19, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Gryaznov, S.M.; Lloyd, D.H.; Chen, J.-K.; Schultz, R.G.; Dedionisio, L.A.; Ratmeyert, L.; David Wilsont, W. Oligonucleotide N3′-* P5′ Phosphoramidates. Biochemistry 1995, 92, 5798–5802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sproat, B.S.; Lamond, A.I.; Beijer, B.; Neuner, P.; Ryder, U. Highly Efficient Chemical Synthesis of 2′-O-Methyloligoribonucleotides and Tetrabiotinylated Derivatives; Novel Probes That Are Resistant to Degradation by RNA or DNA Specific Nucleases. Nucleic Acids Res. 1989, 17, 3373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pharmacological Properties of 2-O-Methoxyethyl-Modified Oligonucleotides. Antisense Drug Technol. 2007, 296, 2291–2322. [CrossRef]
- Partridge, W.; Xia, S.; Kwoh, T.J.; Bhanot, S.; Geary, R.S.; Baker, B.F. Improvements in the Tolerability Profile of 2′-O-Methoxyethyl Chimeric Antisense Oligonucleotides in Parallel with Advances in Design, Screening, and Other Methods. Nucleic Acid. Ther. 2021, 31, 417. [Google Scholar] [CrossRef]
- Vickers, T.A.; Wyatt, J.R.; Freier, S.M. Effects of RNA Secondary Structure on Cellular Antisense Activity. Nucleic Acids Res. 2000, 28, 1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vester, B.; Wengel, J. LNA (Locked Nucleic Acid): High-Affinity Targeting of Complementary RNA and DNA. Biochemistry 2004, 43, 13233–13241. [Google Scholar] [CrossRef]
- Swayze, E.E.; Siwkowski, A.M.; Wancewicz, E.; Migawa, M.T.; Wyrzykiewicz, T.K.; Hung, G.; Monia, B.P.; Bennett, C.F. Antisense Oligonucleotides Containing Locked Nucleic Acid Improve Potency but Cause Significant Hepatotoxicity in Animals. Nucleic Acids Res. 2007, 35, 687–700. [Google Scholar] [CrossRef] [PubMed]
- Morita, K.; Hasegawa, C.; Kaneko, M.; Tsutsumi, S.; Sone, J.; Ishikawa, T.; Imanishi, T.; Koizumi, M. 2′-O,4′-C-Ethylene-Bridged Nucleic Acids (ENA): Highly Nuclease-Resistant and Thermodynamically Stable Oligonucleotides for Antisense Drug. Bioorg. Med. Chem. Lett. 2002, 12, 73–76. [Google Scholar] [CrossRef]
- Romero-Palomo, F.; Festag, M.; Lenz, B.; Schadt, S.; Brink, A.; Kipar, A.; Steinhuber, B.; Husser, C.; Koller, E.; Sewing, S.; et al. Safety, Tissue Distribution, and Metabolism of LNA-Containing Antisense Oligonucleotides in Rats. Toxicol. Pathol. 2021, 49, 1174–1192. [Google Scholar] [CrossRef] [PubMed]
- Christou, M.; Wengel, J.; Sokratous, K.; Kyriacou, K.; Nikolaou, G.; Phylactou, L.A.; Mastroyiannopoulos, N.P. Systemic Evaluation of Chimeric LNA/2′-O-Methyl Steric Blockers for Myotonic Dystrophy Type 1 Therapy. Nucleic Acid. Ther. 2020, 30, 80. [Google Scholar] [CrossRef] [PubMed]
- Manning, K.S.; Rao, A.N.; Castro, M.; Cooper, T.A. BNANC Gapmers Revert Splicing and Reduce RNA Foci with Low Toxicity in Myotonic Dystrophy Cells. ACS Chem. Biol. 2017, 12, 2503–2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seth, P.P.; Siwkowski, A.; Allerson, C.R.; Vasquez, G.; Lee, S.; Prakash, T.P.; Kinberger, G.; Migawa, M.T.; Gaus, H.; Bhat, B.; et al. Design, Synthesis and Evaluation of Constrained Methoxyethyl (CMOE) and Constrained Ethyl (CEt) Nucleoside Analogs. Nucleic Acids Symp. Ser. 2008, 52, 553–554. [Google Scholar] [CrossRef] [Green Version]
- Pallan, P.S.; Allerson, C.R.; Berdeja, A.; Seth, P.P.; Swayze, E.E.; Prakash, T.P.; Egli, M. Structure and Nuclease Resistance of 2′,4′-Constrained 2′-O-Methoxyethyl (CMOE) and 2′-O-Ethyl (CEt) Modified DNAs. Chem. Commun. 2012, 48, 8195. [Google Scholar] [CrossRef]
- Rahman, S.M.A.; Seki, S.; Obika, S.; Yoshikawa, H.; Miyashita, K.; Imanishi, T. Design, Synthesis, and Properties of 2′,4′-BNA NC: A Bridged Nucleic Acid Analogue. J. Am. Chem. Soc. 2008, 130, 14. [Google Scholar] [CrossRef]
- Miyashita, K.; Rahman, S.M.A.; Seki, S.; Obika, S.; Imanishi, T. N-Methyl Substituted 2′,4′- BNANC: A Highly Nuclease-Resistant Nucleic Acid Analogue with High-Affinity RNA Selective Hybridization. Chem. Commun. 2007, 36, 3765–3767. [Google Scholar] [CrossRef]
- Summerton, J.; Weller, D. Morpholino Antisense Oligomers: Design, Preparation, and Properties. Antisense Nucleic Acid. Drug. Dev. 1997, 7, 187–195. [Google Scholar] [CrossRef]
- Son, H.W.; Yokota, T. Recent Advances and Clinical Applications of Exon Inclusion for Spinal Muscular Atrophy. Methods Mol. Biol. 2018, 1828, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Tsoumpra, M.K.; Fukumoto, S.; Matsumoto, T.; Takeda, S.; Wood, M.J.A.; Aoki, Y. Peptide-Conjugate Antisense Based Splice-Correction for Duchenne Muscular Dystrophy and Other Neuromuscular Diseases. EBioMedicine 2019, 45, 630–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, P.E.; Egholm, M.; Berg, R.H.; Buchardt, O. Sequence-Selective Recognition of DNA by Strand Displacement with a Thymine-Substituted Polyamide. Science 1991, 254, 1497–1500. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.E. PNA Technology. Mol. Biotechnol. 2004, 26, 233–248. [Google Scholar] [CrossRef]
- Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S.M.; Driver, D.A.; Berg, R.H.; Kim, S.K.; Norden, B.; Nielsen, P.E. PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules. Nature 1993, 365, 566–568. [Google Scholar] [CrossRef]
- Sahu, B.; Sacui, I.; Rapireddy, S.; Zanotti, K.J.; Bahal, R.; Armitage, B.A.; Ly, D.H. Synthesis and Characterization of Conformationally-Preorganized, MiniPEG-Containing ΓPNAs with Superior Hybridization Properties and Water Solubility. J. Org. Chem. 2011, 76, 5614. [Google Scholar] [CrossRef] [Green Version]
- Geary, R.S.; Norris, D.; Yu, R.; Bennett, C.F. Pharmacokinetics, Biodistribution and Cell Uptake of Antisense Oligonucleotides. Adv. Drug. Deliv. Rev. 2015, 87, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Koller, E.; Vincent, T.M.; Chappell, A.; De, S.; Manoharan, M.; Bennett, C.F. Mechanisms of Single-Stranded Phosphorothioate Modified Antisense Oligonucleotide Accumulation in Hepatocytes. Nucleic Acids Res. 2011, 39, 4795–4807. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.M.; Donner, A.J.; Blank, E.E.; Egger, A.W.; Kellar, B.M.; Østergaard, M.E.; Seth, P.P.; Harris, E.N. Stabilin-1 and Stabilin-2 Are Specific Receptors for the Cellular Internalization of Phosphorothioate-Modified Antisense Oligonucleotides (ASOs) in the Liver. Nucleic Acids Res. 2016, 44, 2782–2794. [Google Scholar] [CrossRef]
- González-Barriga, A.; Nillessen, B.; Kranzen, J.; van Kessel, I.D.G.; Croes, H.J.E.; Aguilera, B.; de Visser, P.C.; Datson, N.A.; Mulders, S.A.M.; van Deutekom, J.C.T.; et al. Intracellular Distribution and Nuclear Activity of Antisense Oligonucleotides After Unassisted Uptake in Myoblasts and Differentiated Myotubes In Vitro. Nucleic Acid. Ther. 2017, 27, 144. [Google Scholar] [CrossRef]
- Leonetti, J.P.; Mechti, N.; Degols, G.; Gagnor, C.; Lebleu, B. Intracellular Distribution of Microinjected Antisense Oligonucleotides. Proc. Natl. Acad. Sci. USA 1991, 88, 2702. [Google Scholar] [CrossRef] [Green Version]
- van der Bent, M.L.; da Silva Filho, O.P.; Willemse, M.; Hällbrink, M.; Wansink, D.G.; Brock, R. The Nuclear Concentration Required for Antisense Oligonucleotide Activity in Myotonic Dystrophy Cells. FASEB J. 2019, 33, 11314–11325. [Google Scholar] [CrossRef]
- González-Barriga, A.; Mulders, S.A.M.; van de Giessen, J.; Hooijer, J.D.; Bijl, S.; van Kessel, I.D.G.; van Beers, J.; van Deutekom, J.C.T.; Fransen, J.A.M.; Wieringa, B.; et al. Design and Analysis of Effects of Triplet Repeat Oligonucleotides in Cell Models for Myotonic Dystrophy. Mol. Ther. Nucleic Acids 2013, 2, e81. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.H.P.; Lim, S.; Wong, W.S.F. Antisense oligonucleotides: From design to therapeutic application. Clin. Exp. Pharmacol. Physiol. 2006, 33, 533–540. [Google Scholar] [CrossRef]
- Owczarzy, R.; Tataurov, A.V.; Wu, Y.; Manthey, J.A.; McQuisten, K.A.; Almabrazi, H.G.; Pedersen, K.F.; Lin, Y.; Garretson, J.; McEntaggart, N.O.; et al. IDT SciTools: A Suite for Analysis and Design of Nucleic Acid Oligomers. Nucleic Acids Res. 2008, 36, W163–W169. [Google Scholar] [CrossRef]
- Hagedorn, P.H.; Yakimov, V.; Ottosen, S.; Kammler, S.; Nielsen, N.F.; Høg, A.M.; Hedtjärn, M.; Meldgaard, M.; Møller, M.R.; Ørum, H.; et al. Hepatotoxic Potential of Therapeutic Oligonucleotides Can Be Predicted from Their Sequence and Modification Pattern. Nucleic Acid. Ther. 2013, 23, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Hagedorn, P.H.; Brown, J.M.; Easton, A.; Pierdomenico, M.; Jones, K.; Olson, R.E.; Mercer, S.E.; Li, D.; Loy, J.; Høg, A.M.; et al. Acute Neurotoxicity of Antisense Oligonucleotides After Intracerebroventricular Injection Into Mouse Brain Can Be Predicted from Sequence Features. Nucleic Acid Ther. 2022, 32, 151–162. [Google Scholar] [CrossRef]
- Sciabola, S.; Xi, H.; Cruz, D.; Cao, Q.; Lawrence, C.; Zhang, T.; Rotstein, S.; Hughes, J.D.; Caffrey, D.R.; Stanton, R. PFRED: A Computational Platform for SiRNA and Antisense Oligonucleotides Design. PLoS ONE 2021, 16, e0238753. [Google Scholar] [CrossRef]
- Ding, Y.; Chan, C.Y.; Lawrence, C.E. Sfold Web Server for Statistical Folding and Rational Design of Nucleic Acids. Nucleic Acids Res. 2004, 32, W135–W141. [Google Scholar] [CrossRef]
- Xiaochen, B.; Wang, S. TargetFinder: A Software for Antisense Oligonucleotide Target Site Selection Based on MAST and Secondary Structures of Target MRNA. Bioinformatics 2005, 21, 1401–1402. [Google Scholar] [CrossRef]
- Pandey, S.K.; Wheeler, T.M.; Justice, S.L.; Kim, A.; Younis, H.S.; Gattis, D.; Jauvin, D.; Puymirat, J.; Swayze, E.E.; Freier, S.M.; et al. Identification and Characterization of Modified Antisense Oligonucleotides Targeting DMPK in Mice and Nonhuman Primates for the Treatment of Myotonic Dystrophy Type 1. J. Pharmacol. Exp. Ther. 2015, 355, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Ait Benichou, S.; Jauvin, D.; De-Serres-Berard, T.; Bennett, F.; Rigo, F.; Gourdon, G.; Boutjdir, M.; Chahine, M.; Puymirat, J. Enhanced Delivery of Ligand-Conjugated Antisense Oligonucleotides (C16-HA-ASO) Targeting DMPK Transcripts for the Treatment of Myotonic Dystrophy Type 1. Hum. Gene Ther. 2022, 33, 810–820. [Google Scholar] [CrossRef]
- Ait Benichou, S.; Jauvin, D.; De Serres-Bérard, T.; Pierre, M.; Ling, K.K.; Bennett, C.F.; Rigo, F.; Gourdon, G.; Chahine, M.; Puymirat, J. Antisense Oligonucleotides as a Potential Treatment for Brain Deficits Observed in Myotonic Dystrophy Type 1. Gene Ther. 2022. [Google Scholar] [CrossRef]
- Jauvin, D.; Chrétien, J.; Pandey, S.K.; Martineau, L.; Revillod, L.; Bassez, G.; Lachon, A.; McLeod, A.R.; Gourdon, G.; Wheeler, T.M.; et al. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice. Mol. Ther. Nucleic Acids 2017, 7, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Yadava, R.S.; Yu, Q.; Mandal, M.; Rigo, F.; Bennett, C.F.; Mahadevan, M.S. Systemic Therapy in an RNA Toxicity Mouse Model with an Antisense Oligonucleotide Therapy Targeting a Non-CUG Sequence within the DMPK 3′UTR RNA. Hum. Mol. Genet. 2020, 29, 1440–1453. [Google Scholar] [CrossRef]
- Furling, D.; Coiffier, L.; Mouly, V.; Barbet, J.P.; Lacau, J.; Taneja, K.; Gourdon, G.; Junien, C.; Butler-Browne, G.S. Defective Satellite Cells in Congenital Myotonic Dystrophy. Hum. Mol. Genet. 2001, 10, 2079–2087. [Google Scholar] [CrossRef] [Green Version]
- Furling, D.; Lemieux, D.; Taneja, K.; Puymirat, J. Decreased Levels of Myotonic Dystrophy Protein Kinase (DMPK) and Delayed Differentiation in Human Myotonic Dystrophy Myoblasts. Neuromuscul. Disord. 2001, 11, 728–735. [Google Scholar] [CrossRef]
- Pelletier, R.; Hamel, F.; Beaulieu, D.; Patry, L.; Haineault, C.; Tarnopolsky, M.; Schoser, B.; Puymirat, J. Absence of a Differentiation Defect in Muscle Satellite Cells from DM2 Patients. Neurobiol. Dis. 2009, 36, 181–190. [Google Scholar] [CrossRef]
- Pantic, B.; Borgia, D.; Giunco, S.; Malena, A.; Kiyono, T.; Salvatori, S.; de Rossi, A.; Giardina, E.; Sangiuolo, F.; Pegoraro, E.; et al. Reliable and Versatile Immortal Muscle Cell Models from Healthy and Myotonic Dystrophy Type 1 Primary Human Myoblasts. Exp. Cell. Res. 2016, 342, 39–51. [Google Scholar] [CrossRef]
- Arandel, L.; Espinoza, M.P.; Matloka, M.; Bazinet, A.; de Dea Diniz, D.; Naouar, N.; Rau, F.; Jollet, A.; Edom-Vovard, F.; Mamchaoui, K.; et al. Immortalized Human Myotonic Dystrophy Muscle Cell Lines to Assess Therapeutic Compounds. Dis. Model. Mech. 2017, 10, 487–497. [Google Scholar] [CrossRef]
- Larsen, J.; Pettersson, O.J.; Jakobsen, M.; Thomsen, R.; Pedersen, C.B.; Hertz, J.M.; Gregersen, N.; Corydon, T.J.; Jensen, T.G. Myoblasts Generated by Lentiviral Mediated MyoD Transduction of Myotonic Dystrophy Type 1 (DM1) Fibroblasts Can Be Used for Assays of Therapeutic Molecules. BMC Res. Notes 2011, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondragon-Gonzalez, R.; Perlingeiro, R.C.R. Recapitulating Muscle Disease Phenotypes with Myotonic Dystrophy 1 Induced Pluripotent Stem Cells: A Tool for Disease Modeling and Drug Discovery. Dis. Model. Mech. 2018, 11, dmm034728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Guo, X.; Santostefano, K.; Wang, Y.; Reid, T.; Zeng, D.; Terada, N.; Ashizawa, T.; Xia, G. Genome Therapy of Myotonic Dystrophy Type 1 IPS Cells for Development of Autologous Stem Cell Therapy. Mol. Ther. 2016, 24, 1378. [Google Scholar] [CrossRef] [Green Version]
- Gudde, A.E.E.G.; González-Barriga, A.; van den Broek, W.J.A.A.; Wieringa, B.; Wansink, D.G. A Low Absolute Number of Expanded Transcripts Is Involved in Myotonic Dystrophy Type 1 Manifestation in Muscle. Hum. Mol. Genet. 2016, 25, 1648–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamori, M.; Sobczak, K.; Puwanant, A.; Welle, S.; Eichinger, K.; Pandya, S.; Dekdebrun, J.; Heatwole, C.R.; McDermott, M.P.; Chen, T.; et al. Splicing Biomarkers of Disease Severity in Myotonic Dystrophy. Ann. Neurol. 2013, 74, 862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, N.; Antoury, L.; Baran, T.M.; Mitra, S.; Bennett, C.F.; Rigo, F.; Foster, T.H.; Wheeler, T.M. Non-Invasive Monitoring of Alternative Splicing Outcomes to Identify Candidate Therapies for Myotonic Dystrophy Type 1. Nat. Commun. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seznec, H.; Lia-Baldini, A.S.; Duros, C.; Fouquet, C.; Lacroix, C.; Hofmann-Radvanyi, H.; Junien, C.; Gourdon, G. Transgenic Mice Carrying Large Human Genomic Sequences with Expanded CTG Repeat Mimic Closely the DM CTG Repeat Intergenerational and Somatic Instability. Hum. Mol. Genet. 2000, 9, 1185–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Serres-Bérard, T.; Pierre, M.; Chahine, M.; Puymirat, J. Deciphering the Mechanisms Underlying Brain Alterations and Cognitive Impairment in Congenital Myotonic Dystrophy. Neurobiol. Dis. 2021, 160, 105532. [Google Scholar] [CrossRef]
- Hernández-Hernández, O.; Guiraud-Dogan, C.; Sicot, G.; Huguet, A.; Luilier, S.; Steidl, E.; Saenger, S.; Marciniak, E.; Obriot, H.; Chevarin, C.; et al. Myotonic Dystrophy CTG Expansion Affects Synaptic Vesicle Proteins, Neurotransmission and Mouse Behaviour. Brain 2013, 136, 957. [Google Scholar] [CrossRef] [Green Version]
- Algalarrondo, V.; Wahbi, K.; Sebag, F.; Gourdon, G.; Beldjord, C.; Azibi, K.; Balse, E.; Coulombe, A.; Fischmeister, R.; Eymard, B.; et al. Abnormal Sodium Current Properties Contribute to Cardiac Electrical and Contractile Dysfunction in a Mouse Model of Myotonic Dystrophy Type 1. Neuromuscul. Disord. 2015, 25, 308–320. [Google Scholar] [CrossRef]
- Orengo, J.P.; Chambon, P.; Metzger, D.; Mosier, D.R.; Snipes, G.J.; Cooper, T.A. Expanded CTG Repeats within the DMPK 3′ UTR Causes Severe Skeletal Muscle Wasting in an Inducible Mouse Model for Myotonic Dystrophy. Proc. Natl. Acad. Sci. USA 2008, 105, 2646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.S.; Kearney, D.L.; de Biasi, M.; Taffet, G.; Cooper, T.A. Elevation of RNA-Binding Protein CUGBP1 Is an Early Event in an Inducible Heart-Specific Mouse Model of Myotonic Dystrophy. J. Clin. Investig. 2007, 117, 2802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.Y.; Lin, Y.M.; Wang, L.H.; Kuo, T.Y.; Cheng, S.J.; Wang, G.S. Reduced Cytoplasmic MBNL1 Is an Early Event in a Brain-Specific Mouse Model of Myotonic Dystrophy. Hum. Mol. Genet. 2017, 26, 2247–2257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furling, D.; Doucet, G.; Langlois, M.A.; Timchenko, L.; Belanger, E.; Cossette, L.; Puymirat, J. Viral Vector Producing Antisense RNA Restores Myotonic Dystrophy Myoblast Functions. Gene Ther. 2003, 10, 795–802. [Google Scholar] [CrossRef]
- Wheeler, T.M.; Sobczak, K.; Lueck, J.D.; Osborne, R.J.; Lin, X.; Dirksen, R.T.; Thornton, C.A. Reversal of RNA Dominance by Displacement of Protein Sequestered on Triplet Repeat RNA. Science 2009, 325, 336–339. [Google Scholar] [CrossRef] [Green Version]
- Wojtkowiak-Szlachcic, A.; Taylor, K.; Stepniak-Konieczna, E.; Sznajder, L.J.; Mykowska, A.; Sroka, J.; Thornton, C.A.; Sobczak, K. Short Antisense-Locked Nucleic Acids (All-LNAs) Correct Alternative Splicing Abnormalities in Myotonic Dystrophy. Nucleic Acids Res. 2015, 43, 3318. [Google Scholar] [CrossRef] [Green Version]
- Cirak, S.; Arechavala-Gomeza, V.; Guglieri, M.; Feng, L.; Torelli, S.; Anthony, K.; Abbs, S.; Garralda, M.E.; Bourke, J.; Wells, D.J.; et al. Exon Skipping and Dystrophin Restoration in Patients with Duchenne Muscular Dystrophy after Systemic Phosphorodiamidate Morpholino Oligomer Treatment: An Open-Label, Phase 2, Dose-Escalation Study. Lancet 2011, 378, 595. [Google Scholar] [CrossRef] [Green Version]
- González-Barriga, A.; Kranzen, J.; Croes, H.J.E.; Bijl, S.; van den Broek, W.J.A.A.; van Kessel, I.D.G.; van Engelen, B.G.M.; van Deutekom, J.C.T.; Wieringa, B.; Mulders, S.A.M.; et al. Cell Membrane Integrity in Myotonic Dystrophy Type 1: Implications for Therapy. PLoS ONE 2015, 10, e0121556. [Google Scholar] [CrossRef]
- Lee, J.E.; Bennett, C.F.; Cooper, T.A. RNase H-Mediated Degradation of Toxic RNA in Myotonic Dystrophy Type 1. Proc. Natl. Acad. Sci. USA 2012, 109, 4221–4226. [Google Scholar] [CrossRef] [Green Version]
- Mulders, S.A.M.; van den Broek, W.J.A.A.; Wheeler, T.M.; Croes, H.J.E.; van Kuik-Romeijn, P.; de Kimpe, S.J.; Furling, D.; Platenburg, G.J.; Gourdon, G.; Thornton, C.A.; et al. Triplet-Repeat Oligonucleotide-Mediated Reversal of RNA Toxicity in Myotonic Dystrophy. Proc. Natl. Acad. Sci. USA 2009, 106, 13915–13920. [Google Scholar] [CrossRef]
- Wheeler, T.M.; Lueck, J.D.; Swanson, M.S.; Dirksen, R.T.; Thornton, C.A. Correction of ClC-1 Splicing Eliminates Chloride Channelopathy and Myotonia in Mouse Models of Myotonic Dystrophy. J. Clin. Investig. 2007, 117, 3952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koebis, M.; Kiyatake, T.; Yamaura, H.; Nagano, K.; Higashihara, M.; Sonoo, M.; Hayashi, Y.; Negishi, Y.; Endo-Takahashi, Y.; Yanagihara, D.; et al. Ultrasound-Enhanced Delivery of Morpholino with Bubble Liposomes Ameliorates the Myotonia of Myotonic Dystrophy Model Mice. Sci. Rep. 2013, 3, 2242. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.M.; Leger, A.J.; Pandey, S.K.; mac Leod, A.R.; Wheeler, T.M.; Cheng, S.H.; Wentworth, B.M.; Bennett, C.F.; Thornton, C.A. Targeting Nuclear RNA for in Vivo Correction of Myotonic Dystrophy. Nature 2012, 488, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Hu, N.; Kim, E.; Antoury, L.; Li, J.; González-Pérez, P.; Rutkove, S.B.; Wheeler, T.M. Antisense Oligonucleotide and Adjuvant Exercise Therapy Reverse Fatigue in Old Mice with Myotonic Dystrophy. Mol. Ther. Nucleic Acids 2021, 23, 393. [Google Scholar] [CrossRef] [PubMed]
- Carrell, S.T.; Carrell, E.M.; Auerbach, D.; Pandey, S.K.; Bennett, C.F.; Dirksen, R.T.; Thornton, C.A. Dmpk Gene Deletion or Antisense Knockdown Does Not Compromise Cardiac or Skeletal Muscle Function in Mice. Hum. Mol. Genet. 2016, 25, 4328–4338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leger, A.J.; Mosquea, L.M.; Clayton, N.P.; Wu, I.H.; Weeden, T.; Nelson, C.A.; Phillips, L.; Roberts, E.; Piepenhagen, P.A.; Cheng, S.H.; et al. Systemic Delivery of a Peptide-Linked Morpholino Oligonucleotide Neutralizes Mutant RNA Toxicity in a Mouse Model of Myotonic Dystrophy. Nucleic Acid Ther. 2013, 23, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.F.; Varela, M.A.; Arandel, L.; Holland, A.; Naouar, N.; Arzumanov, A.; Seoane, D.; Revillod, L.; Bassez, G.; Ferry, A.; et al. Peptide-Conjugated Oligonucleotides Evoke Long-Lasting Myotonic Dystrophy Correction in Patient-Derived Cells and Mice. J. Clin. Investig. 2019, 129, 4739–4744. [Google Scholar] [CrossRef] [Green Version]
- Overby, S.J.; Cerro-Herreros, E.; González-Martínez, I.; Varela, M.A.; Seoane-Miraz, D.; Jad, Y.; Raz, R.; Møller, T.; Pérez-Alonso, M.; Wood, M.J.; et al. Proof of Concept of Peptide-Linked BlockmiR-Induced MBNL Functional Rescue in Myotonic Dystrophy Type 1 Mouse Model. Mol. Ther. Nucleic Acids 2022, 27, 1146. [Google Scholar] [CrossRef]
- Prakash, T.P.; Mullick, A.E.; Lee, R.G.; Yu, J.; Yeh, S.T.; Low, A.; Chappell, A.E.; Østergaard, M.E.; Murray, S.; Gaus, H.J.; et al. Fatty Acid Conjugation Enhances Potency of Antisense Oligonucleotides in Muscle. Nucleic Acids Res. 2019, 47, 6029. [Google Scholar] [CrossRef]
- Østergaard, M.E.; Jackson, M.; Low, A.; E. Chappell, A.; Lee, R.G.; Peralta, R.Q.; Yu, J.; Kinberger, G.A.; Dan, A.; Carty, R.; et al. Conjugation of Hydrophobic Moieties Enhances Potency of Antisense Oligonucleotides in the Muscle of Rodents and Non-Human Primates. Nucleic Acids Res. 2019, 47, 6045–6058. [Google Scholar] [CrossRef]
- Yadava, R.S.; Mandal, M.; Giese, J.M.; Rigo, F.; Bennett, C.F.; Mahadevan, M.S. Modeling Muscle Regeneration in RNA Toxicity Mice. Hum. Mol. Genet. 2021, 30, 1111–1130. [Google Scholar] [CrossRef] [PubMed]
- Cerro-Herreros, E.; Sabater-Arcis, M.; Fernandez-Costa, J.M.; Moreno, N.; Perez-Alonso, M.; Llamusi, B.; Artero, R. MiR-23b and MiR-218 Silencing Increase Muscleblind-like Expression and Alleviate Myotonic Dystrophy Phenotypes in Mammalian Models. Nat. Commun. 2018, 9, 2482. [Google Scholar] [CrossRef] [PubMed]
- Cerro-Herreros, E.; González-Martínez, I.; Moreno-Cervera, N.; Overby, S.; Pérez-Alonso, M.; Llamusí, B.; Artero, R. Therapeutic Potential of AntagomiR-23b for Treating Myotonic Dystrophy. Mol. Ther. Nucleic Acids 2020, 21, 837. [Google Scholar] [CrossRef] [PubMed]
- Cerro-Herreros, E.; González-Martínez, I.; Moreno, N.; Espinosa-Espinosa, J.; Fernández-Costa, J.M.; Colom-Rodrigo, A.; Overby, S.J.; Seoane-Miraz, D.; Poyatos-García, J.; Vilchez, J.J.; et al. Preclinical Characterization of AntagomiR-218 as a Potential Treatment for Myotonic Dystrophy. Mol. Ther. Nucleic Acids 2021, 26, 174–191. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Garibay, X.; Ortega, M.A.; Cerro-Herreros, E.; Comelles, J.; Martínez, E.; Artero, R.; Fernández-Costa, J.M.; Ramón-Azcón, J. Bioengineered in Vitro 3D Model of Myotonic Dystrophy Type 1 Human Skeletal Muscle. Biofabrication 2021, 13, 035035. [Google Scholar] [CrossRef]
- Mahadevan, M.S.; Yadava, R.S.; Mandal, M. Cardiac Pathology in Myotonic Dystrophy Type 1. Int. J. Mol. Sci. 2021, 22, 11874. [Google Scholar] [CrossRef] [PubMed]
- Lehto, T.; Alvarez, A.C.; Gauck, S.; Gait, M.J.; Coursindel, T.; Wood, M.J.A.; Lebleu, B.; Boisguerin, P. Cellular Trafficking Determines the Exon Skipping Activity of Pip6a-PMO in Mdx Skeletal and Cardiac Muscle Cells. Nucleic Acids Res. 2014, 42, 3207–3217. [Google Scholar] [CrossRef]
- McClorey, G.; Banerjee, S. Cell-Penetrating Peptides to Enhance Delivery of Oligonucleotide-Based Therapeutics. Biomedicines 2018, 6, 20051. [Google Scholar] [CrossRef] [Green Version]
- Betts, C.; Saleh, A.F.; Arzumanov, A.A.; Hammond, S.M.; Godfrey, C.; Coursindel, T.; Gait, M.J.; Wood, M.J. Pip6-PMO, A New Generation of Peptide-Oligonucleotide Conjugates With Improved Cardiac Exon Skipping Activity for DMD Treatment. Mol. Ther. Nucleic Acids 2012, 1, e38. [Google Scholar] [CrossRef]
- Amantana, A.; Moulton, H.M.; Cate, M.L.; Reddy, M.T.; Whitehead, T.; Hassinger, J.N.; Youngblood, D.S.; Iversen, P.L. Pharmacokinetics, Biodistribution, Stability and Toxicity of a Cell-Penetrating Peptide-Morpholino Oligomer Conjugate. Bioconjug. Chem. 2007, 18, 1325–1331. [Google Scholar] [CrossRef]
- Xie, J.; Bi, Y.; Zhang, H.; Dong, S.; Teng, L.; Lee, R.J.; Yang, Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front. Pharmacol. 2020, 11, 697. [Google Scholar] [CrossRef] [PubMed]
- Moulton, H.M.; Moulton, J.D. Morpholinos and Their Peptide Conjugates: Therapeutic Promise and Challenge for Duchenne Muscular Dystrophy. Biochim. Biophys. Acta (BBA)—Biomembr. 2010, 1798, 2296–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.Z.; Graham, M.J.; Post, N.; Riney, S.; Zanardi, T.; Hall, S.; Burkey, J.; Shemesh, C.S.; Prakash, T.P.; Seth, P.P.; et al. Disposition and Pharmacology of a GalNAc3-Conjugated ASO Targeting Human Lipoprotein (a) in Mice. Mol. Ther. Nucleic Acids 2016, 5, e317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, T.P.; Yu, J.; Migawa, M.T.; Kinberger, G.A.; Wan, W.B.; Østergaard, M.E.; Carty, R.L.; Vasquez, G.; Low, A.; Chappell, A.; et al. Comprehensive Structure-Activity Relationship of Triantennary N-Acetylgalactosamine Conjugated Antisense Oligonucleotides for Targeted Delivery to Hepatocytes. J. Med. Chem 2016, 59, 2718–2733. [Google Scholar] [CrossRef]
- Chappell, A.E.; Gaus, H.J.; Berdeja, A.; Gupta, R.; Jo, M.; Prakash, T.P.; Oestergaard, M.; Swayze, E.E.; Seth, P.P. Mechanisms of Palmitic Acid-Conjugated Antisense Oligonucleotide Distribution in Mice. Nucleic Acids Res. 2020, 48, 4382. [Google Scholar] [CrossRef]
- Crooke, S.T.; Wang, S.; Vickers, T.A.; Shen, W.; Liang, X.H. Cellular Uptake and Trafficking of Antisense Oligonucleotides. Nat. Biotechnol. 2017, 35, 230–237. [Google Scholar] [CrossRef]
- Wang, S.; Allen, N.; Prakash, T.P.; Liang, X.H.; Crooke, S.T. Lipid Conjugates Enhance Endosomal Release of Antisense Oligonucleotides into Cells. Nucleic Acid Ther. 2019, 29, 245–255. [Google Scholar] [CrossRef]
- Walker, I.; Irwin, W.J.; Akhtar, S. Improved Cellular Delivery of Antisense Oligonucleotides Using Transferrin Receptor Antibody-Oligonucleotide Conjugates. Pharm. Res. 1995, 12, 1548–1553. [Google Scholar] [CrossRef]
- Sugo, T.; Terada, M.; Oikawa, T.; Miyata, K.; Nishimura, S.; Kenjo, E.; Ogasawara-Shimizu, M.; Makita, Y.; Imaichi, S.; Murata, S.; et al. Development of Antibody-SiRNA Conjugate Targeted to Cardiac and Skeletal Muscles. J. Control. Release 2016, 237, 1–13. [Google Scholar] [CrossRef]
- Desjardins, C.A.; Yao, M.; Hall, J.; O’Donnell, E.; Venkatesan, R.; Spring, S.; Wen, A.; Hsia, N.; Shen, P.; Russo, R.; et al. Enhanced Exon Skipping and Prolonged Dystrophin Restoration Achieved by TfR1-Targeted Delivery of Antisense Oligonucleotide Using FORCE Conjugation in Mdx Mice. Nucleic Acids Res. 2022, 10, gkac641. [Google Scholar] [CrossRef]
- Zanotti, S.; Picariello, T.; Hsia, N.; Weeden, T.; Russo, R.; Schlaefke, L.; Yao, M.; Wen, A.; Hildebrand, S.; Najim, J.; et al. MYOTONIC DYSTROPHY: EP.233 The FORCETM Platform Achieves Durable Knockdown of Toxic Human Nuclear DMPK RNA and Correction of Splicing in the HTFR1/DMSXL Mouse Model. Neuromuscul. Disord. 2021, 31, S120. [Google Scholar] [CrossRef]
- Scientific Publications & Presentations. Available online: https://www.dyne-tx.com/our-forcetm-publications/ (accessed on 14 September 2022).
- Investors|Avidity Biosciences—Events and Presentations. Available online: https://aviditybiosciences.investorroom.com/events-and-presentations (accessed on 24 July 2022).
- Mullard, A. Antibody-Oligonucleotide Conjugates Enter the Clinic. Nat. Rev. Drug Discov. 2022, 21, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Neil, E.E.; Bisaccia, E.K. Nusinersen: A Novel Antisense Oligonucleotide for the Treatment of Spinal Muscular Atrophy. J. Pediatr. Pharmacol. Ther. 2019, 24, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Paterson, J.; Webster, C.I. Exploiting Transferrin Receptor for Delivering Drugs across the Blood-Brain Barrier. Drug Discov. Today Technol. 2016, 20, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Boado, R.J.; Braasch, D.A.; Corey, D.R.; Pardridge, W.M. Imaging Gene Expression in the Brain in Vivo in a Transgenic Mouse Model of Huntington’s Disease with an Antisense Radiopharmaceutical and Drug-Targeting Technology. J. Nucl. Med. 2002, 43, 948–956. [Google Scholar]
- Du, L.; Kayali, R.; Bertoni, C.; Fike, F.; Hu, H.; Iversen, P.L.; Gatti, R.A. Arginine-Rich Cell-Penetrating Peptide Dramatically Enhances AMO-Mediated ATM Aberrant Splicing Correction and Enables Delivery to Brain and Cerebellum. Hum. Mol. Genet. 2011, 20, 3151–3160. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Pang, J.; Wang, Q.; Yan, L.; Wang, L.; Xing, Z.; Wang, C.; Zhang, J.; Dong, L. Delivering Antisense Oligonucleotides across the Blood-Brain Barrier by Tumor Cell-Derived Small Apoptotic Bodies. Adv. Sci. 2021, 8, 2004929. [Google Scholar] [CrossRef]
- Min, H.S.; Kim, H.J.; Naito, M.; Ogura, S.; Toh, K.; Hayashi, K.; Kim, B.S.; Fukushima, S.; Anraku, Y.; Miyata, K.; et al. Systemic Brain Delivery of Antisense Oligonucleotides across the Blood-Brain Barrier with a Glucose-Coated Polymeric Nanocarrier. Angew. Chem. Int. Ed. Engl. 2020, 59, 8173–8180. [Google Scholar] [CrossRef] [Green Version]
- Zeniya, S.; Kuwahara, H.; Daizo, K.; Watari, A.; Kondoh, M.; Yoshida-Tanaka, K.; Kaburagi, H.; Asada, K.; Nagata, T.; Nagahama, M.; et al. Angubindin-1 Opens the Blood–Brain Barrier in Vivo for Delivery of Antisense Oligonucleotide to the Central Nervous System. J. Control. Release 2018, 283, 126–134. [Google Scholar] [CrossRef]
- Franc, D.T.; Muetzel, R.L.; Robinson, P.R.; Rodriguez, C.P.; Dalton, J.C.; Naughton, C.E.; Mueller, B.A.; Wozniak, J.R.; Lim, K.O.; Day, J.W. Cerebral and Muscle MRI Abnormalities in Myotonic Dystrophy. Neuromuscul. Disord. 2012, 22, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Labayru, G.; Camino, B.; Jimenez-Marin, A.; Garmendia, J.; Villanua, J.; Zulaica, M.; Cortes, J.M.; López de Munain, A.; Sistiaga, A. White Matter Integrity Changes and Neurocognitive Functioning in Adult-Late Onset DM1: A Follow-up DTI Study. Sci. Rep. 2022, 12, 3988. [Google Scholar] [CrossRef] [PubMed]
- di Costanzo, A.; di Salle, F.; Santoro, L.; Bonavita, V.; Tedeschi, G. Brain MRI Features of Congenital- and Adult-Form Myotonic Dystrophy Type 1: Case-Control Study. Neuromuscul. Disord. 2002, 12, 476–483. [Google Scholar] [CrossRef]
- Caillet-Boudin, M.L.; Fernandez-Gomez, F.J.; Tran, H.; Dhaenens, C.M.; Buee, L.; Sergeant, N. Brain Pathology in Myotonic Dystrophy: When Tauopathy Meets Spliceopathy and RNAopathy. Front. Mol. Neurosci. 2013, 6, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowdy, S.F. Overcoming Cellular Barriers for RNA Therapeutics. Nat. Biotechnol. 2017, 35, 222–229. [Google Scholar] [CrossRef]
- Hsieh, W.C.; Bahal, R.; Thadke, S.A.; Bhatt, K.; Sobczak, K.; Thornton, C.; Ly, D.H. Design of a “Mini” Nucleic Acid Probe for Cooperative Binding of an RNA-Repeated Transcript Associated with Myotonic Dystrophy Type 1. Biochemistry 2018, 57, 907. [Google Scholar] [CrossRef]
- Presentations: NeuBase Therapeutics, Inc. (NBSE). Available online: https://ir.neubasetherapeutics.com/company-information/presentations (accessed on 9 September 2022).
- NeuBase Therapeutics Presents New Preclinical Data at MDA 2022 for Its Myotonic Dystrophy Type 1 Program Demonstrating Splice Rescue, Nuclear Aggregate Resolution, and Myotonia Reversal: NeuBase Therapeutics, Inc. (NBSE). Available online: https://ir.neubasetherapeutics.com/news-events/press-releases/detail/76/neubase-therapeutics-presents-new-preclinical-data-at-mda (accessed on 24 July 2022).
- 2022 MDA Clinical & Scientific Conference: NeuBase Therapeutics, Inc. (NBSE). Available online: https://ir.neubasetherapeutics.com/news-events/ir-calendar/detail/6306/2022-mda-clinical-scientific-conference (accessed on 24 July 2022).
- Yamamoto, T.; Yamamoto, S.; Kataoka, T.; Tokunaga, T. Ability of Oligonucleotides with Certain Palindromes to Induce Interferon Production and Augment Natural Killer Cell Activity Is Associated with Their Base Length. Antisense Res. Dev. 1994, 4, 119–122. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, X.; Lu, P.Y.; Rosato, R.R.; Tan, W.; Zu, Y. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy. Mol. Ther. Nucleic Acids 2014, 3, e182. [Google Scholar] [CrossRef]
- Lin, Y.; Dent, S.Y.R.; Wilson, J.H.; Wells, R.D.; Napierala, M. R Loops Stimulate Genetic Instability of CTG·CAG Repeats. Proc. Natl. Acad. Sci. USA 2010, 107, 692. [Google Scholar] [CrossRef] [Green Version]
- Nakamori, M.; Gourdon, G.; Thornton, C.A. Stabilization of Expanded (CTG)•(CAG) Repeats by Antisense Oligonucleotides. Mol. Ther. 2011, 19, 2222–2227. [Google Scholar] [CrossRef] [Green Version]
- Itoh, K.; Ebata, T.; Hirata, H.; Torii, T.; Sugimoto, W.; Onodera, K.; Nakajima, W.; Uehara, I.; Okuzaki, D.; Yamauchi, S.; et al. DMPK Is a New Candidate Mediator of Tumor Suppressor P53-Dependent Cell Death. Molecules 2019, 24, 3175. [Google Scholar] [CrossRef] [Green Version]
- Kaliman, P.; Catalucci, D.; Lam, J.T.; Kondo, R.; Gutiérrez, J.C.P.; Reddy, S.; Palacín, M.; Zorzano, A.; Chien, K.R.; Ruiz-Lozano, P. Myotonic Dystrophy Protein Kinase Phosphorylates Phospholamban and Regulates Calcium Uptake in Cardiomyocyte Sarcoplasmic Reticulum. J. Biol. Chem. 2005, 280, 8016–8021. [Google Scholar] [CrossRef] [PubMed]
- Mounsey, J.P.; John, J.E.; Helmke, S.M.; Bush, E.W.; Gilbert, J.; Roses, A.D.; Perryman, M.B.; Jones, L.R.; Moorman, J.R. Phospholemman Is a Substrate for Myotonic Dystrophy Protein Kinase. J. Biol. Chem. 2000, 275, 23362–23367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langbehn, K.E.; Carlson-Stadler, Z.; van der Plas, E.; Hefti, M.M.; Dawson, J.D.; Moser, D.J.; Nopoulos, P.C. DMPK MRNA Expression in Human Brain Tissue Throughout the Lifespan. Neurol. Genet. 2020, 7, e537. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.T.; Pham, Y.C.N.; thi Man, N.; Morris, G.E. Characterization of a Monoclonal Antibody Panel Shows That the Myotonic Dystrophy Protein Kinase, DMPK, Is Expressed Almost Exclusively in Muscle and Heart. Hum. Mol. Genet. 2000, 9, 2167–2173. [Google Scholar] [CrossRef] [Green Version]
- Whiting, E.J.; Waring, J.D.; Tamai, K.; Somerville, M.J.; Hincke, M.; Staines, W.A.; Ikeda, J.E.; Korneluk, R.G. Characterization of Myotonic Dystrophy Kinase (DMK) Protein in Human and Rodent Muscle and Central Nervous Tissue. Hum. Mol. Genet. 1995, 4, 1063–1072. [Google Scholar] [CrossRef]
- Jansen, G.; Groenen, P.J.T.A.; Bächner, D.; Jap, P.H.K.; Coerwinkel, M.; Oerlemans, F.; van den Broek, W.; Gohlsch, B.; Pette, D.; Plomp, J.J.; et al. Abnormal Myotonic Dystrophy Protein Kinase Levels Produce Only Mild Myopathy in Mice. Nat. Genet. 1996, 13, 316–324. [Google Scholar] [CrossRef]
- Reddy, S.; Smith, D.B.J.; Rich, M.M.; Leferovich, J.M.; Reilly, P.; Davis, B.M.; Tran, K.; Rayburn, H.; Bronson, R.; Cros, D.; et al. Mice Lacking the Myotonic Dystrophy Protein Kinase Develop a Late Onset Progressive Myopathy. Nat. Genet. 1996, 13, 325–335. [Google Scholar] [CrossRef]
- Llagostera, E.; Catalucci, D.; Marti, L.; Liesa, M.; Camps, M.; Ciaraldi, T.P.; Kondo, R.; Reddy, S.; Dillmann, W.H.; Palacin, M.; et al. Role of Myotonic Dystrophy Protein Kinase (DMPK) in Glucose Homeostasis and Muscle Insulin Action. PLoS ONE 2007, 2, e1134. [Google Scholar] [CrossRef] [Green Version]
- Savkur, R.S.; Philips, A.V.; Cooper, T.A. Aberrant Regulation of Insulin Receptor Alternative Splicing Is Associated with Insulin Resistance in Myotonic Dystrophy. Nat. Genet. 2001, 29, 40–47. [Google Scholar] [CrossRef]
- Renna, L.V.; Bosè, F.; Iachettini, S.; Fossati, B.; Saraceno, L.; Milani, V.; Colombo, R.; Meola, G.; Cardani, R. Receptor and Post-Receptor Abnormalities Contribute to Insulin Resistance in Myotonic Dystrophy Type 1 and Type 2 Skeletal Muscle. PLoS ONE 2017, 12, e0184987. [Google Scholar] [CrossRef] [Green Version]
- Berul, C.I.; Maguire, C.T.; Gehrmann, J.; Reddy, S. Progressive Atrioventricular Conduction Block in a Mouse Myotonic Dystrophy Model. J. Interv. Card. Electrophysiol. 2000, 4, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Berul, C.I.; Maguire, C.T.; Aronovitz, M.J.; Greenwood, J.; Miller, C.; Gehrmann, J.; Housman, D.; Mendelsohn, M.E.; Reddy, S. DMPK Dosage Alterations Result in Atrioventricular Conduction Abnormalities in a Mouse Myotonic Dystrophy Model. J. Clin. Investig. 1999, 103, R1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llagostera, E.; López, M.J.Á.; Scimia, C.; Catalucci, D.; Párrizas, M.; Ruiz-Lozano, P.; Kaliman, P. Altered β-Adrenergic Response in Mice Lacking Myotonic Dystrophy Protein Kinase (DMPK). Muscle Nerve 2012, 45, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, R.; Timchenko, N.A.; Miller, J.W.; Reddy, S.; Caskey, C.T.; Swanson, M.S.; Timchenko, L.T. Altered Phosphorylation and Intracellular Distribution of a (CUG)n Triplet Repeat RNA-Binding Protein in Patients with Myotonic Dystrophy and in Myotonin Protein Kinase Knockout Mice. Proc. Natl. Acad. Sci. USA 1997, 94, 13221–13226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Q.; Wang, H.; Li, N.; Ding, Y.; Xie, Z.; Jin, L.; Li, Y.; Wang, Q.; Liu, X.; Xu, L.; et al. Dosage Effect of Multiple Genes Accounts for Multisystem Disorder of Myotonic Dystrophy Type 1. Cell Res. 2020, 30, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Alhamadani, F.; Zhang, K.; Parikh, R.; Wu, H.; Rasmussen, T.P.; Bahal, R.; Zhong, X.; Manautou, J.E. Adverse Drug Reactions and Toxicity of the Food and Drug Administration-Approved Antisense Oligonucleotide Drugs. Drug Metab. Dispos. 2022, 50, 879–887. [Google Scholar] [CrossRef]
- Frazier, K.S. Antisense Oligonucleotide Therapies:The Promise and the Challenges from a Toxicologic Pathologist’s Perspective. Toxicol. Pathol. 2015, 43, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Henry, S.P.; Beattie, G.; Yeh, G.; Chappel, A.; Giclas, P.; Mortari, A.; Jagels, M.A.; Kornbrust, D.J.; Levin, A.A. Complement Activation Is Responsible for Acute Toxicities in Rhesus Monkeys Treated with a Phosphorothioate Oligodeoxynucleotide. Int. Immunopharmacol. 2002, 2, 1657–1666. [Google Scholar] [CrossRef]
- Burel, S.A.; Han, S.R.; Lee, H.S.; Norris, D.A.; Lee, B.S.; MacHemer, T.; Park, S.Y.; Zhou, T.; He, G.; Kim, Y.; et al. Preclinical Evaluation of the Toxicological Effects of a Novel Constrained Ethyl Modified Antisense Compound Targeting Signal Transducer and Activator of Transcription 3 in Mice and Cynomolgus Monkeys. Nucleic Acid Ther. 2013, 23, 213–227. [Google Scholar] [CrossRef]
- Kanadia, R.N.; Johnstone, K.A.; Mankodi, A.; Lungu, C.; Thornton, C.A.; Esson, D.; Timmers, A.M.; Hauswirth, W.W.; Swanson, M.S. A Muscleblind Knockout Model for Myotonic Dystrophy. Science 2003, 302, 1978–1980. [Google Scholar] [CrossRef] [Green Version]
- Bargiela, A.; Sabater-Arcis, M.; Espinosa-Espinosa, J.; Zulaica, M.; de Munain, A.L.; Artero, R. Increased Muscleblind Levels by Chloroquine Treatment Improve Myotonic Dystrophy Type 1 Phenotypes in in Vitro and in Vivo Models. Proc. Natl. Acad. Sci. USA 2019, 116, 25203–25213. [Google Scholar] [CrossRef] [PubMed]
- Kanadia, R.N.; Shin, J.; Yuan, Y.; Beattie, S.G.; Wheeler, T.M.; Thornton, C.A.; Swanson, M.S. Reversal of RNA Missplicing and Myotonia after Muscleblind Overexpression in a Mouse Poly(CUG) Model for Myotonic Dystrophy. Proc. Natl. Acad. Sci. USA 2006, 103, 11748–11753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthex Biotech|Pipeline. Available online: https://www.arthexbiotech.com/pipeline (accessed on 25 July 2022).
- Mankodi, A.; Takahashi, M.P.; Jiang, H.; Beck, C.L.; Bowers, W.J.; Moxley, R.T.; Cannon, S.C.; Thornton, C.A. Expanded CUG Repeats Trigger Aberrant Splicing of ClC-1 Chloride Channel Pre-MRNA and Hyperexcitability of Skeletal Muscle in Myotonic Dystrophy. Mol. Cell. 2002, 10, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Charlet-B., N.; Savkur, R.S.; Singh, G.; Philips, A.; Grice, E.A.; Cooper, T.A. Loss of the Muscle-Specific Chloride Channel in Type 1 Myotonic Dystrophy Due to Misregulated Alternative Splicing. Mol. Cell. 2002, 10, 45–53. [Google Scholar] [CrossRef]
- Suzuki, R.; Takizawa, T.; Negishi, Y.; Hagisawa, K.; Tanaka, K.; Sawamura, K.; Utoguchi, N.; Nishioka, T.; Maruyama, K. Gene Delivery by Combination of Novel Liposomal Bubbles with Perfluoropropane and Ultrasound. J. Control. Release 2007, 117, 130–136. [Google Scholar] [CrossRef]
- Sobczak, K.; Wheeler, T.M.; Wang, W.; Thornton, C.A. RNA Interference Targeting CUG Repeats in a Mouse Model of Myotonic Dystrophy. Mol. Ther. 2013, 21, 380. [Google Scholar] [CrossRef] [Green Version]
- Ohrt, T.; Merkle, D.; Birkenfeld, K.; Echeverri, C.J.; Schwille, P. In Situ Fluorescence Analysis Demonstrates Active SiRNA Exclusion from the Nucleus by Exportin 5. Nucleic Acids Res. 2006, 34, 1369–1380. [Google Scholar] [CrossRef]
- Bisset, D.R.; Stepniak-Konieczna, E.A.; Zavaljevski, M.; Wei, J.; Carter, G.T.; Weiss, M.D.; Chamberlain, J.R. Therapeutic Impact of Systemic AAV-Mediated RNA Interference in a Mouse Model of Myotonic Dystrophy. Hum. Mol. Genet. 2015, 24, 4971. [Google Scholar] [CrossRef] [Green Version]
- Batra, R.; Nelles, D.A.; Roth, D.M.; Krach, F.; Nutter, C.A.; Tadokoro, T.; Thomas, J.D.; Sznajder, Ł.J.; Blue, S.M.; Gutierrez, H.L.; et al. The Sustained Expression of Cas9 Targeting Toxic RNAs Reverses Disease Phenotypes in Mouse Models of Myotonic Dystrophy Type 1. Nat. Biomed. Eng. 2021, 5, 157–168. [Google Scholar] [CrossRef]
- Langlois, M.A.; Lee, N.S.; Rossi, J.J.; Puymirat, J. Hammerhead Ribozyme-Mediated Destruction of Nuclear Foci in Myotonic Dystrophy Myoblasts. Mol. Ther. 2003, 7 Pt. 1, 670–680. [Google Scholar] [CrossRef]
- Trujillo, A.J.; Myers, J.M.; Fayazi, Z.S.; Butler, M.C.; Sullivan, J.M. A Discovery with Potential to Revitalize Hammerhead Ribozyme for Treatment of Inherited Retinal Degenerations. Adv. Exp. Med. Biol. 2019, 1185, 119. [Google Scholar] [CrossRef] [PubMed]
- Gadgil, A.; Raczyńska, K.D. U7 SnRNA: A Tool for Gene Therapy. J. Gene Med. 2021, 23, e3321. [Google Scholar] [CrossRef] [PubMed]
- François, V.; Klein, A.F.; Beley, C.; Jollet, A.; Lemercier, C.; Garcia, L.; Furling, D. Selective Silencing of Mutated mRNAs in DM1 by Using Modified HU7-SnRNAs. Nat. Struct. Mol. Biol. 2010, 18, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Wein, N.; Vetter, T.A.; Vulin, A.; Simmons, T.R.; Frair, E.C.; Bradley, A.J.; Gushchina, L.V.; Almeida, C.F.; Huang, N.; Lesman, D.; et al. Systemic Delivery of an AAV9 Exon-Skipping Vector Significantly Improves or Prevents Features of Duchenne Muscular Dystrophy in the Dup2 Mouse. Mol. Ther Methods Clin. Dev. 2022, 26, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Goyenvalle, A.; Babbs, A.; Wright, J.; Wilkins, V.; Powell, D.; Garcia, L.; Davies, K.E. Rescue of Severely Affected Dystrophin/Utrophin-Deficient Mice through ScAAV-U7snRNA-Mediated Exon Skipping. Hum. Mol. Genet. 2012, 21, 2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bish, L.T.; Sleeper, M.M.; Forbes, S.C.; Wang, B.; Reynolds, C.; Singletary, G.E.; Trafny, D.; Morine, K.J.; Sanmiguel, J.; Cecchini, S.; et al. Long-Term Restoration of Cardiac Dystrophin Expression in Golden Retriever Muscular Dystrophy Following RAAV6-Mediated Exon Skipping. Mol. Ther. 2012, 20, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbash, I.M.; Cecchini, S.; Faranesh, A.Z.; Virag, T.; Li, L.; Yang, Y.; Hoyt, R.F.; Kornegay, J.N.; Bogan, J.R.; Garcia, L.; et al. MRI Roadmap-Guided Transendocardial Delivery of Exon-Skipping Recombinant Adeno-Associated Virus Restores Dystrophin Expression in a Canine Model of Duchenne Muscular Dystrophy. Gene Ther. 2013, 20, 274. [Google Scholar] [CrossRef] [Green Version]
- Vulin, A.; Barthélémy, I.; Goyenvalle, A.; Thibaud, J.L.; Beley, C.; Griffith, G.; Benchaouir, R.; le Hir, M.; Unterfinger, Y.; Lorain, S.; et al. Muscle Function Recovery in Golden Retriever Muscular Dystrophy After AAV1-U7 Exon Skipping. Mol. Ther. 2012, 20, 2120. [Google Scholar] [CrossRef]
Strategy | Molecule | Mechanism | Target | Administration Route | In Vivo Model | Biological Readout | References |
---|---|---|---|---|---|---|---|
Full-length modified ASO | PMO-CAG | Steric hindrance | CUG sequence | Intramuscular injection | HSALR | Reduction of foci number, MBNL sequestration, and mis-splicing in muscles; alleviation of myotonia | [55,87,91] |
LNA-CAG chemistries (all-LNA and LNA/2′-O-Me) | Steric hindrance | CUG sequence | Intramuscular injection | HSALR | Reduction of foci number, MBNL sequestration, and mis-splicing in muscles; alleviation of myotonia | [36,88] | |
2′-O-Me-CAG | Enzymatic degradation | CUG sequence | Intramuscular injection | DM500, HSALR | Reduction in CUGexp RNA levels, foci number, MBNL sequestration, and mis-splicing in muscles | [55,71,72,73,74,92] | |
PMO | Exon skipping | Clcn1 pre-mRNA exon 7 3′ splice site | Intramuscular injection | HSALR, Mbnl1ΔE3/ΔE3 | Reduced inclusion of Clcn1 exon 7, normalization of the channel activity of ClC-1, alleviation of myotonia | [93,94] | |
Gapmer | 2′,4′-BNANC | RNase H-mediated degradation | DMPK 3′ UTR or CUG | - | - | Reduction in CUGexp RNA levels, foci number, and mis-splicing | [37] |
2′-MOE/LNA chemistries (ASO 445236) | RNase H-mediated degradation | ACTA1 or CUG | Subcutaneous or intramuscular injection | EpA960/HSA-Cre, HSALR | Reduction in CUGexp RNA levels, foci number, and mis-splicing in muscles; alleviation of myotonia | [77,91,95,96] | |
cEt chemistries (IONIS 486178) | RNase H-mediated degradation | DMPK 3′ UTR | Subcutaneous or intracerebroventricular injection | DMSXL, DM200, Dmpk(−/+), wild-type mice and rats, non-human primates | Reduction in DMPK mRNA levels in skeletal muscles, hearts, and brains; correction of myotonia, muscle weakness and muscle fiber immaturity; correction of cardiac conduction defects and behavioral abnormalities | [63,65,66,67,97] | |
CCP conjugation | B/K-peptide-PMO | Steric hindrance | CUG sequence | Intramuscular or intravenous injection | HSALR | Reduction of foci number, MBNL sequestration and mis-splicing in muscles; correction of myotonia | [98] |
Pip6a-PMO | Steric hindrance | CUG sequence | Intravenous injection | HSALR | Reduction of foci number, MBNL sequestration and mis-splicing in muscles; correction of myotonia | [99] | |
PepFect14 | Steric hindrance | CUG sequence | - | - | Reduction of MBNL sequestration in foci | [54] | |
Pip9b2-BlockmiR/ATX-01 (Arthex Biotech) | Steric hindrance | MBNL1 3′ UTR | Intravenous injection | HSALR | Increase of MBNL expression, decrease of MBNL-dependent mis-splicing, alleviation of muscle weakness | [100] | |
Fatty acid conjugation | C16-cEt gapmer (IONIS-877864) | RNase H-mediated degradation | DMPK 3′ UTR | Subcutaneous injection | DMSXL, DM200, BALB/c, rats, non-human primate | Improvement of ASO uptake in muscle and cardiac tissues, reduction of foci number and DMPK mRNA levels, improvement of muscle strength and regeneration | [64,101,102,103] |
C16-2′-MOE gapmer (IONIS-992948) | RNase H-mediated degradation | ACTA1 | Subcutaneous injection | TR;HSALR | Improvement of mis-splicing correction in gastrocnemius and lumbar paraspinal muscles | [78] | |
Cholesterol-antagomiR-23b/218 | MBNL1 overexpression | miR-23b and miR-218 | Intravenous or subcutaneous injection | HSALR | Increase in MBNL expression, decrease of MBNL-dependent mis-splicing, alleviation of muscle weakness and myotonia | [104,105,106,107] | |
Anti-TfR1 antibody conjugation | AOC 1001 (Avidity Biosciences) | Enzymatic degradation | DMPK mRNA | Intravenous injection | Non-human primates | Reduction in DMPK mRNA levels and mis-splicing | - |
DYNE-101 (Dyne Therapeutics) | Enzymatic degradation | DMPK mRNA | Intravenous injection | hTfR1/DMSXL, HSALR, non-human primates | Reduction in CUGexp RNA levels and mis-splicing; correction of myotonia | - | |
PNA antisense oligonucleobase platform | NT-0231.F (NeuBase Therapeutics) | Steric hindrance | CUG sequence | Intravenous or subcutaneous injection | BALB/c, HSALR, non-human primates | Reduction in foci number, correction of mis-splicing and myotonia | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Serres-Bérard, T.; Ait Benichou, S.; Jauvin, D.; Boutjdir, M.; Puymirat, J.; Chahine, M. Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1. Int. J. Mol. Sci. 2022, 23, 13359. https://doi.org/10.3390/ijms232113359
De Serres-Bérard T, Ait Benichou S, Jauvin D, Boutjdir M, Puymirat J, Chahine M. Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1. International Journal of Molecular Sciences. 2022; 23(21):13359. https://doi.org/10.3390/ijms232113359
Chicago/Turabian StyleDe Serres-Bérard, Thiéry, Siham Ait Benichou, Dominic Jauvin, Mohamed Boutjdir, Jack Puymirat, and Mohamed Chahine. 2022. "Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1" International Journal of Molecular Sciences 23, no. 21: 13359. https://doi.org/10.3390/ijms232113359
APA StyleDe Serres-Bérard, T., Ait Benichou, S., Jauvin, D., Boutjdir, M., Puymirat, J., & Chahine, M. (2022). Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1. International Journal of Molecular Sciences, 23(21), 13359. https://doi.org/10.3390/ijms232113359