Properties, Physiological Functions and Involvement of Basidiomycetous Alcohol Oxidase in Wood Degradation
Abstract
:1. Introduction
2. Fungal Alcohol Oxidase—Occurrence in Nature, Structure, and Kinetics
3. Gene Structure and Regulation of Expression
4. Involvement of Alcohol Oxidase in Wood Degradation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cavener, D.R. GMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities. J. Mol. Biol. 1992, 223, 811–814. [Google Scholar] [CrossRef]
- Sutzl, L.; Foley, G.; Gillam, E.M.J.; Boden, M.; Haltrich, D. The GMC superfamily of oxidoreductases revisited: Analysis and evolution of fungal GMC oxidoreductases. Biotechnol. Biofuels 2019, 12, 118. [Google Scholar] [CrossRef] [PubMed]
- Urlacher, V.B.; Koschorreck, K. Pecularities and applications of aryl-alcohol oxidases from fungi. Appl. Microbiol. Biotechnol. 2021, 105, 4111–4126. [Google Scholar] [CrossRef]
- Romero, E.; Gadda, G. Alcohol oxidation by flavoenzymes. Biomol. Concepts 2014, 5, 299–318. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Ortega, A.; Ferreira, P.; Martinez, A.T. Fungal aryl-alcohol oxidase: A peroxide-producing flavoenzyme involved in lignin degradation. Appl. Microbiol. Biotechnol. 2012, 93, 1395–1410. [Google Scholar] [CrossRef]
- Daniel, G.; Volc, J.; Filonova, L.; Plihal, O.; Kubatova, E.; Halada, P. Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl. Environ. Microbiol. 2007, 73, 6241–6253. [Google Scholar] [CrossRef] [Green Version]
- Oide, S.; Tanaka, Y.; Watanabe, A.; Inui, M. Carbohydrate-binding property of a cell wall integrity and stress response component (WSC) domain of an alcohol oxidase from the rice blast pathogen Pyricularia oryzae. Enzym. Microb. Technol. 2019, 125, 13–20. [Google Scholar] [CrossRef]
- Wegner, G.H. Emerging applications of the methylotrophic yeasts. FEMS Microbiol. Rev. 1990, 7, 279–283. [Google Scholar] [CrossRef]
- Hartner, F.S.; Glieder, A. Regulation of methanol utilisation pathway genes in yeasts. Microb. Cell Fact. 2006, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.F.; Yang, J.; Zhao, F.; Lin, Y.; Han, S. Comparative transcriptome and metabolome analyses reveal the methanol dissimilation pathway of Pichia pastoris. BMC Genom. 2022, 23, 366. [Google Scholar] [CrossRef]
- Linke, D.; Lehnert, N.; Nimtz, M.; Berger, R.G. An alcohol oxidase of Phanerochaete chrysosporium with a distinct glycerol oxidase activity. Enzym. Microb. Technol. 2014, 61–62, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.S.; Birmingham, W.R.; Thompson, M.P.; Taglieber, A.; Daviet, L.; Turner, N.J. An engineered alcohol oxidase for the oxidation of primary alcohols. Chembiochem 2019, 20, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Janusz, G.; Pawlik, A.; Swiderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkolazka, A.; Paszczynski, A. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef] [Green Version]
- Bari, E.; Daryaei, M.G.; Karim, M.; Bahmani, M.; Schmidt, O.; Woodward, S.; Ghanbary, M.A.T.; Sistani, A. Decay of Carpinus betulus wood by Trametes versicolor-An anatomical and chemical study. Int. Biodeter. Biodegr. 2019, 137, 68–77. [Google Scholar] [CrossRef]
- Azimi, Y.; Bahmani, M.; Jafari, A.; Bakhtyari, H.R.R. Anatomical, chemical and mechanical characteristics of beech wood degraded by two Pleurotus species. Drv. Ind. 2020, 71, 47–53. [Google Scholar] [CrossRef]
- Cajnko, M.M.; Oblak, J.; Grilc, M.; Likozar, B. Enzymatic bioconversion process of lignin: Mechanisms, reactions and kinetics. Bioresour. Technol. 2021, 340, 125655. [Google Scholar] [CrossRef] [PubMed]
- Atiwesh, G.; Parrish, C.C.; Banoub, J.; Le, T.A.T. Lignin degradation by microorganisms: A review. Biotechnol. Prog. 2022, 38, e3226. [Google Scholar] [CrossRef]
- Ozimek, P.; Veenhuis, M.; van der Klei, I.J. Alcohol oxidase: A complex peroxisomal, oligomeric flavoprotein. FEMS Yeast Res. 2005, 5, 975–983. [Google Scholar] [CrossRef] [Green Version]
- Bringer, S.; Sprey, B.; Sahm, H. Purification and properties of alcohol oxidase from Poria contigua. Eur. J. Biochem. 1979, 101, 563–570. [Google Scholar] [CrossRef]
- Danneel, H.J.; Reichert, A.; Giffhorn, F. Production, purification and characterization of an alcohol oxidase of the ligninolytic fungus Peniophora gigantea. J. Biotechnol. 1994, 33, 33–41. [Google Scholar] [CrossRef]
- Isobe, K.; Takahashi, T.; Ogawa, J.; Kataoka, M.; Shimizu, S. Production and characterization of alcohol oxidase from Penicillium purpurescens AIU 063. J. Biosci. Bioeng. 2009, 107, 108–112. [Google Scholar] [CrossRef]
- Kumar, A.K.; Goswami, P. Functional characterization of alcohol oxidases from Aspergillus terreus MTCC 6324. Appl. Microbiol. Biotechnol. 2006, 72, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Isobe, K.; Kato, A.; Ogawa, J.; Kataoka, M.; Iwasaki, A.; Hasegawa, J.; Shimizu, S. Characterization of alcohol oxidase from Aspergillus ochraceus AIU 031. J. Gen. Appl. Microbiol. 2007, 53, 177–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, T.; Morikawa, Y.; Hayashi, N. Purification and characterization of alcohol oxidase from Paecilomyces variotii isolated as a formaldehyde-resistant fungus. Appl. Microbiol. Biotechnol. 2008, 77, 995–1002. [Google Scholar] [CrossRef]
- Kumar, A.K.; Goswami, P. Purification and properties of a novel broad substrate specific alcohol oxidase from Aspergillus terreus MTCC 6324. Biochim. Et Biophys. Acta-Proteins Proteom. 2008, 1784, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Barbora, L.; Das, P.; Goswami, P. Biofuel cell for generating power from methanol substrate using alcohol oxidase bioanode and air-breathed laccase biocathode. Biosens. Bioelectron. 2014, 59, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Shleev, S.V.; Shumakovich, G.P.; Nikitina, O.V.; Morozova, O.V.; Pavlishko, H.M.; Gayda, G.Z.; Gonchar, M.V. Purification and characterization of alcohol oxidase from a genetically constructed over-producing strain of the methylotrophic yeast Hansenula polymorpha. Biochem.-Mosc. 2006, 71, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.T.; Romero, E.; Dijkman, W.P.; de Vasconcellos, S.P.; Binda, C.; Mattevi, A.; Fraaije, M.W. Structure-based engineering of Phanerochaete chrysosporium alcohol oxidase for enhanced oxidative power toward glycerol. Biochemistry 2018, 57, 6209–6218. [Google Scholar] [CrossRef] [Green Version]
- Vonck, J.; Parcej, D.N.; Mills, D.J. Structure of alcohol oxidase from Pichia pastoris by cryo-electron microscopy. PLoS ONE 2016, 11, e0159476. [Google Scholar] [CrossRef] [Green Version]
- Kellogg, R.M.; Kruizinga, W.; Bystrykh, L.V.; Dijkhuizen, L.; Harder, W. Structural analysis of a stereochemical modification of flavin adenine-dinucleotide in alcohol oxidase from methylotrophic yeasts. Tetrahedron 1992, 48, 4147–4162. [Google Scholar] [CrossRef]
- Goswami, P.; Chinnadayyala, S.S.R.; Chakraborty, M.; Kumar, A.K.; Kakoti, A. An overview on alcohol oxidases and their potential applications. Appl. Microbiol. Biotechnol. 2013, 97, 4259–4275. [Google Scholar] [CrossRef] [PubMed]
- Tjallinks, G.; Martin, C.; Fraaije, M.W. Enantioselective oxidation of secondary alcohols by the flavoprotein alcohol oxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 2021, 704, 108888. [Google Scholar] [CrossRef]
- Martin, C.; Trajkovic, M.; Fraaije, M.W. Production of hydroxy acids: Selective double oxidation of diols by flavoprotein alcohol oxidase. Angew. Chem. Int. Ed. Engl. 2020, 59, 4869–4872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillen, F.; Martinez, A.T.; Martinez, M.J. Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur. J. Biochem. 1992, 209, 603–611. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Sulej, J.; Swiderska-Burek, U.; Jarosz-Wilkolazka, A.; Paszczynski, A. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 2017, 41, 941–962. [Google Scholar] [CrossRef] [Green Version]
- Frasconi, M.; Favero, G.; Boer, H.; Koivula, A.; Mazzei, F. Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochim. Biophys. Acta 2010, 1804, 899–908. [Google Scholar] [CrossRef]
- Dzedzyulya, E.I.; Becker, E.G. Mn-peroxidase from Bjerkandera adusta 90-41. Purification and substrate specificity. Biochemistry 2000, 65, 707–712. [Google Scholar]
- Ruiz-Duenas, F.J.; Ferreira, P.; Martinez, M.J.; Martinez, A.T. In vitro activation, purification, and characterization of Escherichia coli expressed aryl-alcohol oxidase, a unique H2O2-producing enzyme. Protein Expr. Purif. 2006, 45, 191–199. [Google Scholar] [CrossRef]
- Asada, Y.; Watanabe, A.; Ohtsu, Y.; Kuwahara, M. Purification and characterization of an aryl-alcohol oxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Biosc. Biotechnol. Biochem. 1995, 59, 1339–1341. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.N.; Hou, C.T.; Laskin, A.I.; Derelanko, P. Microbial oxidation of methanol: Properties of crystallized alcohol oxidase from a yeast, Pichia sp. Arch. Biochem. Biophys. 1981, 210, 481–488. [Google Scholar] [CrossRef]
- Kumar, A.K.; Goswami, P. Dissociation and reconstitution studies of a broad substrate specific multimeric alcohol oxidase protein produced by Aspergillus terreus. J. Biochem. 2009, 145, 259–265. [Google Scholar] [CrossRef]
- van der Klei, I.J.; Bystrykh, L.V.; Harder, W. Alcohol oxidase from Hansenula polymorpha CBS 4732. Methods Enzym. 1990, 188, 420–427. [Google Scholar] [CrossRef]
- Eriksson, K.E.; Nishida, A. Methanol oxidase of Phanerochaete chrysosporium. Method Enzym. 1988, 161, 322–326. [Google Scholar]
- Nishida, A.; Eriksson, K.E. Formation, purification, and partial characterization of methanol oxidase, a H2O2-producing enzyme in Phanerochaete chrysosporium. Biotechnol. Appl. Biochem. 1987, 9, 325–338. [Google Scholar]
- Janssen, F.W.; Kerwin, R.M.; Ruelius, H.W. Alcohol oxidase from Basidiomycetes. Methods Enzym. 1975, 41, 364–369. [Google Scholar] [CrossRef]
- Martinez, D.; Challacombe, J.; Morgenstern, I.; Hibbett, D.; Schmoll, M.; Kubicek, C.P.; Ferreira, P.; Ruiz-Duenas, F.J.; Martinez, A.T.; Kersten, P.; et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl. Acad. Sci. USA 2009, 106, 1954–1959. [Google Scholar] [CrossRef] [Green Version]
- Morin, E.; Kohler, A.; Baker, A.R.; Foulongne-Oriol, M.; Lombard, V.; Nagye, L.G.; Ohm, R.A.; Patyshakuliyeva, A.; Brun, A.; Aerts, A.L.; et al. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc. Natl. Acad. Sci. USA 2012, 109, 17501–17506. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; MacDonald, J.; Syed, K.; Salamov, A.; Hori, C.; Aerts, A.; Henrissat, B.; Wiebenga, A.; vanKuyk, P.A.; Barry, K.; et al. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genom. 2012, 13, 444. [Google Scholar] [CrossRef] [Green Version]
- Oghenekaro, A.O.; Kovalchuk, A.; Raffaello, T.; Camarero, S.; Gressler, M.; Henrissat, B.; Lee, J.; Liu, M.; Martínez, A.T.; Miettinen, O.; et al. Genome sequencing of Rigidoporus microporus provides insights on genes important for wood decay, latex tolerance and interspecific fungal interactions. Sci. Rep. 2020, 10, 5250. [Google Scholar] [CrossRef] [Green Version]
- Hori, C.; Ishida, T.; Igarashi, K.; Samejima, M.; Suzuki, H.; Master, E.; Ferreira, P.; Ruiz-Dueñas, F.J.; Held, B.; Canessa, P.; et al. Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood. PLoS Genet. 2014, 10, e1004759. [Google Scholar] [CrossRef] [Green Version]
- Umezawa, K.; Niikura, M.; Kojima, Y.; Goodell, B.; Yoshida, M. Transcriptome analysis of the brown rot fungus Gloeophyllum trabeum during lignocellulose degradation. PLoS ONE 2020, 15, e0243984. [Google Scholar] [CrossRef] [PubMed]
- Stajich, J.E.; Wilke, S.K.; Ahrén, D.; Au, C.H.; Birren, B.W.; Borodovsky, M.; Burns, C.; Canbäck, B.; Casselton, L.A.; Cheng, C.K.; et al. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea. Proc. Natl. Acad. Sci USA 2010, 107, 11889–11894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floudas, D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R.A.; Henrissat, B.; Martínez, A.T.; Otillar, R.; Spatafora, J.W.; Yadav, J.S.; et al. The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science 2012, 336, 1715–1719. [Google Scholar] [CrossRef] [PubMed]
- Janusz, G.; Mazur, A.; Wielbo, J.; Koper, P.; Żebracki, K.; Pawlik, A.; Ciołek, B.; Paszczyński, A.; Kubik-Komar, A. Comparative transcriptomic analysis of Cerrena unicolor revealed differential expression of genes engaged in degradation of various kinds of wood. Microbiol. Res. 2018, 207, 256–268. [Google Scholar] [CrossRef]
- Moiseenko, K.; Glazunova, O.; Shakhova, N.; Savinova, O.; Vasina, D.; Tyazhelova, T.; Psurtseva, N.; Fedorova, T. Data on the genome analysis of the wood-rotting fungus Steccherinum ochraceum LE-BIN 3174. Data Brief 2020, 29, 105169. [Google Scholar] [CrossRef] [PubMed]
- Janusz, G.; Kucharzyk, K.H.; Pawlik, A.; Staszczak, M.; Paszczynski, A.J. Fungal laccase, manganese peroxidase and lignin peroxidase: Gene expression and regulation. Enzym. Microb. Technol. 2013, 52, 1–12. [Google Scholar] [CrossRef]
- Yoko-o, T.; Komatsuzaki, A.; Yoshihara, E.; Zhao, S.; Umemura, M.; Gao, X.D.; Chiba, Y. Regulation of alcohol oxidase gene expression in methylotrophic yeast Ogataea minuta. J. Biosci. Bioeng. 2021, 132, 437–444. [Google Scholar] [CrossRef]
- Cregg, J.M.; Madden, K.R.; Barringer, K.J.; Thill, G.P.; Stillman, C.A. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol. Cell Biol. 1989, 9, 1316–1323. [Google Scholar] [CrossRef]
- Nakagawa, T.; Sakai, Y.; Mukaiyama, H.; Mizumura, T.; Miyaji, T.; Yurimoto, H.; Kato, N.; Tomizuka, N. Analysis of alcohol oxidase isozymes in gene-disrupted strains of methylotrophic yeast Pichia methanolica. J. Biosc. Bioeng. 2001, 91, 225–227. [Google Scholar] [CrossRef]
- Guillén, F.; Martinez, A.T.; Martínez, M.J. Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. App. Microbiol. Biotechnol. 1990, 32, 465–469. [Google Scholar] [CrossRef]
- Kuroda, K.; Kobayashi, K.; Tsumura, H.; Komeda, T.; Chiba, Y.; Jigami, Y. Production of Man5GlcNAc2-type sugar chain by the methylotrophic yeast Ogataea minuta. FEMS Yeast Res. 2006, 6, 1052–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carabajal, M.; Kellner, H.; Levin, L.; Jehmlich, N.; Hofrichter, M.; Ullrich, R. The secretome of Trametes versicolor grown on tomato juice medium and purification of the secreted oxidoreductases including a versatile peroxidase. J. Biotechnol. 2013, 168, 15–23. [Google Scholar] [CrossRef]
- Ji, X.-L.; Zhang, W.-T.; Gai, Y.-P.; Lu, B.-Y.; Yuan, C.-Z.; Liu, Q.-X.; Mu, Z.-M. Patterns of lignocellulose degradation and secretome analysis of Trametes trogii MT. Int. Biodeterior. Biodegrad. 2012, 75, 55–62. [Google Scholar] [CrossRef]
- Rohr, C.O.; Levin, L.N.; Mentaberry, A.N.; Wirth, S.A. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome. PLoS ONE 2013, 8, e81033. [Google Scholar] [CrossRef] [Green Version]
- Gaskell, J.; Kersten, P.; Larrondo, L.F.; Canessa, P.; Martinez, D.; Hibbett, D.; Schmoll, M.; Kubicek, C.P.; Martinez, A.T.; Yadav, J.; et al. Draft genome sequence of a monokaryotic model brown-rot fungus Postia (Rhodonia) placenta SB12. Genom. Data 2017, 14, 21–23. [Google Scholar] [CrossRef] [Green Version]
- Crestini, C.; Argyropoulos, D.S. The early oxidative biodegradation steps of residual kraft lignin models with laccase. Bioorg. Med. Chem. 1998, 6, 2161–2169. [Google Scholar] [CrossRef]
- Buswell, J.A.; Eriksson, K.-E.; Gupta, J.K.; Hamp, S.G.; Nordh, I. Vanillic acid metabolism by selected soft-rot, brown-rot, and white-rot fungi. Arch. Microbiol. 1982, 131, 366–374. [Google Scholar] [CrossRef]
- Ander, P.; Eriksson, K.-E. Methanol formation during lignin degradation by Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 1985, 21, 96–102. [Google Scholar] [CrossRef]
- Filley, T.R.; Cody, G.D.; Goodell, B.; Jellison, J.; Noser, C.; Ostrofsky, A. Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org. Geochem. 2002, 33, 111–124. [Google Scholar] [CrossRef]
- Venkatesagowda, B.; Dekker, R.F.H. Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups. Enzym. Microb. Technol. 2021, 147, 109780. [Google Scholar] [CrossRef]
- Himstedt, R.; Wagner, S.; Jaeger, R.J.R.; Lieunang Watat, M.-L.; Backenköhler, J.; Rupcic, Z.; Stadler, M.; Spiteller, P. Formaldehyde as a chemical defence agent of fruiting bodies of Mycena rosea and its role in the generation of the alkaloid mycenarubin C. Chembiochem 2020, 21, 1613–1620. [Google Scholar] [CrossRef]
- Yu, D.; Song, L.; Wang, W.; Guo, C. Isolation and characterization of formaldehyde-degrading fungi and its formaldehyde metabolism. Env. Sci. Pollut. Res. Int. 2014, 21, 6016–6024. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.R.; Sarkanen, S.; Wang, Y.Y. Lignin-degrading enzyme activities. Methods Mol. Biol. 2012, 908, 251–268. [Google Scholar] [CrossRef] [PubMed]
- Graz, M.; Jarosz-Wilkolazka, A.; Pawlikowska-Pawlega, B. Abortiporus biennis tolerance to insoluble metal oxides: Oxalate secretion, oxalate oxidase activity, and mycelial morphology. Biometals 2009, 22, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Varela, E.; Tien, M. Effect of pH and oxalate on hydroquinone-derived hydroxyl radical formation during brown rot wood degradation. Appl. Environ. Microbiol. 2003, 69, 6025–6031. [Google Scholar] [CrossRef] [Green Version]
- Pawlik, A.; Mazur, A.; Wielbo, J.; Koper, P.; Zebracki, K.; Kubik-Komar, A.; Janusz, G. RNA sequencing reveals differential gene expression of Cerrena unicolor in response to variable lighting conditions. Int. J. Mol. Sci. 2019, 20, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henske, J.K.; Springer, S.D.; O’Malley, M.A.; Butler, A. Substrate-based differential expression analysis reveals control of biomass degrading enzymes in Pycnoporus cinnabarinus. Biochem. Eng. J. 2018, 130, 83–89. [Google Scholar] [CrossRef]
- Wymelenberg, A.V.; Gaskell, J.; Mozuch, M.; Sabat, G.; Ralph, J.; Skyba, O.; Mansfield, S.D.; Blanchette, R.A.; Martinez, D.; Grigoriev, I.; et al. Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl. Environ. Microbiol. 2010, 76, 3599–3610. [Google Scholar] [CrossRef] [Green Version]
- Gaskell, J.; Blanchette, R.A.; Stewart, P.E.; BonDurant, S.S.; Adams, M.; Sabat, G.; Kersten, P.; Cullen, D. Transcriptome and secretome analyses of the wood decay fungus Wolfiporia cocos support alternative mechanisms of lignocellulose conversion. Appl. Environ. Microbiol. 2016, 82, 3979–3987. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Shrestha, R.; Jia, K.; Gao, P.F.; Geisbrecht, B.V.; Bossmann, S.H.; Shi, J.; Li, P. Characterization of dye-decolorizing peroxidase (DyP) from Thermomonospora curvata reveals unique catalytic properties of A-type DyPs. J. Biol. Chem. 2015, 290, 23447–23463. [Google Scholar] [CrossRef] [Green Version]
- Venkatesagowda, B. Enzymatic demethylation of lignin for potential biobased polymer applications. Fungal Biol. Rev. 2019, 33, 190–224. [Google Scholar] [CrossRef]
- Grąz, M.; Jarosz-Wilkołazka, A.; Janusz, G.; Mazur, A.; Wielbo, J.; Koper, P.; Żebracki, K.; Kubik-Komar, A. Transcriptome-based analysis of the saprophytic fungus Abortiporus biennis–response to oxalic acid. Microbiol. Res. 2017, 199, 79–88. [Google Scholar] [CrossRef] [PubMed]
Fungus Name (Type of Wood Rot) | pH | pI | MW (kDa) | Km (mM) vs. Methanol | Other Substrates | References |
---|---|---|---|---|---|---|
Gloeophyllum trabeum (BR 1) | 6.0–10.0 | 5.3 | 628.0 (8 × 72.4) | 2.3 | ethanol allyl alcohol 1-propanol 1-butanol 1-pentanol 2-methyl-1-propanol 3-methyl-1-butanol 2-propanol 2-butanol 3-pentanol 2-butene-1,4-diol benzyl alcohol 4-hydroxybenzyl alcohol D-arabinitol D-glucose ethanolamine | [6] |
Phanerodontia chrysosporium (WR 2) | 6.0–10.5 | 5.4 | 2 × 75.0 or 4 × 75.0 | 0.785–36.6 | ethanol (2-hydroxyethoxy)ethanol 1-propanol isopropanol 1,2-propanediol 5-aminopentan-1-ol butane-1,4-diol 1-pentanol pentane-1,4-diol pentane-1,5-diol hexane-1,6-diol hexane-1-ol octane-1,8-diol glycerol diethylene glycol 2,2’-sulfanediyldi(ethan-1-ol) 2,2’-[ethane-1,2-diylbis(oxy)]di(ethan-1-ol) ethylene glycol ethylene glycol mono-methylether | [11,43,44] |
Phlebiopsis gigantea (WR 2) | 7.3–9.0 | 5.3 | 576.0 (8 × 72.5) | 1.8 | allyl alcohol D-ribose erythritol ethanol isopropanol 1-butanol 1-propanol ribitol | [20] |
Polyporus obtusus, Radulodon casearius (WR 2) | 6.5–9 | 300.0 | [45] | |||
Poria contigua (BR 1) | 610.0 (8 × 79.0) | 0.2 | ethanol 1-propanol 1-butanol isopropyl alcohol 2-propin-1-o1 formaldehyde 2-mercaptoethanol | [19] |
Fungus | TATA | CAAT | ACE-1 | MRE | HSE | XRE | Cre-A | STRE | NIT2 | AP1/ AP2 | Sp1 |
---|---|---|---|---|---|---|---|---|---|---|---|
Agaricus bisporus var bisporus (H97) protein ID 195553 [47] | −80 | −96 −230 −1279 −1312 −1357 | −240 −2418 −2920 −3066 | −23 | −2881 | −938 −2503 −2625 | −311 −720 −1104 | −135 −267 −526 −763 −2772 −2805 | |||
Cerrena unicolor protein ID 352889 | −49 | −235 −353 −399 −418 −425 | −710 −742 −753 −1066 −1484 | −627 | −53 | −1287 −1309 | −549 −662 −669 −1526 −1825 −1923 | −172 −344 −414 −639 −1289 −1632 | −499 −862 | −799 | |
Phanerochaete chrysosporium RP-78 protein ID 6010 | −75 | −489 −514 −632 −1743 −1899 | −673 | −1985 −2007 | −26 | −1841 −1929 | −826 −987 −1110 −1330 −1382 −1452 | −936 −1814 −2454 | −1642 | −828 −1015 −1027 −2132 | |
Gloeolophyllum trabeum protein ID 139980 [53] | −96 | −508 −579 −857 −1281 −1410 −1763 | −119 −565 −971 −1331 −2659 | −25 | −1691 −2556 | −871 −965 −2341 −2369 | −1258 −1386 −1487 | −273 −412 −636 −1432 −1640 −1668 −1987 −2270 −2306 | |||
Postia placenta MAD-698-R-SB12 protein ID 1045608 [65] | −43 | −393 −565 −786 −946 −966 −1321 | −218 −717 | −16 | −416 −886 −1227 −1601 | −263 −445 −672 −1174 −1612 −1746 −1883 −1901 −2149 −2301 | −2148 | −364 −1011 −1614 −2056 −2423 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlik, A.; Stefanek, S.; Janusz, G. Properties, Physiological Functions and Involvement of Basidiomycetous Alcohol Oxidase in Wood Degradation. Int. J. Mol. Sci. 2022, 23, 13808. https://doi.org/10.3390/ijms232213808
Pawlik A, Stefanek S, Janusz G. Properties, Physiological Functions and Involvement of Basidiomycetous Alcohol Oxidase in Wood Degradation. International Journal of Molecular Sciences. 2022; 23(22):13808. https://doi.org/10.3390/ijms232213808
Chicago/Turabian StylePawlik, Anna, Sylwia Stefanek, and Grzegorz Janusz. 2022. "Properties, Physiological Functions and Involvement of Basidiomycetous Alcohol Oxidase in Wood Degradation" International Journal of Molecular Sciences 23, no. 22: 13808. https://doi.org/10.3390/ijms232213808
APA StylePawlik, A., Stefanek, S., & Janusz, G. (2022). Properties, Physiological Functions and Involvement of Basidiomycetous Alcohol Oxidase in Wood Degradation. International Journal of Molecular Sciences, 23(22), 13808. https://doi.org/10.3390/ijms232213808