Validation of a QTL on Chromosome 1DS Showing a Major Effect on Salt Tolerance in Winter Wheat
Abstract
:1. Introduction
- (i)
- To characterize the salinity tolerance of F3 lines of two connected biparental crosses, in which a salt-sensitive parent (Bobur) was crossed with two different salt-tolerant cultivars (Altay2000) and lines (UZ-11CWA08), respectively.
- (ii)
- To describe the ionomic, biochemical and physiological responses of salt-sensitive and salt-tolerant lines.
- (iii)
- To validate the effect of salt-tolerant candidate genes identified in the prequel wheat study.
- (iv)
- To analyze the gene expression of putative candidate genes that is involved in the salinity response of the lines. The results should be valuable for improving salt tolerance and breeding salt-tolerant cultivars faster.
2. Results
2.1. Phenotypic Traits Were Affected by Salinity Stress
2.2. Identifying Salt-Tolerant and Salt-Sensitive Progenies in the Segregating Populations
2.3. Differences between Salt-Tolerant and Salt-Sensitive Lines
2.3.1. Salt Stress Response of Leaf Ionic Traits in Salt Contrasting Lines
2.3.2. Biochemical and Physiological Modulations under Salt Stress
2.3.3. Validation of Candidate Genes in Both Segregating Populations and by Expression Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Hydroponic Experiment
4.3. Trait Quantification
4.4. Ionic, Biochemical and Physiological Analyses
4.5. Analysis of Marker Trait Associations (MTAs) and Their Allelic Variations
4.6. In Silico Expression Analysis of Candidate Genes
4.7. RNA Extraction and qRT-PCR Analyses
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; FAOSTAT. Food and Agriculture Organisation of the United Nations. 2022. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 3 February 2022).
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops That Feed the World 10. Past Successes and Future Challenges to the Role Played by Wheat in Global Food Security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- Jahan, M.A.H.S.; Hossain, A.; Teixeira da Silva, J.A.; el Sabagh, A.; Rashid, M.H.; Barutçular, C. Effect of Naphthaleneacetic Acid on Root and Plant Growth and Yield of Ten Irrigated Wheat Genotypes. Pak. J. Bot. 2019, 51, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Barutcular, C.; el Sabagh, A.; Koc, M.; Ratnasekera, D. Relationships between Grain Yield and Physiological Traits of Durum Wheat Varieties under Drought and High Temperature Stress in Mediterranean Environments. Fresenius Environ. Bull. 2017, 26, 4282–4291. [Google Scholar]
- Darwish, M.A.H.; Farhat, W.Z.E.; el Sabagh, A. Inheritance of Some Agronomic Characters and Rusts Resistance in Fifteen F2 Wheat Populations. Cercet. Agron. Mold. 2018, 51, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Mohsen, A.A.; Abd El-Shafi, M.A.; Gheith, E.M.S.; Suleiman, H.S. Using Different Statistical Procedures for Evaluating Drought Tolerance Indices of Bread Wheat Genotypes. Adv. Agric. Biol. 2015, 4, 19–30. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop Salt Tolerance—Current Assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Läuchli, A. Approaches to Increasing the Salt Tolerance of Wheat and Other Cereals. J. Exp. Bot. 2006, 57, 1025–1043. [Google Scholar] [CrossRef] [Green Version]
- Yassin, M.; Fara, S.; Hossain, A.; Saneoka, H.; El Sabagh, A. Assessment of Salinity Tolerance Bread Wheat Genotypes: Using Stress Tolerance Indices. Fresenius Environ. Bull. 2019, 28, 4199–4217. [Google Scholar]
- Huang, Y.; Bie, Z.; He, S.; Hua, B.; Zhen, A.; Liu, Z. Improving Cucumber Tolerance to Major Nutrients Induced Salinity by Grafting onto Cucurbita Ficifolia. Environ. Exp. Bot. 2010, 69, 32–38. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Rahman, A.; Anee, T.I.; Alam, M.U.; Bhuiyan, T.F.; Oku, H.; Fujita, M. Approaches to Enhance Salt Stress Tolerance in Wheat. In Wheat Improvement, Management and Utilization; IntechOpen: London, UK, 2017; pp. 151–187. [Google Scholar] [CrossRef] [Green Version]
- Guellim, A.; Catterou, M.; Chabrerie, O.; Tetu, T.; Hirel, B.; Dubois, F.; Ben Ahmed, H.; Kichey, T. Identification of Phenotypic and Physiological Markers of Salt Stress Tolerance in Durum Wheat (Triticum Durum Desf.) through Integrated Analyses. Agronomy 2019, 9, 844. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Harris, P.J.C. Potential Biochemical Indicators of Salinity Tolerance in Plants. Plant Sci. 2004, 166, 3–16. [Google Scholar] [CrossRef]
- El Sabagh, A.; Islam, M.S.; Skalicky, M.; Ali Raza, M.; Singh, K.; Anwar Hossain, M.; Hossain, A.; Mahboob, W.; Iqbal, M.A.; Ratnasekera, D.; et al. Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Front. Agron. 2021, 3, 661932. [Google Scholar] [CrossRef]
- Oyiga, B.C.; Sharma, R.C.; Shen, J.; Baum, M.; Ogbonnaya, F.C.; Léon, J.; Ballvora, A. Identification and Characterization of Salt Tolerance of Wheat Germplasm Using a Multivariable Screening Approach. J. Agron. Crop Sci. 2016, 202, 472–485. [Google Scholar] [CrossRef]
- Shannon, M.C.; Rhoades, J.D.; Draper, J.H.; Scardaci, S.C.; Spyres, M.D. Assessment of Salt Tolerance in Rice Cultivars in Response to Salinity Problems in California. Crop Sci. 1998, 38, 394–398. [Google Scholar] [CrossRef]
- Rao, S.; McNeilly, T. Genetic Basis of Variation for Salt Tolerance in Maize (Zea Mays L). Euphytica 1999, 108, 145–150. [Google Scholar] [CrossRef]
- Soloviev, A.A.; Kuklev, M.Y.; Karnaukhova, T.V. The Functional Status of Some Genotypes of Tomato Plants under Salty Conditions in Greenhouse. Acta Hortic. 2003, 609, 47–50. [Google Scholar] [CrossRef]
- Khan, A.S.; Asad, M.A.; Ali, Z. Assessment of Genetic Variability for NaCl Tolerance in Wheat. Pak. J. Agric. Sci. 2003, 40, 33–36. [Google Scholar]
- Tiwari, R.S.; Picchioni, G.A.; Steiner, R.L.; Jones, D.C.; Hughs, S.E.; Zhang, J. Genetic Variation in Salt Tolerance at the Seedling Stage in an Interspecific Backcross Inbred Line Population of Cultivated Tetraploid Cotton. Euphytica 2013, 194, 1–11. [Google Scholar] [CrossRef]
- Puram, V.R.R.; Ontoy, J.; Linscombe, S.; Subudhi, P.K. Genetic Dissection of Seedling Stage Salinity Tolerance in Rice Using Introgression Lines of a Salt Tolerant Landrace Nona Bokra. J. Hered. 2017, 108, 658–670. [Google Scholar] [CrossRef] [Green Version]
- Oyiga, B.C.; Sharma, R.C.; Baum, M.; Ogbonnaya, F.C.; Léon, J.; Ballvora, A. Allelic Variations and Differential Expressions Detected at Quantitative Trait Loci for Salt Stress Tolerance in Wheat. Plant Cell Environ. 2018, 41, 919–935. [Google Scholar] [CrossRef] [Green Version]
- Oyiga, B.C.; Ogbonnaya, F.C.; Sharma, R.C.; Baum, M.; Léon, J.; Ballvora, A. Genetic and Transcriptional Variations in NRAMP-2 and OPAQUE1 Genes Are Associated with Salt Stress Response in Wheat. Theor. Appl. Genet. 2019, 132, 323–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Xia, G. The Landscape of Molecular Mechanisms for Salt Tolerance in Wheat. Crop J. 2018, 6, 42–47. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.; Salam, A.; Azhar, F.M.; Khan, I.A. Genotypic Variation in Salinity Tolerance among Spring and Winter Wheat (Triticum aestivum L.) Accessions. S. Afr. J. Bot. 2007, 73, 70–75. [Google Scholar] [CrossRef]
- Amirjani, M.R. Effect of Salinity Stress on Growth, Mineral Composition, Proline Content, Antioxidant Enzymes of Soybean. Am. J. Plant Physiol. 2010, 5, 350–360. [Google Scholar] [CrossRef] [Green Version]
- Flowers, T.J.; Troke, P.F.; Yeo, A.R. The Mechanism of Salt Tolerance in Halophytes. Annu. Rev. Plant Physiol. 1977, 28, 89–121. [Google Scholar] [CrossRef]
- Muranaka, S.; Shimizu, K.; Kato, M. Ionic and Osmotic Effects of Salinity on Single-Leaf Photosynthesis in Two Wheat Cultivars with Different Drought Tolerance. Photosynthetica 2002, 40, 201–207. [Google Scholar] [CrossRef]
- Kiani-Pouya, A.; Rasouli, F. The Potential of Leaf Chlorophyll Content to Screen Bread-Wheat Genotypes in Saline Condition. Photosynthetica 2014, 52, 288–300. [Google Scholar] [CrossRef]
- Cuin, T.A.; Parsons, D.; Shabala, S. Wheat Cultivars Can Be Screened for NaCl Salinity Tolerance by Measuring Leaf Chlorophyll Content and Shoot Sap Potassium. Funct. Plant Biol. 2010, 37, 656–664. [Google Scholar] [CrossRef]
- Arshi, A.; Abdin, M.Z.; Iqbal, M. Ameliorative Effects of CaCl2 on Growth, Ionic Relations, and Proline Content of Senna under Salinity Stress. J. Plant Nutr 2005, 28, 101–125. [Google Scholar] [CrossRef]
- Bartels, D.; Sunkar, R. Drought and Salt Tolerance in Plants. Crit. Rev. Plant Sci. 2005, 24, 23–58. [Google Scholar] [CrossRef]
- Zhu, J.K. Regulation of Ion Homeostasis under Salt Stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Kibria, M.G.; Hossain, M.; Murata, Y.; Hoque, M.A. Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes. Rice Sci. 2017, 24, 155–162. [Google Scholar] [CrossRef]
- Schachtman, D.P.; Munns, R. Sodium Accumulation in Leaves of Triticum Species That Differ in Salt Tolerance. Funct. Plant Biol. 1992, 19, 331–340. [Google Scholar] [CrossRef]
- Husain, S.; von Caemmerer, S.; Munns, R. Control of Salt Transport from Roots to Shoots of Wheat in Saline Soil. Funct. Plant Biol. 2004, 31, 1115–1126. [Google Scholar] [CrossRef]
- Saqib, Z.A.; Akhtar, J.; Ul-Haq, M.A.; Ahmad, I.; Bakhat, H.F. Rationality of Using Various Physiological and Yield Related Traits in Determining Salt Tolerance in Wheat. Afr. J. Biotechnol. 2012, 11, 3558–3568. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Fujita, M. Plant Response to Salt Stress and Role of Exogenous Protectants to Mitigate Salt-Induced Damages. In Ecophysiol. Responses Plants Under Salt Stress; Springer: New York, NY, USA, 2013; pp. 25–87. [Google Scholar] [CrossRef]
- Wahid, A.; Perveen, M.; Gelani, S.; Basra, S.M.A. Pretreatment of Seed with H2O2 Improves Salt Tolerance of Wheat Seedlings by Alleviation of Oxidative Damage and Expression of Stress Proteins. J. Plant Physiol. 2007, 164, 283–294. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt Tolerance and Salinity Effects on Plants: A Review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.-K.; Bohnert, H.J. Plant Cellular and Molecular Responses to High Salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Hossain, M.A.; Fujita, M. Nitric Oxide Modulates Antioxidant Defense and the Methylglyoxal Detoxification System and Reduces Salinity-Induced Damage of Wheat Seedlings. Plant Biotechnol. Rep. 2011, 5, 353–365. [Google Scholar] [CrossRef]
- Zou, P.; Li, K.; Liu, S.; He, X.; Zhang, X.; Xing, R.; Li, P. Effect of Sulfated Chitooligosaccharides on Wheat Seedlings (Triticum aestivum L.) under Salt Stress. J. Agric. Food Chem 2016, 64, 2815–2821. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Hodson, J.N.; Williams, J.P.; Blumwald, E. Engineering Salt-Tolerant Brassica Plants: Characterization of Yield and Seed Oil Quality in Transgenic Plants with Increased Vacuolar Sodium Accumulation. Proc. Natl. Acad. Sci. USA 2001, 98, 12832–12836. [Google Scholar] [CrossRef] [Green Version]
- Apse, M.P.; Blumwald, E. Engineering Salt Tolerance in Plants. Curr. Opin. Biotechnol. 2002, 13, 146–150. [Google Scholar] [CrossRef]
- Machado, R.; Serralheiro, R. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Johnson, P.; Ryan, P.R.; Delhaize, E.; Zhou, M. Quantitative Trait Loci for Salinity Tolerance in Barley (Hordeum Vulgare L.). Mol. Breed. 2012, 29, 427–436. [Google Scholar] [CrossRef]
- Shabala, S.; Munns, R. Salinity Stress: Physiological Constraints and Adaptive Mechanisms. Plant Stress Physiol. 2012, 1, 59–93. [Google Scholar] [CrossRef]
- Rahman, A.; Nahar, K.; Hasanuzzaman, M.; Fujita, M. Calcium Supplementation Improves Na+/K+ Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings. Front. Plant Sci. 2016, 7, 609. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, A.; Xia, X. From Markers to Genome-Based Breeding in Wheat. Theor. Appl. Genet. 2019, 132, 767–784. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Sallam, A.; Stephen Baenziger, P.; Börner, A. GWAS: Fast-Forwarding Gene Identification and Characterization in Temperate Cereals: Lessons from Barley—A Review. J. Adv. Res. 2020, 22, 119–135. [Google Scholar] [CrossRef]
- Singh, V.; Singh, A.P.; Bhadoria, J.; Giri, J.; Singh, J.; Vineeth, T.V.; Sharma, P.C. Differential Expression of Salt-Responsive Genes to Salinity Stress in Salt-Tolerant and Salt-Sensitive Rice (Oryza Sativa L.) at Seedling Stage. Protoplasma 2018, 255, 1667–1681. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.N.; Teferi, T.J.; Ambaw, A.M.; Gabi, M.T.; Koua, P.; Léon, J.; Ballvora, A. New Drought-Adaptive Loci Underlying Candidate Genes on Wheat Chromosome 4B with Improved Photosynthesis and Yield Responses. Physiol. Plant 2021, 173, 2166–2180. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Saradadevi, R.; Mukankusi, C.; Li, L.; Amongi, W.; Mbiu, J.P.; Raatz, B.; Ariza, D.; Beebe, S.; Varshney, R.K.; Huttner, E.; et al. Multivariate Genomic Analysis and Optimal Contributions Selection Predicts High Genetic Gains in Cooking Time, Iron, Zinc, and Grain Yield in Common Beans in East Africa. Plant Genome 2021, 14, e20156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cao, Y.; Wang, Z.; Wang, Z.; Shi, J.; Liang, X.; Song, W.; Chen, Q.; Lai, J.; Jiang, C. A Retrotransposon in an HKT1 Family Sodium Transporter Causes Variation of Leaf Na+ Exclusion and Salt Tolerance in Maize. New Phytol. 2018, 217, 1161–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzal, M.; Hindawi, S.E.S.; Alghamdi, S.S.; Migdadi, H.H.; Khan, M.A.; Hasnain, M.U.; Arslan, M.; Habib ur Rahman, M.; Sohaib, M. Potential Breeding Strategies for Improving Salt Tolerance in Crop Plants. J. Plant Growth Regul. 2022, 1–23. [Google Scholar] [CrossRef]
- Said, A.A.; Moursi, Y.S.; Sallam, A. Association Mapping and Candidate Genes for Physiological Non-Destructive Traits: Chlorophyll Content, Canopy Temperature, and Specific Leaf Area under Normal and Saline Conditions in Wheat. Front. Genet. 2022, 13, 980319. [Google Scholar] [CrossRef]
- Akram, M.; Malik, M.A.; Ashraf, M.Y.; Saleem, M.F.; Hussain, M. Competitive Seedling Growth and K/Na Ratio in Different Maize (Zea Mays l.) Hybrids under Salinity Stress. Pak. J. Bot. 2007, 39, 2553–2563. [Google Scholar]
- Siddiqui, M.N.; Mostofa, M.G.; Akter, M.M.; Srivastava, A.K.; Sayed, M.A.; Hasan, M.S.; Tran, L.S.P. Impact of Salt-Induced Toxicity on Growth and Yield-Potential of Local Wheat Cultivars: Oxidative Stress and Ion Toxicity Are among the Major Determinants of Salt-Tolerant Capacity. Chemosphere 2017, 187, 385–394. [Google Scholar] [CrossRef]
- Khan, M.A.; Shirazi, M.U.; Khan, M.A.; Mujtaba, S.M.; Islam, E.; Mumtaz, S.; Ashraf, M.Y. Role of Proline, K/Na Ratio and Chlorophyll Content in Salt Tolerance of Wheat (Triticum aestivum L.). Pak. J. Bot. 2009, 41, 633–638. [Google Scholar]
- Sarwar, S.; Ashraf, M.Y.; Naeem, M.H. Genetic Variability of Some Primitive Bread Wheat Varieties to Salt Tolerance. Pak. J. Bot. 2003, 35, 771–777. [Google Scholar]
- Ashraf, M.Y.; Akhtar, K.; Sarwar, G.; Ashraf, M. Role of the Rooting System in Salt Tolerance Potential of Different Guar Accessions. Agron. Sustain. Dev. 2005, 25, 243–249. [Google Scholar] [CrossRef]
- Liu, L.; Wang, B.; Liu, D.; Zou, C.; Wu, P.; Wang, Z.; Wang, Y.; Li, C. Transcriptomic and Metabolomic Analyses Reveal Mechanisms of Adaptation to Salinity in Which Carbon and Nitrogen Metabolism Is Altered in Sugar Beet Roots. BMC Plant Biol. 2020, 20, 138. [Google Scholar] [CrossRef] [Green Version]
- Bajwa, A.A.; Farooq, M.; Nawaz, A. Seed Priming with Sorghum Extracts and Benzyl Aminopurine Improves the Tolerance against Salt Stress in Wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2018, 24, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Poustini, K.; Siosemardeh, A.; Ranjbar, M. Proline Accumulation as a Response to Salt Stress in 30 Wheat (Triticum aestivum L.) Cultivars Differing in Salt Tolerance. Genet. Resour. Crop Evol. 2007, 54, 925–934. [Google Scholar] [CrossRef]
- El Moukhtari, A.; Cabassa-Hourton, C.; Farissi, M.; Savouré, A. How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development? Front. Plant Sci. 2020, 11, 1127. [Google Scholar] [CrossRef]
- Colmer, T.D.; Epstein, E.; Dvorak, J. Differential Solute Regulation in Leaf Blades of Various Ages in Salt-Sensitive Wheat and a Salt-Tolerant Wheat x Lophopyrum Elongatum (Host) A. Love Amphiploid. Plant Physiol. 1995, 108, 1715–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuin, T.A.; Shabala, S. Exogenously Supplied Compatible Solutes Rapidly Ameliorate NaCl-Induced Potassium Efflux from Barley Roots. Plant Cell Physiol. 2005, 46, 1924–1933. [Google Scholar] [CrossRef] [Green Version]
- Mourad, A.M.I.; Alomari, D.Z.; Alqudah, A.M.; Sallam, A.; Salem, K.F.M. Recent Advances in Wheat (Triticum Spp.) Breeding. In Advances in Plant Breeding Strategies: Cereals; Springer: Cham, Switzerland, 2019; pp. 559–593. [Google Scholar] [CrossRef]
- Moursi, Y.S.; Thabet, S.G.; Amro, A.; Dawood, M.F.A.; Stephen Baenziger, P.; Sallam, A. Detailed Genetic Analysis for Identifying QTLs Associated with Drought Tolerance at Seed Germination and Seedling Stages in Barley. Plants 2020, 9, 1425. [Google Scholar] [CrossRef]
- Mondal, S.; Sallam, A.; Sehgal, D.; Sukumaran, S.; Farhad, M.; Navaneetha Krishnan, J.; Kumar, U.; Biswal, A. Advances in Breeding for Abiotic Stress Tolerance in Wheat. In Genomic Designing for Abiotic Stress Resistant Cereal Crops; Springer: Cham, Switzerland, 2021; pp. 71–103. [Google Scholar] [CrossRef]
- Thabet, S.G.; Moursi, Y.S.; Sallam, A.; Karam, M.A.; Alqudah, A.M. Genetic Associations Uncover Candidate SNP Markers and Genes Associated with Salt Tolerance during Seedling Developmental Phase in Barley. Environ. Exp. Bot. 2021, 188, 104499. [Google Scholar] [CrossRef]
- Demiroğlu, G.; Khalvati, M.A.; Avcioğlu, R. Effect of Different Salt Concentrations on the Resistance of Maize Cultivars 2. Some Physiological Characteristics and Ion Accumulation in Early Growth. Turk. J. Field Crops 2001, 6, 55–60. Available online: https://dergipark.org.tr/en/pub/tjfc/issue/17145/179262 (accessed on 15 March 2022).
- Katsuhara, M.; Mimura, T.; Tazawa, M. ATP-Regulated Ion Channels in the Plasma Membrane of a Characeae Alga, Nitellopsis Obtusal. Plant Physiol. 1990, 93, 343–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roychoudhury, A.; Basu, S. Overexpression of an Abiotic-Stress Inducible Plant Protein in the Bacteria Escherichia Coli. Afr. J. Biotechnol. 2008, 7, 3231–3234. [Google Scholar]
- Chen, X.Q.; Yu, B.J. Ionic Effects of Na+ and Cl-on Photosynthesis in Glycine Max Seedlings under Isoosmotic Salt Stress. J. Plant Physiol. Mol. Biol. 2007, 33, 294–300. [Google Scholar]
- Mansour, E.; Moustafa, E.S.A.; Desoky, E.S.M.; Ali, M.M.A.; Yasin, M.A.T.; Attia, A.; Alsuhaibani, N.; Tahir, M.U.; El-Hendawy, S. Multidimensional Evaluation for Detecting Salt Tolerance of Bread Wheat Genotypes under Actual Saline Field Growing Conditions. Plants 2020, 9, 1324. [Google Scholar] [CrossRef]
- Guidi, L.; Degl’innocenti, E.; Soldatini, G.F. Assimilation of CO2, Enzyme Activation and Photosynthetic Electron Transport in Bean Leaves, as Affected by High Light and Ozone. New Phytol. 2002, 156, 377–388. [Google Scholar] [CrossRef]
- Bussotti, F.; Desotgiu, R.; Cascio, C.; Pollastrini, M.; Gravano, E.; Gerosa, G.; Marzuoli, R.; Nali, C.; Lorenzini, G.; Salvatori, E.; et al. Ozone Stress in Woody Plants Assessed with Chlorophyll a Fluorescence. A Critical Reassessment of Existing Data. Environ. Exp. Bot. 2011, 73, 19–30. [Google Scholar] [CrossRef]
- Chen, T.H.H.; Murata, N. Glycinebetaine Protects Plants against Abiotic Stress: Mechanisms and Biotechnological Applications. Plant Cell Environ. 2011, 34, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.R. Chlorophyll Fluorescence: A Probe of Photosynthesis in Vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [Green Version]
- Tougou, M.; Hashiguchi, A.; Yukawa, K.; Nanjo, Y.; Hiraga, S.; Nakamura, T.; Nishizawa, K.; Komatsu, S. Responses to Flooding Stress in Soybean Seedlings with the Alcohol Dehydrogenase Transgene. Plant Biotechnol. 2012, 29, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Myint, T.; Ismawanto, S.; Namasivayam, P.; Napis, S.; Abdulla, M.P. Expression Analysis of the ADH Genes in Arabidopsis Plants Exposed to PEG-Induced Water Stress. World J. Agric. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Shi, H.; Liu, W.; Yao, Y.; Wei, Y.; Chan, Z. Alcohol Dehydrogenase 1 (ADH1) Confers Both Abiotic and Biotic Stress Resistance in Arabidopsis. Plant Sci. 2017, 262, 24–31. [Google Scholar] [CrossRef]
- Su, W.; Ren, Y.; Wang, D.; Su, Y.; Feng, J.; Zhang, C.; Tang, H.; Xu, L.; Muhammad, K.; Que, Y. The Alcohol Dehydrogenase Gene Family in Sugarcane and Its Involvement in Cold Stress Regulation. BMC Genom. 2020, 21, 521. [Google Scholar] [CrossRef] [PubMed]
- Piechotta, K.; Lu, J.; Delpire, E. Cation Chloride Cotransporters Interact with the Stress-Related Kinases Ste20-Related Proline-Alanine-Rich Kinase (SPAK) and Oxidative Stress Response 1 (OSR1). J. Biol. Chem. 2002, 277, 50812–50819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dith Gagnon, É.; Forbush, B.; Caron, L.; Isenring, P. Functional Comparison of Renal Na-K-Cl Cotransporters between Distant Species. Am. J. Physiol. Cell Physiol. 2003, 284, 365–370. [Google Scholar] [CrossRef]
- Gamba, G. Molecular Physiology and Pathophysiology of Electroneutral Cation-Chloride Cotransporters. Physiol. Rev. 2005, 85, 423–493. [Google Scholar] [CrossRef]
- Zhang, R.; Niu, K.; Ma, H. Identification and Expression Analysis of the SWEET Gene Family from Poa Pratensis under Abiotic Stresses. DNA Cell Biol. 2020, 39, 1606–1620. [Google Scholar] [CrossRef]
- Chandran, D. Co-Option of Developmentally Regulated Plant SWEET Transporters for Pathogen Nutrition and Abiotic Stress Tolerance. IUBMB Life 2015, 67, 461–471. [Google Scholar] [CrossRef]
- Seo, P.J.; Park, J.M.; Kang, S.K.; Kim, S.G.; Park, C.M. An Arabidopsis Senescence-Associated Protein SAG29 Regulates Cell Viability under High Salinity. Planta 2011, 233, 189–200. [Google Scholar] [CrossRef]
- Tang, H.; Krishnakumar, V.; Bidwell, S.; Rosen, B.; Chan, A.; Zhou, S.; Gentzbittel, L.; Childs, K.L.; Yandell, M.; Gundlach, H.; et al. An Improved Genome Release (Version Mt4.0) for the Model Legume Medicago Truncatula. BMC Genom. 2014, 15, 312. [Google Scholar] [CrossRef] [Green Version]
- Gautam, T.; Saripalli, G.; Gahlaut, V.; Kumar, A.; Sharma, P.K.; Balyan, H.S.; Gupta, P.K. Further Studies on Sugar Transporter (SWEET) Genes in Wheat (Triticum aestivum L.). Mol. Biol. Rep. 2019, 46, 2327–2353. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yao, L.; Hao, X.; Li, N.; Qian, W.; Yue, C.; Ding, C.; Zeng, J.; Yang, Y.; Wang, X. Tea Plant SWEET Transporters: Expression Profiling, Sugar Transport, and the Involvement of CsSWEET16 in Modifying Cold Tolerance in Arabidopsis. Plant Mol. Biol. 2018, 96, 577–592. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Yang, S.; Zhu, H.; Jin, M.; Su, Y. Heterologous Expression of an Alligatorweed Highaffinity Potassium Transporter Gene Enhances Salinity Tolerance in Arabidopsis Thaliana. Am. J. Bot. 2014, 101, 840–850. [Google Scholar] [CrossRef]
- Chen, G.; Liu, C.; Gao, Z.; Zhang, Y.; Jiang, H.; Zhu, L.; Ren, D.; Yu, L.; Xu, G.; Qian, Q. Oshak1, a High-Affinity Potassium Transporter, Positively Regulates Responses to Drought Stress in Rice. Front. Plant Sci. 2017, 8, 1885. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.; Ren, Z.J.; Liu, Z.Q.; Feng, X.; Guo, R.Q.; Li, B.G.; Li, L.G.; Jing, H.C. SbHKT1;4, a Member of the High-Affinity Potassium Transporter Gene Family from Sorghum Bicolor, Functions to Maintain Optimal Na+/K+ Balance under Na+ Stress. J. Integr Plant Biol. 2014, 56, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Milner, M.J.; Seamon, J.; Craft, E.; Kochian, L.V. Transport Properties of Members of the ZIP Family in Plants and Their Role in Zn and Mn Homeostasis. J. Exp. Bot. 2013, 64, 369–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Li, J.L.; Wang, L.; Shi, W.M.; Su, Y.H. Identification and Localized Expression of Putative K+/H+ Antiporter Genes in Arabidopsis. Acta Physiol. Plant 2015, 37, 101–115. [Google Scholar] [CrossRef]
- Ma, J.J.; Han, M. Genomewide Analysis of ABCBs with a Focus on ABCB1 and ABCB19 in Malus domestica. J. Genet. 2016, 95, 141–149. [Google Scholar] [CrossRef]
- Nagaraj, V.J.; Altenbach, D.; Galati, V.; Lüscher, M.; Meyer, A.D.; Boller, T.; Wiemken, A. Distinct Regulation of Sucrose: Sucrose-1-fructosyltransferase (1-SST) and Sucrose: Fructan-6-fructosyltransferase (6-SFT), the Key Enzymes of Fructan Synthesis in Barley Leaves: 1-SST as the Pacemaker. New Phytol. 2004, 161, 735–748. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Rengasamy, P.; McDonald, G.K. The Response of Barley to Salinity Stress Differs between Hydroponic and Soil Systems. Funct. Plant Biol. 2010, 37, 621–633. [Google Scholar] [CrossRef]
- Ul Haq, T.; Gorham, J.; Akhtar, J.; Akhtar, N.; Steele, K.A. Dynamic Quantitative Trait Loci for Salt Stress Components on Chromosome 1 of Rice. Funct. Plant Biol. 2010, 37, 634–645. [Google Scholar] [CrossRef]
- Sharp, R.E.; Hsiao, T.C.; Silk, W.K. Growth of the Maize Primary Root at Low Water Potentials1 II. Role of Growth and Deposition of Hexose and Potassium in Osmotic Adjustment. Plant Physiol. 1990, 93, 1337–1346. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Abrahám, E.; Hourton-Cabassa, C.; Erdei, L.; Szabados, L. Methods for Determination of Proline in Plants. Methods Mol. Biol. 2010, 639, 317–331. [Google Scholar] [CrossRef]
- Ma, J.; Stiller, J.; Zheng, Z.; Liu, Y.X.; Wei, Y.; Zheng, Y.L.; Liu, C. A High-Throughput Pipeline for Detecting Locus-Specific Polymorphism in Hexaploid Wheat (Triticum aestivum L.). Plant Methods 2015, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Allel, D.; Benamar, A.; Badri, M.; Abdelly, C. Evaluation of Salinity Tolerance Indices in North African Barley Accessions at Reproductive Stage. Czech J. Genet. Plant Breed. 2019, 55, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Gilmour, A.R.; Thompson, R.; Cullis, B.R. Average Information REML: An Efficient Algorithm for Variance Parameter Estimation in Linear Mixed Models. Biometric 1995, 51, 1440–1450. [Google Scholar] [CrossRef]
- SAS Institute. Base SAS 9.4 Procedures Guide; SAS Institute: Cary, NC, USA, 2015. [Google Scholar]
- Robinson, H.F.; Comstock, R.E.; Harvey, P.H. Estimates of Heritability and the Degree of Dominance in Corn. Agron J. 1949, 41, 353–359. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation: Vienna, Austria, 2020. [Google Scholar]
S.O.V | d.f | SFW | SDW | RFW | RDW |
---|---|---|---|---|---|
F3 lines of cross Bobur*Altay2000 | |||||
Treatments (T) | 1 | 12,343.8 *** | 2172.64 *** | 8817.58 *** | 2117.06 *** |
Genotypes (G) | 273 | 8.01 *** | 2.57 *** | 6.60 *** | 1.36 ns |
TxG | 271 | 6.10 *** | 1.94 *** | 10.10 *** | 1.68 *** |
Error (Mean sq) | 548 | 1.67 | 0.03 | 0.19 | 0.007 |
F3 lines of cross Bobur*UZ-11CWA08 | |||||
Treatments (T) | 1 | 11,679.6 *** | 5825.92 *** | 1440.62 *** | 1915.45 *** |
Genotypes (G) | 276 | 7.88 *** | 2.29 *** | 1.68 *** | 1.09 ns |
TxG | 272 | 12.07 *** | 9.86 *** | 1.71 *** | 3.64 *** |
Error (Mean sq) | 554 | 1.22 | 0.02 | 0.75 | 0.02 |
SNP | Chr | Genome | Position (CM) | Alleles | Parents | Contrasting F3 Lines of Cross Bobur*Altay2000 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P1G082 | P1G119 | P1G202 | P1G264 | P1G132 | P1G253 | |||||||
Altay2000 | Bobur | Tolerant | Tolerant | Tolerant | Tolerant | Sensitive | Sensitive | |||||
RAC875_c38018_278 | 2AL | A | 110.13 | T/C | T | C | C | C | T | C | C | C |
Kukri_c11327_977 | 2AL | A | 341.14 | T/G | G | T | T | T | T | T | T | T |
Excalibur_c20439_825 | 2AL | A | 497.75 | T/C | C | T | T | T | T | T | T | T |
Excalibur_c39151_104 | 2AL | A | 502.19 | A/G | A | G | G | G | G | G | G | G |
BS00066475_51 | 3AL | A | 275.6 | A/G | G | A | A | A | A | A | A | A |
RAC875_c16405_84 | 4AS | A | 147.89 | T/C | C | T | T | T | T | T | T | T |
Tdurum_contig33628_129 | 4AS | A | 147.89 | T/C | C | T | T | T | T | T | T | T |
tplb0024k14_1812 | 6AS | A | 115.71 | T/C | C | T | T | T | T | T | T | T |
BS00035083_51 | 7AL | A | 103.7 | T/C | T | C | C | C | C | C | C | C |
wsnp_Ex_c43009_49439922 | 7AL | A | 103.7 | T/C | T | C | C | C | C | C | C | C |
Kukri_c1831_1243 | 7AL | A | 150.81 | T/C | T | C | C | C | C | C | C | C |
Ex_c2725_1442 | 1BS | B | 201.12 | A/G | G | A | G | G | G | G | G | G |
BobWhite_c11044_322 | 1BS | B | 266.71 | T/C | T | C | C | C | C | C | C | C |
BobWhite_c43917_288 | 1BS | B | 269.73 | A/G | G | A | G | G | G | G | G | G |
RAC875_c11609_62 | 2BS | B | 277.23 | A/G | G | A | A | A | A | A | A | A |
Ex_c16948_754 | 2BS | B | 367.4 | A/G | A | G | A | A | A | A | G | G |
BobWhite_c5756_532 | 2BS | B | 583.38 | A/C | A | C | C | C | C | C | C | C |
Kukri_c54078_114 | 5BL | B | 257.76 | T/G | T | G | G | G | G | G | G | G |
Tdurum_contig25513_123 | 5BL | B | 280.68 | A/G | A | G | G | G | G | G | G | G |
Tdurum_contig25513_195 | 5BL | B | 280.68 | T/C | T | C | C | C | C | C | C | C |
BobWhite_c48435_165 | 5BL | B | 280.68 | T/C | C | T | T | T | T | T | T | T |
RAC875_c62_1546 | 1DS | D | 108.87 | A/G | A | G | A | A | A | A | G | G |
BobWhite_c5419_643 | 1DS | D | 108.87 | A/G | A | G | A | G | A | G | A | A |
SNP | Chr. | Genome | Position (cM) | Alleles | Parents | Contrasting F3 Lines of Cross Bobur*UZ-11CWA08 | ||||||
P2G076 | P2G243 | P2G027 | P2G162 | |||||||||
UZ-11CWA08 | Bobur | Tolerant | Tolerant | Sensitive | Sensitive | |||||||
CAP7_c4879_249 | 1AL | A | 313.85 | A/C | A | C | A | A | C | A | ||
RAC875_c38018_278 | 2AL | A | 110.13 | T/C | T | C | C | C | C | T | ||
Excalibur_c20439_825 | 2AL | A | 497.75 | T/C | C | T | C | T | T | C | ||
Excalibur_c91176_326 | 2AL | A | 502.77 | A/G | A | G | A | G | A | G | ||
IAAV7086 | 2AL | A | 544.94 | A/G | G | A | G | A | G | A | ||
RFL_Contig5153_958 | 3AL | A | 555.33 | A/G | G | A | A | A | G | A | ||
Tdurum_contig33628_129 | 4AS | A | 147.89 | T/C | C | T | C | T | C | T | ||
Tdurum_contig33628_85 | 4AS | A | 147.89 | A/G | A | G | A | G | A | G | ||
wsnp_Ex_c43009_49439922 | 7AL | A | 103.7 | T/C | T | C | T | T | T | T | ||
BS00035083_51 | 7AL | A | 103.7 | T/C | T | C | T | C | T | T | ||
D_contig25392_201 | 1BS | B | 195.12 | A/G | G | A | G | G | G | A | ||
BobWhite_c11044_322 | 1BS | B | 266.71 | T/C | T | C | C | T | C | C | ||
Excalibur_c65341_303 | 2BS | B | 365.88 | A/G | G | A | A | A | A | A | ||
Ex_c16948_754 | 2BS | B | 367.4 | A/G | A | G | G | G | A | G | ||
BobWhite_c5756_532 | 2BS | B | 583.38 | A/C | A | C | C | C | C | C | ||
BS00032003_51 | 5BL | B | 1.33 | T/C | T | C | C | C | T | C | ||
Tdurum_contig25513_123 | 5BL | B | 280.68 | A/G | A | G | G | G | G | G | ||
BobWhite_c48435_165 | 5BL | B | 280.68 | T/C | C | T | C | C | T | T | ||
Excalibur_rep_c67190_638 | 7BS | B | 228.36 | T/G | T | G | G | G | G | G | ||
BS00087086_51 | 1DS | D | 108.87 | T/C | T | C | T | T | C | C | ||
BS00002178_51 | 1DS | D | 108.87 | A/G | G | A | G | G | A | A |
Associated ST Traits | SNP | Contrasting F3 Lines | Chr. | QTL | R2 (%) | Position (bp) | Position (CM) |
---|---|---|---|---|---|---|---|
ST_DRW | BS00002178_51 | Bobur*UZ-11CWA08 | 1DS | Q-1DS.1 | ≥13.33 | 33,712,262..33,712,362 | 108.87 |
ST_DRW | RAC875_c62_1546 | Bobur*Altay2000 | 1DS | Q-1DS.2 | ≥13.33 | 32,543,884..32,543,984 | 108.87 |
ST_DRW | BS00087086_51 | Bobur*UZ-11CWA08 | 1DS | Q-1DS.3 | ≥13.33 | 34,619,721..34,619,821 | 108.87 |
ST_DRW | Ex_c16948_754 | Bobur*Altay2000 | 2BS | Q-2BS.1 | ≥12.69 | 699,826,968..699,827,068 | 367.4 |
ST_DRW | BobWhite_c48435_165 | Bobur*UZ-11CWA08 | 5BL | Q-5BL.1 | ≥24.20 | 546,827,468..546,827,565 | 280.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, M.; Siddiqui, M.N.; Oyiga, B.C.; Léon, J.; Ballvora, A. Validation of a QTL on Chromosome 1DS Showing a Major Effect on Salt Tolerance in Winter Wheat. Int. J. Mol. Sci. 2022, 23, 13745. https://doi.org/10.3390/ijms232213745
Mohamed M, Siddiqui MN, Oyiga BC, Léon J, Ballvora A. Validation of a QTL on Chromosome 1DS Showing a Major Effect on Salt Tolerance in Winter Wheat. International Journal of Molecular Sciences. 2022; 23(22):13745. https://doi.org/10.3390/ijms232213745
Chicago/Turabian StyleMohamed, Maisa, Md Nurealam Siddiqui, Benedict Chijioke Oyiga, Jens Léon, and Agim Ballvora. 2022. "Validation of a QTL on Chromosome 1DS Showing a Major Effect on Salt Tolerance in Winter Wheat" International Journal of Molecular Sciences 23, no. 22: 13745. https://doi.org/10.3390/ijms232213745
APA StyleMohamed, M., Siddiqui, M. N., Oyiga, B. C., Léon, J., & Ballvora, A. (2022). Validation of a QTL on Chromosome 1DS Showing a Major Effect on Salt Tolerance in Winter Wheat. International Journal of Molecular Sciences, 23(22), 13745. https://doi.org/10.3390/ijms232213745