New Molecules of Diterpene Origin with Inhibitory Properties toward α-Glucosidase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Inhibition of Yeast α-Glucosidase
2.3. The Mechanism of α-Glucosidase Inhibition by Compound 45
2.4. Docking Studies for Compound 45
2.5. ADMET Profiling of Compound 45
3. Materials and Methods
3.1. General
3.2. Synthesis of Compounds 42 and 44
3.3. Synthesis of Methyl 1-Hydroxy-13-Isopropyl-1′-(Ethoxycarbonyl)-7,10a,2′-Trimethyl-5,6,6b,7,8,9,10,10a,10b,11,12,13-Dodecahydro-12,4b-Ethenophenanthro-[2,1-g]indole-7-Carboxylate (43)
3.4. Synthesis of Compounds 45, 46 and 49
3.5. Synthesis of Compounds 47 and 50
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, O.; Matsushita, K.; Coresh, J.; Sharrett, A.R.; McEvoy, J.W.; Windham, B.G.; Ballantyne, C.M.; Selvin, E. Mortality implications of prediabetes and diabetes in older adults. Diabetes Care 2020, 43, 382–388. [Google Scholar] [CrossRef]
- Kitabchi, A.E.; Umpierrez, G.E.; Miles, J.M.; Fisher, J.N. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009, 32, 1335–1343. [Google Scholar] [CrossRef] [Green Version]
- Ceriello, A.; Nicolucci, A. Intensive glucose control and type 2 diabetes—15 years on. N. Engl. J. Med. 2019, 381, 1292–1293. [Google Scholar] [CrossRef]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef]
- Lean, M.; McCombie, L.; McSorely, J. Trends in type 2 diabetes. BMJ 2019, 366, l5407. [Google Scholar] [CrossRef]
- Williams, J.; Loeffler, M. Global trends in type 2 diabetes, 2007–2017. JAMA 2019, 322, 1542. [Google Scholar] [CrossRef]
- Bischoff, H. Pharmacology of alpha-glucosidase inhibition. Eur. J. Clin. Investig. 1994, 24, 3–10. [Google Scholar]
- Toeller, M. α-Glucosidase inhibitors in diabetes: Efficacy in NIDDM subjects. Eur. J. Clin. Investig. 1994, 24, 31–35. [Google Scholar] [CrossRef]
- Soccio, R.E.; Chen, E.R.; Lazar, M.A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014, 20, 573–591. [Google Scholar] [CrossRef] [Green Version]
- Ullah, A.; Khan, A.; Khan, I. Diabetes mellitus and oxidative stress—A concise review. Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Lorenzati, B.; Zucco, C.; Miglietta, S.; Lamberti, F.; Bruno, G. Oral hypoglycemic drugs: Pathophysiological basis of their mechanism of action. Pharmaceuticals 2010, 3, 3005–3020. [Google Scholar] [CrossRef] [PubMed]
- Marín-Peñalver, J.J.; Martín-Timón, I.; Sevillano-Collantes, C.; del Cañizo-Gómez, F.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength. World J. Diabetes 2016, 7, 354–395. [Google Scholar] [CrossRef] [PubMed]
- Feliciano, A.S.; Gordaliza, M.; Salinero, M.A.; del Corral, J.M.M. Abietane Acids: Sources, Biological Activities, and Therapeutic Uses. Planta Med. 1993, 59, 485–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tretyakova, E.V.; Smirnova, I.E.; Kazakova, O.B.; Tolstikov, G.A.; Yavorskaya, N.P.; Golubeva, I.S.; Pugacheva, R.B.; Apryshko, G.N.; Poroikov, V.V. Synthesis and anticancer activity of quinopimaric and maleopimaric acids’ derivatives. Bioorg. Med. Chem. 2014, 22, 6481–6489. [Google Scholar] [CrossRef] [PubMed]
- Tretyakova, E.V.; Smirnova, I.E.; Salimova, E.V.; Odinokov, V.N. Synthesis and antiviral activity of maleopimaric and quinopimaric acids’ derivatives. Bioorg. Med. Chem. 2015, 23, 6543–6550. [Google Scholar] [CrossRef]
- Smirnova, I.E.; Tret’yakova, E.V.; Baev, D.S.; Kazakova, O.B. Synthetic modifications of abietane diterpene acids to potent antimicrobial agents. Nat. Prod. Res. 2021, 1–9. [Google Scholar] [CrossRef]
- Kim, E.; Kang, Y.-G.; Kim, Y.-J.; Lee, T.R.; Yoo, B.C.; Jo, M.; Kim, J.H.; Kim, J.H.; Kim, D.; Cho, J.Y. Dehydroabietic acid suppresses inflammatory response via suppression of Src-, Syk-, and TAK1-mediated pathways. Int. J. Mol. Sci. 2019, 20, 1593. [Google Scholar] [CrossRef] [Green Version]
- Tret’yakova, E.V.; Salimova, E.V.; Parfenova, L.V. Synthesis, modification, and biological activity of propargylated methyl dihydroquinopimarates. Nat. Prod. Res. 2022, 36, 79–86. [Google Scholar] [CrossRef]
- Goncalves, M.D.; Bortoleti, B.T.S.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Assolini, J.P.; Carloto, A.C.M.; Carvalho, P.G.C.; Tudisco, E.T.; Urbano, A.; Ambrosio, S.R.; et al. Dehydroabietic acid isolated from Pinus elliottii exerts in vitro antileishmanial action by pro-oxidant effect, inducing ROS production in promastigote and downregulating Nrf2/ferritin expression in amastigote forms of Leishmania amazonensis. Fitoterapia 2018, 128, 224–232. [Google Scholar] [CrossRef]
- González, M.A. Aromatic abietane diterpenoids: Their biological activity and synthesis. Nat. Prod. Rep. 2015, 32, 684–704. [Google Scholar] [CrossRef]
- Etsassala, N.G.E.R.; Cupido, C.N.; Iwuoha, I.E.; Hussein, A.A. Abietane Diterpenes as Potential Candidates for the Management of Type 2 Diabetes. Curr. Pharm. Des. 2020, 26, 2885–2891. [Google Scholar] [CrossRef] [PubMed]
- Nachar, A.; Saleem, A.; Arnason, J.T.; Haddad, P.S. Regulation of liver cell glucose homeostasis by dehydroabietic acid, abietic acid and squalene isolated from balsam fir (Abies balsamea (L.) Mill.) a plant of the Eastern James Bay Cree traditional pharmacopeia. Phytochemistry 2015, 117, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Song, H.M.; Li, X.; Liu, Y.Y.; Lu, W.-P.; Cui, Z.-H.; Zhou, L.; Yao, D.; Zhang, H.-M. Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS. Int. J. Mol. Med. 2018, 42, 193–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipina, C.; Hundal, H.S. Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. Cell. Signal. 2014, 26, 2343–2349. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K.B.; Jørgensen, M.; Kotowska, D.; Petersen, R.K.; Kristiansen, K.; Christensen, L.P. Activation of the nuclear receptor PPARγ by metabolites isolated from sage (Salvia officinalis L.). J. Ethnopharmacol. 2010, 132, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Gao, G.; Wang, H.; Lia, E.; Yuan, Y.; Xu, J.; Zhang, Z.; Wang, P.; Fu, Y.; Zeng, H.; et al. Dehydroabietic acid alleviates high fat diet-induced insulin resistance and hepatic steatosis through dual activation of PPAR-γ and PPAR-α. Biomed. Pharmacother. 2020, 127, 110155. [Google Scholar] [CrossRef]
- Vlavcheski, F.; Baron, D.; Vlachogiannis, I.A.; MacPherson, R.E.K.; Tsiani, E. Carnosol increases skeletal muscle cell glucose uptake via AMPK-Dependent GLUT4 glucose transporter translocation. Int. J. Mol. Sci. 2018, 19, 1321. [Google Scholar] [CrossRef] [Green Version]
- Samarghandian, S.; Borji, A.; Farkhondeh, T. Evaluation of antidiabetic activity of carnosol (phenolic diterpene in rosemary) in Streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets 2017, 17, 11–17. [Google Scholar] [CrossRef]
- Cui, L.; Kim, M.O.; Seo, J.H.; Kim, I.S.; Kim, N.Y.; Lee, S.H.; Park, J.; Kim, J.; Lee, H.S. Abietane diterpenoids of Rosmarinus officinalis and their diacylglycerol acyltransferase-inhibitory activity. Food Chem. 2012, 132, 1775–1780. [Google Scholar] [CrossRef]
- Yun, Y.S.; Noda, S.; Shigemori, G.; Kuriyama, R.; Takahashi, S.; Umemura, M.; Takahashi, Y.; Inoue, H. Phenolic diterpenes from rosemary suppress cAMP responsiveness of gluconeogenic gene promoters. Phytother. Res. 2013, 27, 906–910. [Google Scholar] [CrossRef]
- Kubínová, R.; Pořízková, R.; Navrátilová, A.; Farsa, O.; Hanáková, Z.; Bačinská, A.; Cížek, A.; Valentová, M. Antimicrobial and enzyme inhibitory activities of the constituents of Plectranthus madagascariensis (Pers.) Benth. J. Enzym. Inhib. Med. Chem. 2014, 29, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Paudel, P.; Yu, T.; Ngo, T.M.; Kim, J.A.; Jung, H.A.; Yokozawa, T.; Choi, J.S. Characterization of the inhibitory activity of natural tanshinones from Salvia miltiorrhiza roots on protein tyrosine phosphatase 1B. Chem. Biol. Interact. 2017, 278, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.H.; Seol, H.J.; Jeon, S.J.; Son, K.H.; Lee, J.R. Insulin-sensitizing activities of tanshinones, diterpene compounds of the root of Salvia miltiorrhiza Bunge. Phytomedicine 2009, 16, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.S.; Hirai, S.; Goto, T.; Kuroyanagi, K.; Kim, Y.-I.; Ohyama, K.; Uemura, T.; Lee, J.-Y.; Sakamoto, T.; Ezaki, Y.; et al. Dehydroabietic acid, a diterpene, improves diabetes and hyperlipidemia in obese diabetic KK-Ay mice. Biofactors 2009, 35, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Huang, J.; Zhao, D.; Du, B.; Wang, M. Protective effect of rosmarinic acid and carnosic acid against streptozotocin-induced oxidation, glycation, inflammation and microbiota imbalance in diabetic rats. Food Funct. 2018, 9, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Gao, J.; Qin, L.; Xu, Y.; Wang, D.; Shi, H.; Xu, T.; Liu, T. Tanshinone I alleviates insulin resistance in type 2 diabetes mellitus rats through IRS-1 pathway. Biomed. Pharmacother. 2017, 93, 352–358. [Google Scholar] [CrossRef]
- Allen, G.R., Jr. Organic Reactions; Wiley: New York, NY, USA, 1973; Volume 20, p. 338. [Google Scholar]
- Tretyakova, E.V.; Yarmukhametova, L.R.; Salimova, E.V.; Kukovinets, O.S.; Parfenova, L.V. The Nenitzescu reaction in the synthesis of new abietane diterpene indoles. Chem. Heterocycl. Compd. 2020, 56, 1366–1369. [Google Scholar] [CrossRef]
- Tran, C.-L.; Dao, T.-B.-N.; Tran, T.-N.; Mai, D.-T.; Tran, T.-M.-D.; Tran, N.-M.-A.; Dang, V.-S.; Vo, T.-X.; Duong, T.-H.; Sichaem, J. Alpha-Glucosidase Inhibitory Diterpenes from Euphorbia antiquorum Growing in Vietnam. Molecules 2021, 26, 2257. [Google Scholar] [CrossRef]
- Ghosh, S.; Rangan, L. Molecular Docking and Inhibition Kinetics of α-glucosidase Activity by Labdane Diterpenes Isolated from Tora Seeds (Alpinia nigra B.L. Burtt.). Appl. Biochem. Biotechnol. 2015, 175, 1477–1489. [Google Scholar] [CrossRef]
- Yang, X.-T.; Geng, C.-A.; Li, T.-Z.; Deng, Z.-T.; Chen, J.-J. Synthesis and biological evaluation of chepraecoxin A derivatives as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 127020. [Google Scholar] [CrossRef]
- Loo, K.Y.; Leong, K.H.; Sivasothy, Y.; Ibrahim, H.; Awang, K. Molecular Insight and Mode of Inhibition of α-Glucosidase and α-Amylase by Pahangensin A from Alpinia pahangensis Ridl. Chem. Biodivers. 2019, 16, e1900032. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-Y.; Zhao, D.-G.; Zhang, R.; He, X.; Li, B.Q.; Zhang, X.-Z.; Wang, Z.; Zhang, K. Identification of bioactive compounds that contribute to the α-glucosidase inhibitory activity of rosemary. Food Funct. 2020, 11, 1692–1701. [Google Scholar] [CrossRef] [PubMed]
- Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem. 2010, 53, 5061–5084. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.L. Kinetics of Enzyme Action: Essential Principles for Drug Hunters; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Dong, J.; Wang, N.-N.; Yao, Z.-J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.-P.; Cao, D.-S. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform. 2018, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [Green Version]
- Herz, W.; Blackstone, R.C.; Nair, M.G. Resin acids. XI Configuration and transformations of the levopimaric acid-p-benzoquinone adduct. J. Org. Chem. 1967, 32, 2992–2998. [Google Scholar] [CrossRef]
- Smirnova, I.E.; Tret’yakova, E.V.; Flekhter, O.B.; Spirikhin, L.V.; Galin, F.Z.; Tolstikov, G.A.; Starikova, Z.A.; Korlyukov, A.A. Synthesis, structure, and acylation of dihydroquinopimaric acid hydroxyl derivatives. Russ. J. Org. Chem. 2008, 44, 1598–1605. [Google Scholar] [CrossRef]
- Smirnova, I.E.; Tret’yakova, E.V.; Kazakova, O.B.; Starikova, Z.A.; Fedyanin, I.V. Molecular and crystal structure of a new compound methyl-18R-13-isopropyl-10a,7-dimethyl-4-oxo-1-oxahexacyclo 12.4.0.05a,4a.013,120.010a,6a]heneicosane-7-Carboxylate. J. Struct. Chem. 2009, 50, 378–380. [Google Scholar] [CrossRef]
- Smirnova, I.E.; Tret’yakova, E.V.; Kazakova, O.B.; Suponitsky, K.Y. Molecular structure of methyl 20-isopropyl-15(e)-hydroxyimino-5,9-dimethyl-18-oxahexacyclo[12.4.0.22,13.118,20.05,10.04,13]heneicosane-9-carboxylate. J. Struct. Chem. 2010, 51, 1208–1210. [Google Scholar] [CrossRef]
- Tretyakova, E.V.; Salimova, E.V.; Odinokov, V.N.; Dzhemilev, U.M. Synthesis of a Novel 1,2,4-Oxadiazole Diterpene from the Oxime of the Methyl Ester of 1β,13-Epoxydihydroquinopimaric Acid. Nat. Prod. Commun. 2016, 11, 23–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazakova, O.B.; Tret’yakova, E.V.; Smirnova, I.E.; Spirikhin, L.V.; Tolstikov, G.A.; Chudov, I.V.; Bazekin, G.V.; Ismagilova, A.F. The synthesis and anti-inflammatory activity of quinopimaric acid derivatives. Russ. J. Bioorg. Chem. 2010, 36, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Tret’yakova, E.V.; Salimova, E.V.; Parfenova, L.V.; Odinokov, V.N. Synthesis and Modifications of Alkyne Derivatives of Dihydroquinopimaric, Maleopimaric, and Fumaropimaric Acids. Russ. J. Org. Chem. 2016, 52, 1496–1502. [Google Scholar] [CrossRef]
- Flekhter, O.B.; Smirnova, I.E.; Tret’yakova, E.V.; Tolstikov, G.A.; Savinova, O.V.; Boreko, E.I. Synthesis of Dihydroquinopymaric Acid Conjugates with Amino Acids. Russ. J. Bioorg. Chem. 2009, 35, 385–390. [Google Scholar] [CrossRef]
- Tretyakova, E.V.; Salimova, E.V.; Parfenova, L.V.; Yunusbaeva, M.M.; Dzhemileva, L.U.; D’yakonov, V.A.; Dzhemilev, U.M. Synthesis of New Dihydroquinopimaric Acid Analogs with Nitrile Groups as Apoptosis-Inducing Anticancer Agents. Anti-Cancer Agents Med. Chem. 2019, 19, 1172–1183. [Google Scholar] [CrossRef]
- Smirnova, I.E.; Kazakova, O.B.; Tret’yakova, E.V.; Spirikhin, L.V.; Glukhov, I.V.; Nelyubina, Y.V. Regioselective Bromination of Quinopimaric Acid Derivatives. Russ. J. Org. Chem. 2010, 46, 1135–1139. [Google Scholar] [CrossRef]
- Kazakova, O.B.; Tret’yakova, E.V.; Smirnova, I.E.; Nazyrov, T.I.; Kukovinets, O.S.; Tolstikov, G.A.; Suponitskii, K.Y. An efficient oxyfunctionalization of quinopimqric acid derivatives with ozone. Nat. Prod. Commun. 2013, 28, 293–296. [Google Scholar]
- Smirnova, I.E.; Kazakova, O.B.; Tret’yakova, E.V.; Tolstikov, G.A.; Spirikhin, L.V. Synthesis of Heterocyclic Derivatives of Dihydroquinopimaric Acid. Russ. J. Org. Chem. 2011, 47, 1576–1580. [Google Scholar] [CrossRef]
- Shul’ts, E.E.; Oleinikov, D.S.; Nechepurenko, I.V.; Shakirov, M.M.; Tolstikov, G.A. Synthetic transformations of higher terpenoids: XVIII. Synthesis of optically active 9,10-anthraquinone derivatives. Russ. J. Org. Chem. 2009, 45, 102–114. [Google Scholar] [CrossRef]
- Ha, N.T.T.; van Cuong, P.; Tra, N.T.; Anh, l.T.; Cham, B.T.; Son, N.T. Chemical constituents from methanolic extract of Garcinia mackeaniana leaves and their antioxydant activity. Vietnam. J. Sci. Technol. 2020, 58, 411–418. [Google Scholar]
- Ha, N.T.T.; van Cuong, P.; Anh, l.T.; Tra, N.T.; Cham, B.T.; Son, N.T. Antimicrobacterial xanthones from Garcinia mackeaniana leaves. Vietnam J. Chem. 2020, 58, 343–348. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Kim, Y.M.; Wang, M.H.; Rhee, H.I. A novel α-glucosidase inhibitor from pine bark. Carbohydr. Res. 2004, 339, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, X.D.; Song, Y.W.; Liu, J.W. A microplate-based screening method for α-glucosidase inhibitors. Nat. Prod. Res. Dev. 2005, 10, 1128–1134. [Google Scholar]
- MarvinSketch, 18.8.0; ChemAxon Ltd.: Budapest, Hungary, 2018.
- Spasov, A.A.; Babkov, D.A.; Osipov, D.V.; Klochkov, V.G.; Prilepskaya, D.R.; Demidov, M.R.; Osyanin, V.A.; Klimochkin, Y.N. Synthesis, in vitro and in vivo evaluation of 2-aryl-4H-chromene and 3-aryl-1H-benzo[f]chromene derivatives as novel α-glucosidase inhibitors. Bioorg. Med. Chem. Lett. 2019, 29, 119–123. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef]
- Discovery Studio Visualizer, 17.2.0.16349; Dassault Systemes Biovia Corp.: San Diego, CA, USA, 2016.
Compound | IC50 ± SE (µM) |
---|---|
1 | 59.59 ± 0.18 |
2 | >255 |
3 | >255 |
4 | >255 |
5 | >255 |
6 | 1.63 ± 0.006 |
7 | 2.50 ± 0.011 |
8 | 35.57 ± 0.92 |
9 | 35.24 ± 0.71 |
10 | >255 |
11 | >255 |
12 | >255 |
13 | >255 |
14 | >255 |
15 | >255 |
16 | >255 |
17 | >255 |
18 | >255 |
19 | >255 |
20 | >255 |
21 | >255 |
22 | >255 |
23 | >255 |
24 | >255 |
25 | >255 |
26 | 13.08 ± 0.01 |
27 | >255 |
28 | 12.73 ± 0.21 |
29 | 1.63 ± 0.041 |
30 | 38.80 ± 0.33 |
31 | >255 |
32 | 9.66 ± 0.77 |
33 | 65.98 ± 0.03 |
34 | >255 |
35 | 7.95 ± 0.20 |
36 | 8.94 ± 0.96 |
37 | 7.28 ± 0.40 |
38 | 0.39 ± 0.03 |
39 | 44.77 ± 0.96 |
40 | 7.088 ± 0.12 |
41 | >255 |
42 | 2.52 ± 0.34 |
43 | >255 |
44 | 68.22 ± 0.03 |
45 | 0.15 ± 0.008 |
46 | >255 |
47 | 4.95 ± 0.25 |
48 | 0.68 ± 0.045 |
49 | >255 |
50 | 0.23 ± 0.01 |
Acarbose (reference drug) | 181.02 ± 3.1 |
Property | ADMETlab [46] | ADMETlab 2.0 [47] | SwissADME [48] | ProTox-II [49] | Consensus Value |
---|---|---|---|---|---|
Physicochemical | |||||
Water solubility (μg/mL) | 1.94 | 2.57 | 0.02 | 1.51 | |
LogP | 6.21 | 4.93 | 6.30 | 6.69 | 5.81 |
Absorption | |||||
Human intestinal absorption | Yes | No | Low | No | |
Human oral bioavailability | No | No | No | ||
Caco-2 permeability | Yes | No | − | ||
P-glycoprotein substrate | No | No | No | No | |
P-glycoprotein inhibitor | Yes | Yes | Yes | ||
Distribution | |||||
Plasma protein binding (%) | 87.09 | 99.83 | 93.46 | ||
BBB permeability | No | No | No | No | |
Metabolism | |||||
CYP1A2 inhibitor | No | No | No | No | |
CYP2C19 inhibitor | Yes | Yes | No | Yes | |
CYP2C9 inhibitor | Yes | Yes | Yes | Yes | |
CYP2D6 inhibitor | No | Yes | No | No | |
CYP2D6 substrate | No | No | No | ||
CYP3A4 inhibitor | Yes | Yes | No | Yes | |
CYP3A4 substrate | Yes | Yes | Yes | ||
Excretion | |||||
Total Clearance (mL/min/kg) | 1.77 | 4.03 | 2.9 | ||
T1/2 (h) | 2.13 | 0.15 | 1.14 | ||
Toxicity | |||||
AMES toxicity | No | No | No | No | |
hERG inhibitor | Yes | No | − | ||
Rat acute oral LD50 (mg/kg) | 121.4 | 520 | 320.7 | ||
Hepatotoxicity | Yes | No | No | No | |
Skin Sensitisation | No | No | No | ||
Carcinogenicity | No | No | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tretyakova, E.; Smirnova, I.; Kazakova, O.; Nguyen, H.T.T.; Shevchenko, A.; Sokolova, E.; Babkov, D.; Spasov, A. New Molecules of Diterpene Origin with Inhibitory Properties toward α-Glucosidase. Int. J. Mol. Sci. 2022, 23, 13535. https://doi.org/10.3390/ijms232113535
Tretyakova E, Smirnova I, Kazakova O, Nguyen HTT, Shevchenko A, Sokolova E, Babkov D, Spasov A. New Molecules of Diterpene Origin with Inhibitory Properties toward α-Glucosidase. International Journal of Molecular Sciences. 2022; 23(21):13535. https://doi.org/10.3390/ijms232113535
Chicago/Turabian StyleTretyakova, Elena, Irina Smirnova, Oxana Kazakova, Ha Thi Thu Nguyen, Alina Shevchenko, Elena Sokolova, Denis Babkov, and Alexander Spasov. 2022. "New Molecules of Diterpene Origin with Inhibitory Properties toward α-Glucosidase" International Journal of Molecular Sciences 23, no. 21: 13535. https://doi.org/10.3390/ijms232113535
APA StyleTretyakova, E., Smirnova, I., Kazakova, O., Nguyen, H. T. T., Shevchenko, A., Sokolova, E., Babkov, D., & Spasov, A. (2022). New Molecules of Diterpene Origin with Inhibitory Properties toward α-Glucosidase. International Journal of Molecular Sciences, 23(21), 13535. https://doi.org/10.3390/ijms232113535