FSAP Protects against Histone-Mediated Increase in Endothelial Permeability In Vitro
Abstract
:1. Introduction
2. Results
2.1. FSAP Inhibits Permeability Changes by Histones
2.2. FSAP Does Not Influence Permeability Changes by Thrombin and VEGF-A165
2.3. FSAP Rescues Redistribution of Junctional Proteins by Histones
2.4. Role of TLR in the Histone-Mediated Modulation of Permeability
2.5. The Cleavage of Histones by WT–SPD–FSAP
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Claesson-Welsh, L.; Dejana, E.; McDonald, D.M. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends. Mol. Med. 2021, 27, 314–331. [Google Scholar] [CrossRef] [PubMed]
- Ehringer, W.D.; Edwards, M.J.; Miller, F.N. Mechanisms of alpha-thrombin, histamine, and bradykinin induced endothelial permeability. J. Cell Physiol. 1996, 167, 562–569. [Google Scholar] [CrossRef]
- Cheung, P.; Lau, P. Epigenetic regulation by histone methylation and histone variants. Mol. Endocrinol. 2005, 19, 563–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Verma, S.; Modak, S.B.; Chaturvedi, M.M.; Purohit, J.S. Extra-nuclear histones: Origin, significance and perspectives. Mol. Cell Biochem. 2022, 477, 507–524. [Google Scholar] [CrossRef] [PubMed]
- Abrams, S.T.; Zhang, N.; Manson, J.; Liu, T.; Dart, C.; Baluwa, F.; Wang, S.S.; Brohi, K.; Kipar, A.; Yu, W.; et al. Circulating histones are mediators of trauma-associated lung injury. Am. J. Respir. Crit. Care Med. 2013, 187, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Marsman, G.; Zeerleder, S.; Luken, B.M. Extracellular histones, cell-free DNA, or nucleosomes: Differences in immunostimulation. Cell Death Dis. 2016, 7, e2518. [Google Scholar] [CrossRef] [Green Version]
- Allam, R.; Scherbaum, C.R.; Darisipudi, M.N.; Mulay, S.R.; Hagele, H.; Lichtnekert, J.; Hagemann, J.H.; Rupanagudi, K.V.; Ryu, M.; Schwarzenberger, C.; et al. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J. Am. Soc. Nephrol. 2012, 23, 1375–1388. [Google Scholar] [CrossRef] [Green Version]
- Milone, G.; Bellofiore, C.; Leotta, S.; Milone, G.A.; Cupri, A.; Duminuco, A.; Garibaldi, B.; Palumbo, G. Endothelial Dysfunction after Hematopoietic Stem Cell Transplantation: A Review Based on Physiopathology. J. Clin. Med. 2022, 11, 623. [Google Scholar] [CrossRef]
- Trompet, S.; Pons, D.; Kanse, S.M.; de Craen, A.J.; Ikram, M.A.; Verschuren, J.J.; Zwinderman, A.H.; Doevendans, P.A.; Tio, R.A.; de Winter, R.J.; et al. Factor VII Activating Protease Polymorphism (G534E) Is Associated with Increased Risk for Stroke and Mortality. Stroke Res. Treat. 2011, 2011, 424759. [Google Scholar] [CrossRef] [Green Version]
- Willeit, J.; Kiechl, S.; Weimer, T.; Mair, A.; Santer, P.; Wiedermann, C.J.; Roemisch, J. Marburg I polymorphism of factor VII--activating protease: A prominent risk predictor of carotid stenosis. Circulation 2003, 107, 667–670. [Google Scholar] [CrossRef]
- Romisch, J. Factor-VII-activating protease (FSAP): A novel protease in hemostasis. Biol. Chem. 2002, 383, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Yamamichi, S.; Fujiwara, Y.; Kikuchi, T.; Nishitani, M.; Matsushita, Y.; Hasumi, K. Extracellular histone induces plasma hyaluronan-binding protein (factor-VII-activating protease) activation in vivo. Biochem. Biophys. Res. Commun. 2011, 409, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Marsman, G.; von Richthofen, H.; Bulder, I.; Lupu, F.; Hazelzet, J.; Luken, B.M.; Zeerleder, S. DNA and factor VII-activating protease protect against the cytotoxicity of histones. Blood Adv. 2017, 1, 2491–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kara, E.; Manna, D.; Loset, G.A.; Schneider, E.L.; Craik, C.S.; Kanse, S. Analysis of the substrate specificity of Factor-VII-activating protease (FSAP) and design of specific and sensitive peptide substrates. Thromb. Haemost. 2017, 117, 1750–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Land, W.G. Use of DAMPs and SAMPs as Therapeutic Targets or Therapeutics: A Note of Caution. Mol. Diagn. Ther. 2020, 24, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Baalachandran, R.; Li, Y.; Zhang, C.O.; Ke, Y.; Karki, P.; Birukov, K.G.; Birukova, A.A. Circulating extracellular histones exacerbate acute lung injury by augmenting pulmonary endothelial dysfunction via TLR4-dependent mechanism. Am. J. Physiol. Lung Cell Mol. Physiol. 2022, 323, L223–L239. [Google Scholar] [CrossRef]
- Grasso, S.; Neumann, A.; Lang, I.M.; Etscheid, M.; von Kockritz-Blickwede, M.; Kanse, S.M. Interaction of factor-VII-activating protease (FSAP) with neutrophil extracellular traps (NETs). Thromb. Res. 2018, 161, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Byskov, K.; Le Gall, S.M.; Thiede, B.; Camerer, E.; Kanse, S.M. Protease activated receptors (PAR)-1 and -2 mediate cellular effects of factor-VII-activating protease (FSAP). FASEB J. 2020, 34, 1079–1090. [Google Scholar] [CrossRef] [Green Version]
- Artunc, F.; Bohnert, B.N.; Schneider, J.C.; Staudner, T.; Sure, F.; Ilyaskin, A.V.; Worn, M.; Essigke, D.; Janessa, A.; Nielsen, N.V.; et al. Proteolytic activation of the epithelial sodium channel (ENaC) by factor-VII-activating protease (FSAP) and its relevance for sodium retention in nephrotic mice. Pflugers. Arch. 2022, 474, 217–229. [Google Scholar] [CrossRef]
- Uslu, O.; Herold, J.; Kanse, S.M. VEGF-A-Cleavage by FSAP and Inhibition of Neo-Vascularization. Cells 2019, 8, 1396. [Google Scholar] [CrossRef]
- Mambetsariev, N.; Mirzapoiazova, T.; Mambetsariev, B.; Sammani, S.; Lennon, F.E.; Garcia, J.G.; Singleton, P.A. Hyaluronic Acid binding protein 2 is a novel regulator of vascular integrity. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.V.; Roedel, E.; Manna, D.; Etscheid, M.; Morth, J.P.; Kanse, S.M. Characterization of the enzymatic activity of the serine protease domain of Factor-VII-activating protease (FSAP). Sci. Rep. 2019, 9, 18990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zihni, C.; Mills, C.; Matter, K.; Balda, M.S. Tight junctions: From simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 2016, 17, 564–580. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, M.; Loiselle, M.; Vaganay, C.; Pons, S.; Letavernier, E.; Demonchy, J.; Fodil, S.; Nouacer, M.; Placier, S.; Frere, P.; et al. Tumor Lysis Syndrome and AKI: Beyond Crystal Mechanisms. J. Am. Soc. Nephrol 2022, 33, 1154–1171. [Google Scholar] [CrossRef]
- Joshi, A.U.; Orset, C.; Engelhardt, B.; Baumgart-Vogt, E.; Gerriets, T.; Vivien, D.; Kanse, S.M. Deficiency of Factor-VII-activating protease alters the outcome of ischemic stroke in mice. Eur. J. Neurosci. 2015, 41, 965–975. [Google Scholar] [CrossRef]
- Kim, J.; Yeon; Manna, D.; Etscheid, M.; Leergaard, T.B.; Kanse, S.M. Factor-VII-activating protease (FSAP) inhibits the outcome of ischemic stroke in mouse models. FASEB J. 2022, 36, e22564. [Google Scholar] [CrossRef]
- Chen, H.R.; Yeh, T.M. In vitro Assays for Measuring Endothelial Permeability by Transwells and Electrical Impedance Systems. Bio. Protocol. 2017, 7, e227310. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.Y.; Tinholt, M.; Stavik, B.; Dahm, A.E.; Kanse, S.; Jin, Y.; Seidl, S.; Sahlberg, K.K.; Iversen, N.; Skretting, G.; et al. Effect of hypoxia on tissue factor pathway inhibitor expression in breast cancer. J. Thromb. Haemost. 2016, 14, 387–396. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.Y.; Stavik, B.; Thiede, B.; Sandset, P.M.; Kanse, S.M. FSAP Protects against Histone-Mediated Increase in Endothelial Permeability In Vitro. Int. J. Mol. Sci. 2022, 23, 13706. https://doi.org/10.3390/ijms232213706
Cui XY, Stavik B, Thiede B, Sandset PM, Kanse SM. FSAP Protects against Histone-Mediated Increase in Endothelial Permeability In Vitro. International Journal of Molecular Sciences. 2022; 23(22):13706. https://doi.org/10.3390/ijms232213706
Chicago/Turabian StyleCui, Xue Yan, Benedicte Stavik, Bernd Thiede, Per Morten Sandset, and Sandip M. Kanse. 2022. "FSAP Protects against Histone-Mediated Increase in Endothelial Permeability In Vitro" International Journal of Molecular Sciences 23, no. 22: 13706. https://doi.org/10.3390/ijms232213706
APA StyleCui, X. Y., Stavik, B., Thiede, B., Sandset, P. M., & Kanse, S. M. (2022). FSAP Protects against Histone-Mediated Increase in Endothelial Permeability In Vitro. International Journal of Molecular Sciences, 23(22), 13706. https://doi.org/10.3390/ijms232213706