Therapeutic Utility and Adverse Effects of Biologic Disease-Modifying Anti-Rheumatic Drugs in Inflammatory Arthritis
Abstract
:1. Introduction
2. Pathogenesis of Inflammatory Arthritis
3. Clinical Effects of bDMARDs in RA, axSpA, PsA, and Gout
3.1. Therapeutic Effects and Adverse Events of TNF Inhibitors
3.2. Therapeutic Use and Adverse Events of Anti-IL-6R Abs
3.3. Therapeutic Use and Adverse Events of T Cell Costimulatory Inhibitor (CTLA-Ig, Abatacept)
3.4. Therapeutic Application and Adverse Events of Anti-IL-17A/IL-17R Abs
3.5. Therapeutic Application and Adverse Events of Anti-IL-23/IL-12 p40 and Anti-IL-23 p19 Abs
3.6. Therapeutic Application and Adverse Events of Anti-CD20 Ab
3.7. Therapeutic Application and Adverse Events of Anti-IL-1 Blocker
4. Future Treatment Modalities
4.1. Dual Cytokine Blockage
4.2. Nanoparticle-Based Cytokine Inhibitors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAU | acute anterior uveitis |
ACR | American College of Rheumatology |
ALT | alanine transaminase |
AMI | acute myocardial infarction |
AS | ankylosing spondylitis |
ASDAS | ankylosing spondylitis disease activity score |
AST | aspartate transaminase |
axSpA | axial spondyloarthritis |
bDMARDs | biologic disease-modifying anti-rheumatic drugs |
CI | confidence interval |
CRP | C-reactive protein |
csDMARDs | conventional synthetic disease-modifying anti-rheumatic drugs |
CVD | cardiovascular disease |
DAS28 | disease activity score–28 joints |
EULAR | European Alliance of Associations for Rheumatology |
Fab | antigen-binding fragment |
Fv | fragment variable |
HF | heart failure |
HR | hazard ratio |
IBD | inflammatory bowel disease |
IL | interleukin |
ILD | interstitial lung disease |
MACE | major adverse cardiovascular event |
MHC | major histocompatibility complex |
mSASSS | modified stoke ankylosing spondylitis spinal score |
MSU | monosodium urate |
OR | odds ratio |
PsA | psoriatic arthritis |
RA | rheumatoid arthritis |
SpA | spondyloarthritis |
Th | helper T cell |
TNF | tumor necrosis factor |
TNFR2 | type II TNF-receptor |
Treg | regulatory T cell |
References
- Brown, A.K.; Quinn, M.A.; Karim, Z.; Conaghan, P.G.; Peterfy, C.G.; Hensor, E.; Wakefield, R.J.; O’Connor, P.J.; Emery, P. Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying antirheumatic drug-induced clinical remission: Evidence from an imaging study may explain structural progression. Arthritis Rheum. 2006, 54, 3761–3773. [Google Scholar] [CrossRef] [PubMed]
- Tsubaki, T.; Arita, N.; Kawakami, T.; Shiratsuchi, T.; Yamamoto, H.; Takubo, N.; Yamada, K.; Nakata, S.; Yamamoto, S.; Nose, M. Characterization of histopathology and gene-expression profiles of synovitis in early rheumatoid arthritis using targeted biopsy specimens. Arthritis Res. Ther. 2005, 7, R825–R836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Towiwat, P.; Doyle, A.J.; Gamble, G.D.; Tan, P.; Aati, O.; Horne, A.; Stamp, L.K.; Dalbeth, N. Urate crystal deposition and bone erosion in gout: ’inside-out’ or ’outside-in’? A dual-energy computed tomography study. Arthritis Res. Ther. 2016, 18, 208. [Google Scholar] [CrossRef] [Green Version]
- Chhana, A.; Dalbeth, N. The gouty tophus: A review. Curr. Rheumatol. Rep. 2015, 17, 19. [Google Scholar] [CrossRef]
- Schett, G.; Lories, R.J.; D’Agostino, M.A.; Elewaut, D.; Kirkham, B.; Soriano, E.R.; McGonagle, D. Enthesitis: From pathophysiology to treatment. Nature reviews. Rheumatology 2017, 13, 731–741. [Google Scholar] [CrossRef] [PubMed]
- McQueen, F.; Naredo, E. The ‘disconnect’ between synovitis and erosion in rheumatoid arthritis: A result of treatment or intrinsic to the disease process itself? Ann. Rheum. Dis. 2011, 70, 241–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McQueen, F.M.; Doyle, A.; Reeves, Q.; Gao, A.; Tsai, A.; Gamble, G.D.; Curteis, B.; Williams, M.; Dalbeth, N. Bone erosions in patients with chronic gouty arthropathy are associated with tophi but not bone oedema or synovitis: New insights from a 3 T MRI study. Rheumatology 2014, 53, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Wang, R.; Ward, M.M. Syndesmophyte growth in ankylosing spondylitis. Curr. Opin. Rheumatol. 2015, 27, 326–332. [Google Scholar] [CrossRef] [Green Version]
- Baraliakos, X.; Listing, J.; Rudwaleit, M.; Sieper, J.; Braun, J. The relationship between inflammation and new bone formation in patients with ankylosing spondylitis. Arthritis Res. Ther. 2008, 10, R104. [Google Scholar] [CrossRef] [Green Version]
- FitzGerald, O.; Ogdie, A.; Chandran, V.; Coates, L.C.; Kavanaugh, A.; Tillett, W.; Leung, Y.Y.; de Wit, M.; Scher, J.U.; Mease, P.J. Psoriatic arthritis. Nat. Rev. Dis. Primers 2021, 7, 59. [Google Scholar] [CrossRef]
- Elliott, A.; Pendleton, A.; Wright, G.; Rooney, M. The relationship between the nail and systemic enthesitis in psoriatic arthritis. Rheumatol. Adv. Pract. 2021, 5, rkab088. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Smolen, J.S. Diagnosis and Management of Rheumatoid Arthritis: A Review. Jama 2018, 320, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001. [Google Scholar] [CrossRef]
- Park, S.H.; Min, D.J.; Cho, M.L.; Kim, W.U.; Youn, J.; Park, W.; Cho, C.S.; Kim, H.Y. Shift toward T helper 1 cytokines by type II collagen-reactive T cells in patients with rheumatoid arthritis. Arthritis Rheum. 2001, 44, 561–569. [Google Scholar] [CrossRef]
- Paradowska-Gorycka, A.; Wajda, A.; Romanowska-Próchnicka, K.; Walczuk, E.; Kuca-Warnawin, E.; Kmiolek, T.; Stypinska, B.; Rzeszotarska, E.; Majewski, D.; Jagodzinski, P.P.; et al. Th17/Treg-Related Transcriptional Factor Expression and Cytokine Profile in Patients with Rheumatoid Arthritis. Front. Immunol. 2020, 11, 572858. [Google Scholar] [CrossRef]
- Dong, C. Diversification of T-helper-cell lineages: Finding the family root of IL-17-producing cells. Nat. Rev. Immunol. 2006, 6, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Leipe, J.; Skapenko, A.; Lipsky, P.E.; Schulze-Koops, H. Regulatory T cells in rheumatoid arthritis. Arthritis Res. Ther. 2005, 7, 93. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Min, H.K.; Koh, S.H.; Lee, S.H.; Kim, H.R.; Ju, J.H.; Kim, H.Y. Prognostic signature of interferon-γ and interleurkin-17A in early rheumatoid arthritis. Clin. Exp. Rheumatol. 2022, 40, 999–1005. [Google Scholar] [CrossRef]
- Cooles, F.A.H.; Anderson, A.E.; Lendrem, D.W.; Norris, J.; Pratt, A.G.; Hilkens, C.M.U.; Isaacs, J.D. The interferon gene signature is increased in patients with early treatment-naive rheumatoid arthritis and predicts a poorer response to initial therapy. J. Allergy Clin. Immunol. 2018, 141, 445–448.e444. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Andreev, D.; Oeser, K.; Krljanac, B.; Hueber, A.; Kleyer, A.; Voehringer, D.; Schett, G.; Bozec, A. Th2 and eosinophil responses suppress inflammatory arthritis. Nat. Commun. 2016, 7, 11596. [Google Scholar] [CrossRef]
- Aarvak, T.; Natvig, J.B. Cell-cell interactions in synovitis: Antigen presenting cells and T cell interaction in rheumatoid arthritis. Arthritis Res. 2001, 3, 13–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.A.; Colbert, R.A. Review: The interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheumatol. 2014, 66, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Fernández, O.M.; Mantilla, R.D.; Cruz-Tapias, P.; Rodriguez-Rodriguez, A.; Rojas-Villarraga, A.; Anaya, J.M. Spondyloarthropathies in autoimmune diseases and vice versa. Autoimmune Dis. 2012, 2012, 736384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, H.K.; Moon, J.; Lee, S.Y.; Lee, A.R.; Lee, C.R.; Lee, J.; Kwok, S.K.; Cho, M.L.; Park, S.H. Expanded IL-22(+) Group 3 Innate Lymphoid Cells and Role of Oxidized LDL-C in the Pathogenesis of Axial Spondyloarthritis with Dyslipidaemia. Immune Netw. 2021, 21, e43. [Google Scholar] [CrossRef] [PubMed]
- Sherlock, J.P.; Joyce-Shaikh, B.; Turner, S.P.; Chao, C.C.; Sathe, M.; Grein, J.; Gorman, D.M.; Bowman, E.P.; McClanahan, T.K.; Yearley, J.H.; et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat. Med. 2012, 18, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Toussirot, É.; Laheurte, C.; Gaugler, B.; Gabriel, D.; Saas, P. Increased IL-22- and IL-17A-Producing Mucosal-Associated Invariant T Cells in the Peripheral Blood of Patients with Ankylosing Spondylitis. Front. Immunol. 2018, 9, 1610. [Google Scholar] [CrossRef] [PubMed]
- Gracey, E.; Qaiyum, Z.; Almaghlouth, I.; Lawson, D.; Karki, S.; Avvaru, N.; Zhang, Z.; Yao, Y.; Ranganathan, V.; Baglaenko, Y.; et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 2016, 75, 2124–2132. [Google Scholar] [CrossRef]
- Desai, J.; Steiger, S.; Anders, H.J. Molecular Pathophysiology of Gout. Trends Mol. Med. 2017, 23, 756–768. [Google Scholar] [CrossRef]
- Fraenkel, L.; Bathon, J.M.; England, B.R.; St Clair, E.W.; Arayssi, T.; Carandang, K.; Deane, K.D.; Genovese, M.; Huston, K.K.; Kerr, G.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol 2021, 73, 1108–1123. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef]
- Eun-Jung, P.; Hyungjin, K.; Seung Min, J.; Yoon-Kyoung, S.; Han Joo, B.; Jisoo, L. The Use of Biological Disease-modifying Antirheumatic Drugs for Inflammatory Arthritis in Korea: Results of a Korean Expert Consensus. J. Rheum. Dis. 2020, 27, 4–21. [Google Scholar] [CrossRef]
- Sánchez-Piedra, C.; Sueiro-Delgado, D.; García-González, J.; Ros-Vilamajo, I.; Prior-Español, A.; Moreno-Ramos, M.J.; Garcia-Magallon, B.; Calvo-Gutiérrez, J.; Perez-Vera, Y.; Martín-Domenech, R.; et al. Changes in the use patterns of bDMARDs in patients with rheumatic diseases over the past 13 years. Sci. Rep. 2021, 11, 15051. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.M.; Deodhar, A.; Gensler, L.S.; Dubreuil, M.; Yu, D.; Khan, M.A.; Haroon, N.; Borenstein, D.; Wang, R.; Biehl, A.; et al. 2019 Update of the American College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research and Treatment Network Recommendations for the Treatment of Ankylosing Spondylitis and Nonradiographic Axial Spondyloarthritis. Arthritis Rheumatol. 2019, 71, 1599–1613. [Google Scholar] [CrossRef] [PubMed]
- van der Heijde, D.; Ramiro, S.; Landewé, R.; Baraliakos, X.; Van den Bosch, F.; Sepriano, A.; Regel, A.; Ciurea, A.; Dagfinrud, H.; Dougados, M.; et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann. Rheum. Dis. 2017, 76, 978–991. [Google Scholar] [CrossRef]
- FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Rheumatol. 2020, 72, 879–895. [Google Scholar] [CrossRef]
- Richette, P.; Doherty, M.; Pascual, E.; Barskova, V.; Becce, F.; Castañeda-Sanabria, J.; Coyfish, M.; Guillo, S.; Jansen, T.L.; Janssens, H.; et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann. Rheum. Dis. 2017, 76, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Lee, S.H.; Lee, H.T.; Lee, J.U.; Son, J.Y.; Shin, W.; Heo, Y.S. Structural Biology of the TNFα Antagonists Used in the Treatment of Rheumatoid Arthritis. Int. J. Mol. Sci. 2018, 19, 768. [Google Scholar] [CrossRef] [Green Version]
- Mpofu, S.; Fatima, F.; Moots, R.J. Anti-TNF-alpha therapies: They are all the same (aren’t they?). Rheumatology 2005, 44, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Mitoma, H.; Horiuchi, T.; Tsukamoto, H. Binding activities of infliximab and etanercept to transmembrane tumor necrosis factor-alpha. Gastroenterology 2004, 126, 934–935, author reply 935-936. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Hanauer, S.B.; Katz, S.; Safdi, M.; Wolf, D.G.; Baerg, R.D.; Tremaine, W.J.; Johnson, T.; Diehl, N.N.; Zinsmeister, A.R. Etanercept for active Crohn’s disease: A randomized, double-blind, placebo-controlled trial. Gastroenterology 2001, 121, 1088–1094. [Google Scholar] [CrossRef]
- Hueber, W.; Sands, B.E.; Lewitzky, S.; Vandemeulebroecke, M.; Reinisch, W.; Higgins, P.D.; Wehkamp, J.; Feagan, B.G.; Yao, M.D.; Karczewski, M.; et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: Unexpected results of a randomised, double-blind placebo-controlled trial. Gut 2012, 61, 1693–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lie, E.; Lindström, U.; Zverkova-Sandström, T.; Olsen, I.C.; Forsblad-d’Elia, H.; Askling, J.; Kapetanovic, M.C.; Kristensen, L.E.; Jacobsson, L.T.H. Tumour necrosis factor inhibitor treatment and occurrence of anterior uveitis in ankylosing spondylitis: Results from the Swedish biologics register. Ann. Rheum. Dis. 2017, 76, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.M.; Kim, M.; Kim, Y.J.; Lee, Y.; Kim, Y.G. Risk of Acute Anterior Uveitis in Ankylosing Spondylitis According to the Type of Tumor Necrosis Factor-Alpha Inhibitor and History of Uveitis: A Nationwide Population-Based Study. J. Clin. Med. 2022, 11, 631. [Google Scholar] [CrossRef]
- Roche, D.; Badard, M.; Boyer, L.; Lafforgue, P.; Pham, T. Incidence of anterior uveitis in patients with axial spondyloarthritis treated with anti-TNF or anti-IL17A: A systematic review, a pairwise and network meta-analysis of randomized controlled trials. Arthritis Res. Ther. 2021, 23, 192. [Google Scholar] [CrossRef]
- Min, H.K.; Lee, J.; Ju, J.H.; Park, S.H.; Kwok, S.K. Predictors of Assessment of Spondyloarthritis International Society (ASAS) Health Index in Axial Spondyloarthritis and Comparison of ASAS Health Index between Ankylosing Spondylitis and Nonradiographic Axial Spondyloarthritis: Data from the Catholic Axial Spondyloarthritis COhort (CASCO). J. Clin. Med. 2019, 8, 467. [Google Scholar] [CrossRef] [Green Version]
- Rupp, I.; Boshuizen, H.C.; Dinant, H.J.; Jacobi, C.E.; van den Bos, G.A. Disability and health-related quality of life among patients with rheumatoid arthritis: Association with radiographic joint damage, disease activity, pain, and depressive symptoms. Scand J. Rheumatol. 2006, 35, 175–181. [Google Scholar] [CrossRef]
- Koo, B.S.; Oh, J.S.; Park, S.Y.; Shin, J.H.; Ahn, G.Y.; Lee, S.; Joo, K.B.; Kim, T.H. Tumour necrosis factor inhibitors slow radiographic progression in patients with ankylosing spondylitis: 18-year real-world evidence. Ann. Rheum. Dis. 2020, 79, 1327–1332. [Google Scholar] [CrossRef]
- Molnar, C.; Scherer, A.; Baraliakos, X.; de Hooge, M.; Micheroli, R.; Exer, P.; Kissling, R.O.; Tamborrini, G.; Wildi, L.M.; Nissen, M.J.; et al. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: Results from the Swiss Clinical Quality Management cohort. Ann. Rheum. Dis. 2018, 77, 63–69. [Google Scholar] [CrossRef]
- Smolen, J.S.; Van Der Heijde, D.M.; St Clair, E.W.; Emery, P.; Bathon, J.M.; Keystone, E.; Maini, R.N.; Kalden, J.R.; Schiff, M.; Baker, D.; et al. Predictors of joint damage in patients with early rheumatoid arthritis treated with high-dose methotrexate with or without concomitant infliximab: Results from the ASPIRE trial. Arthritis Rheum. 2006, 54, 702–710. [Google Scholar] [CrossRef]
- Smolen, J.S.; Han, C.; Bala, M.; Maini, R.N.; Kalden, J.R.; van der Heijde, D.; Breedveld, F.C.; Furst, D.E.; Lipsky, P.E. Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement: A detailed subanalysis of data from the anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study. Arthritis Rheum. 2005, 52, 1020–1030. [Google Scholar] [CrossRef]
- Breedveld, F.C.; Weisman, M.H.; Kavanaugh, A.F.; Cohen, S.B.; Pavelka, K.; van Vollenhoven, R.; Sharp, J.; Perez, J.L.; Spencer-Green, G.T. The PREMIER study: A multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 2006, 54, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Emery, P.; Breedveld, F.; van der Heijde, D.; Ferraccioli, G.; Dougados, M.; Robertson, D.; Pedersen, R.; Koenig, A.S.; Freundlich, B. Two-year clinical and radiographic results with combination etanercept-methotrexate therapy versus monotherapy in early rheumatoid arthritis: A two-year, double-blind, randomized study. Arthritis Rheum. 2010, 62, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Goekoop-Ruiterman, Y.P.; de Vries-Bouwstra, J.K.; Allaart, C.F.; van Zeben, D.; Kerstens, P.J.; Hazes, J.M.; Zwinderman, A.H.; Ronday, H.K.; Han, K.H.; Westedt, M.L.; et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): A randomized, controlled trial. Arthritis Rheum. 2005, 52, 3381–3390. [Google Scholar] [CrossRef]
- Keystone, E.C.; Kavanaugh, A.F.; Sharp, J.T.; Tannenbaum, H.; Hua, Y.; Teoh, L.S.; Fischkoff, S.A.; Chartash, E.K. Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: A randomized, placebo-controlled, 52-week trial. Arthritis Rheum. 2004, 50, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Quinn, M.A.; Conaghan, P.G.; O’Connor, P.J.; Karim, Z.; Greenstein, A.; Brown, A.; Brown, C.; Fraser, A.; Jarret, S.; Emery, P. Very early treatment with infliximab in addition to methotrexate in early, poor-prognosis rheumatoid arthritis reduces magnetic resonance imaging evidence of synovitis and damage, with sustained benefit after infliximab withdrawal: Results from a twelve-month randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2005, 52, 27–35. [Google Scholar] [CrossRef] [PubMed]
- van der Heijde, D.; Klareskog, L.; Landewé, R.; Bruyn, G.A.; Cantagrel, A.; Durez, P.; Herrero-Beaumont, G.; Molad, Y.; Codreanu, C.; Valentini, G.; et al. Disease remission and sustained halting of radiographic progression with combination etanercept and methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 2007, 56, 3928–3939. [Google Scholar] [CrossRef] [PubMed]
- Kanbe, K.; Oh, K.; Chiba, J.; Inoue, Y.; Taguchi, M.; Yabuki, A. Efficacy of golimumab for preventing large joint destruction in patients with rheumatoid arthritis as determined by the ARASHI score. Mod. Rheumatol. 2017, 27, 938–945. [Google Scholar] [CrossRef]
- Emery, P.; Fleischmann, R.; van der Heijde, D.; Keystone, E.C.; Genovese, M.C.; Conaghan, P.G.; Hsia, E.C.; Xu, W.; Baratelle, A.; Beutler, A.; et al. The effects of golimumab on radiographic progression in rheumatoid arthritis: Results of randomized controlled studies of golimumab before methotrexate therapy and golimumab after methotrexate therapy. Arthritis Rheum. 2011, 63, 1200–1210. [Google Scholar] [CrossRef]
- Atsumi, T.; Yamamoto, K.; Takeuchi, T.; Yamanaka, H.; Ishiguro, N.; Tanaka, Y.; Eguchi, K.; Watanabe, A.; Origasa, H.; Yasuda, S.; et al. The first double-blind, randomised, parallel-group certolizumab pegol study in methotrexate-naive early rheumatoid arthritis patients with poor prognostic factors, C-OPERA, shows inhibition of radiographic progression. Ann. Rheum. Dis. 2016, 75, 75–83. [Google Scholar] [CrossRef]
- Emery, P.; Bingham, C.O., 3rd; Burmester, G.R.; Bykerk, V.P.; Furst, D.E.; Mariette, X.; van der Heijde, D.; van Vollenhoven, R.; Arendt, C.; Mountian, I.; et al. Certolizumab pegol in combination with dose-optimised methotrexate in DMARD-naïve patients with early, active rheumatoid arthritis with poor prognostic factors: 1-year results from C-EARLY, a randomised, double-blind, placebo-controlled phase III study. Ann. Rheum. Dis. 2017, 76, 96–104. [Google Scholar] [CrossRef]
- Landewé, R.; Ritchlin, C.T.; Aletaha, D.; Zhang, Y.; Ganz, F.; Hojnik, M.; Coates, L.C. Inhibition of radiographic progression in psoriatic arthritis by adalimumab independent of the control of clinical disease activity. Rheumatology 2019, 58, 1025–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulabchand, R.; Mouterde, G.; Barnetche, T.; Lukas, C.; Morel, J.; Combe, B. Effect of tumour necrosis factor blockers on radiographic progression of psoriatic arthritis: A systematic review and meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 2014, 73, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Avina-Zubieta, J.A.; Thomas, J.; Sadatsafavi, M.; Lehman, A.J.; Lacaille, D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: A meta-analysis of observational studies. Ann. Rheum. Dis. 2012, 71, 1524–1529. [Google Scholar] [CrossRef]
- Widdifield, J.; Paterson, J.M.; Huang, A.; Bernatsky, S. Causes of Death in Rheumatoid Arthritis: How Do They Compare to the General Population? Arthritis Care Res. 2018, 70, 1748–1755. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.P.; Wang, Y.H.; Pan, S.L. Increased risk of ischemic heart disease in young patients with newly diagnosed ankylosing spondylitis--a population-based longitudinal follow-up study. PLoS ONE 2013, 8, e64155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arumugam, R.; McHugh, N.J. Mortality and causes of death in psoriatic arthritis. J. Rheumatol. Suppl. 2012, 89, 32–35. [Google Scholar] [CrossRef]
- Vargas-Santos, A.B.; Neogi, T.; da Rocha Castelar-Pinheiro, G.; Kapetanovic, M.C.; Turkiewicz, A. Cause-Specific Mortality in Gout: Novel Findings of Elevated Risk of Non-Cardiovascular-Related Deaths. Arthritis Rheumatol. 2019, 71, 1935–1942. [Google Scholar] [CrossRef]
- Nurmohamed, M.T.; Heslinga, M.; Kitas, G.D. Cardiovascular comorbidity in rheumatic diseases. Nature reviews. Rheumatology 2015, 11, 693–704. [Google Scholar] [CrossRef]
- Ozen, G.; Pedro, S.; Michaud, K. The Risk of Cardiovascular Events Associated with Disease-modifying Antirheumatic Drugs in Rheumatoid Arthritis. J. Rheumatol. 2021, 48, 648–655. [Google Scholar] [CrossRef]
- Greenberg, J.D.; Kremer, J.M.; Curtis, J.R.; Hochberg, M.C.; Reed, G.; Tsao, P.; Farkouh, M.E.; Nasir, A.; Setoguchi, S.; Solomon, D.H. Tumour necrosis factor antagonist use and associated risk reduction of cardiovascular events among patients with rheumatoid arthritis. Ann. Rheum. Dis. 2011, 70, 576–582. [Google Scholar] [CrossRef]
- Lee, J.L.; Sinnathurai, P.; Buchbinder, R.; Hill, C.; Lassere, M.; March, L. Biologics and cardiovascular events in inflammatory arthritis: A prospective national cohort study. Arthritis Res. Ther. 2018, 20, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Kang, E.H.; Brill, G.; Desai, R.J.; Kim, S.C. Cardiovascular (CV) Risk after Initiation of Abatacept versus TNF Inhibitors in Rheumatoid Arthritis Patients with and without Baseline CV Disease. J. Rheumatol. 2018, 45, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.H.; Jin, Y.; Brill, G.; Lewey, J.; Patorno, E.; Desai, R.J.; Kim, S.C. Comparative Cardiovascular Risk of Abatacept and Tumor Necrosis Factor Inhibitors in Patients with Rheumatoid Arthritis with and without Diabetes Mellitus: A Multidatabase Cohort Study. J. Am. Heart Assoc. 2018, 7, e007393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Xie, F.; Yun, H.; Chen, L.; Muntner, P.; Levitan, E.B.; Safford, M.M.; Kent, S.T.; Osterman, M.T.; Lewis, J.D.; et al. Comparative effects of biologics on cardiovascular risk among older patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1813–1818. [Google Scholar] [CrossRef]
- Mann, D.L.; McMurray, J.J.; Packer, M.; Swedberg, K.; Borer, J.S.; Colucci, W.S.; Djian, J.; Drexler, H.; Feldman, A.; Kober, L.; et al. Targeted anticytokine therapy in patients with chronic heart failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004, 109, 1594–1602. [Google Scholar] [CrossRef] [Green Version]
- Chung, E.S.; Packer, M.; Lo, K.H.; Fasanmade, A.A.; Willerson, J.T. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: Results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 2003, 107, 3133–3140. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, S.M.; Naga Prasad, S.V. Tumor Necrosis Factor-α in Heart Failure: An Updated Review. Curr. Cardiol. Rep. 2018, 20, 117. [Google Scholar] [CrossRef]
- Fleischmann, R.M.; Halland, A.M.; Brzosko, M.; Burgos-Vargas, R.; Mela, C.; Vernon, E.; Kremer, J.M. Tocilizumab inhibits structural joint damage and improves physical function in patients with rheumatoid arthritis and inadequate responses to methotrexate: LITHE study 2-year results. J. Rheumatol. 2013, 40, 113–126. [Google Scholar] [CrossRef]
- Kremer, J.M.; Blanco, R.; Brzosko, M.; Burgos-Vargas, R.; Halland, A.M.; Vernon, E.; Ambs, P.; Fleischmann, R. Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: Results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year. Arthritis Rheum. 2011, 63, 609–621. [Google Scholar] [CrossRef]
- Nishimoto, N.; Hashimoto, J.; Miyasaka, N.; Yamamoto, K.; Kawai, S.; Takeuchi, T.; Murata, N.; van der Heijde, D.; Kishimoto, T. Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): Evidence of clinical and radiographic benefit from an x ray reader-blinded randomised controlled trial of tocilizumab. Ann. Rheum. Dis. 2007, 66, 1162–1167. [Google Scholar] [CrossRef]
- Genovese, M.C.; van der Heijde, D.; Lin, Y.; St John, G.; Wang, S.; van Hoogstraten, H.; Gómez-Reino, J.J.; Kivitz, A.; Maldonado-Cocco, J.A.; Seriolo, B.; et al. Long-term safety and efficacy of sarilumab plus methotrexate on disease activity, physical function and radiographic progression: 5 years of sarilumab plus methotrexate treatment. RMD Open 2019, 5, e000887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoeven, M.M.A.; Tekstra, J.; Jacobs, J.W.G.; Bijlsma, J.W.J.; van Laar, J.M.; Pethö-Schramm, A.; Borm, M.E.A.; Lafeber, F.P.J.; Welsing, P.M.J. Efficacy of Tocilizumab Monotherapy Versus Tocilizumab and Methotrexate Combination Therapy in the Prevention of Radiographic Progression in Rheumatoid Arthritis: An Analysis Using Individual Patient Data from Multiple Clinical Trials. Arthritis Care Res. 2022, 74, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Giles, J.T.; Sattar, N.; Gabriel, S.; Ridker, P.M.; Gay, S.; Warne, C.; Musselman, D.; Brockwell, L.; Shittu, E.; Klearman, M.; et al. Cardiovascular Safety of Tocilizumab Versus Etanercept in Rheumatoid Arthritis: A Randomized Controlled Trial. Arthritis Rheumatol. 2020, 72, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Yun, H.; Levitan, E.B.; Muntner, P.; Curtis, J.R. Tocilizumab and the Risk of Cardiovascular Disease: Direct Comparison Among Biologic Disease-Modifying Antirheumatic Drugs for Rheumatoid Arthritis Patients. Arthritis Care Res. 2019, 71, 1004–1018. [Google Scholar] [CrossRef]
- Hsieh, M.J.; Lee, C.H.; Tsai, M.L.; Kao, C.F.; Lan, W.C.; Huang, Y.T.; Tseng, W.Y.; Wen, M.S.; Chang, S.H. Biologic Agents Reduce Cardiovascular Events in Rheumatoid Arthritis Not Responsive to Tumour Necrosis Factor Inhibitors: A National Cohort Study. Can. J. Cardiol. 2020, 36, 1739–1746. [Google Scholar] [CrossRef]
- Westhovens, R.; Robles, M.; Ximenes, A.C.; Nayiager, S.; Wollenhaupt, J.; Durez, P.; Gomez-Reino, J.; Grassi, W.; Haraoui, B.; Shergy, W.; et al. Clinical efficacy and safety of abatacept in methotrexate-naive patients with early rheumatoid arthritis and poor prognostic factors. Ann. Rheum. Dis. 2009, 68, 1870–1877. [Google Scholar] [CrossRef] [Green Version]
- Kremer, J.M.; Russell, A.S.; Emery, P.; Abud-Mendoza, C.; Szechinski, J.; Westhovens, R.; Li, T.; Zhou, X.; Becker, J.C.; Aranda, R.; et al. Long-term safety, efficacy and inhibition of radiographic progression with abatacept treatment in patients with rheumatoid arthritis and an inadequate response to methotrexate: 3-year results from the AIM trial. Ann. Rheum. Dis. 2011, 70, 1826–1830. [Google Scholar] [CrossRef]
- Mease, P.J.; Gottlieb, A.B.; van der Heijde, D.; FitzGerald, O.; Johnsen, A.; Nys, M.; Banerjee, S.; Gladman, D.D. Efficacy and safety of abatacept, a T-cell modulator, in a randomised, double-blind, placebo-controlled, phase III study in psoriatic arthritis. Ann. Rheum. Dis. 2017, 76, 1550–1558. [Google Scholar] [CrossRef] [Green Version]
- Braun, J.; Haibel, H.; de Hooge, M.; Landewé, R.; Rudwaleit, M.; Fox, T.; Readie, A.; Richards, H.B.; Porter, B.; Martin, R.; et al. Spinal radiographic progression over 2 years in ankylosing spondylitis patients treated with secukinumab: A historical cohort comparison. Arthritis Res. Ther. 2019, 21, 142. [Google Scholar] [CrossRef] [Green Version]
- Heijde, D.V.; Østergaard, M.; Reveille, J.D.; Baraliakos, X.; Kronbergs, A.; Sandoval, D.M.; Li, X.; Carlier, H.; Adams, D.H.; Maksymowych, W.P. Spinal Radiographic Progression and Predictors of Progression in Patients with Radiographic Axial Spondyloarthritis Receiving Ixekizumab Over 2 Years. J. Rheumatol. 2022, 49, 265–273. [Google Scholar] [CrossRef]
- Mease, P.J.; Landewé, R.; Rahman, P.; Tahir, H.; Singhal, A.; Boettcher, E.; Navarra, S.; Readie, A.; Mpofu, S.; Delicha, E.M.; et al. Secukinumab provides sustained improvement in signs and symptoms and low radiographic progression in patients with psoriatic arthritis: 2-year (end-of-study) results from the FUTURE 5 study. RMD Open 2021, 7, e001600. [Google Scholar] [CrossRef] [PubMed]
- Chandran, V.; van der Heijde, D.; Fleischmann, R.M.; Lespessailles, E.; Helliwell, P.S.; Kameda, H.; Burgos-Vargas, R.; Erickson, J.S.; Rathmann, S.S.; Sprabery, A.T.; et al. Ixekizumab treatment of biologic-naïve patients with active psoriatic arthritis: 3-year results from a phase III clinical trial (SPIRIT-P1). Rheumatology 2020, 59, 2774–2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Lee, H.; Lee, M.P.; Landon, J.E.; Merola, J.F.; Desai, R.J.; Kim, S.C. Risk of Hospitalization for Serious Infection after Initiation of Ustekinumab or Other Biologics in Patients with Psoriasis or Psoriatic Arthritis. Arthritis Care Res. 2021, 138, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.B.; Keystone, E.; Genovese, M.C.; Emery, P.; Peterfy, C.; Tak, P.P.; Cravets, M.; Shaw, T.; Hagerty, D. Continued inhibition of structural damage over 2 years in patients with rheumatoid arthritis treated with rituximab in combination with methotrexate. Ann. Rheum. Dis. 2010, 69, 1158–1161. [Google Scholar] [CrossRef] [PubMed]
- Mehta, B.; Pedro, S.; Ozen, G.; Kalil, A.; Wolfe, F.; Mikuls, T.; Michaud, K. Serious infection risk in rheumatoid arthritis compared with non-inflammatory rheumatic and musculoskeletal diseases: A US national cohort study. RMD Open 2019, 5, e000935. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Olivo, M.A.; Siddhanamatha, H.R.; Shea, B.; Tugwell, P.; Wells, G.A.; Suarez-Almazor, M.E. Methotrexate for treating rheumatoid arthritis. Cochrane Database Syst. Rev. 2014, 2014, Cd000957. [Google Scholar] [CrossRef]
- Minozzi, S.; Bonovas, S.; Lytras, T.; Pecoraro, V.; González-Lorenzo, M.; Bastiampillai, A.J.; Gabrielli, E.M.; Lonati, A.C.; Moja, L.; Cinquini, M.; et al. Risk of infections using anti-TNF agents in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: A systematic review and meta-analysis. Expert. Opin. Drug Saf. 2016, 15, 11–34. [Google Scholar] [CrossRef]
- Kang, E.H.; Jin, Y.; Tong, A.Y.; Desai, R.J.; Kim, S.C. Risk of Serious Infection Among Initiators of Tumor Necrosis Factor Inhibitors Plus Methotrexate Versus Triple Therapy for Rheumatoid Arthritis: A Cohort Study. Arthritis Care Res. 2020, 72, 1383–1391. [Google Scholar] [CrossRef]
- Goodman, S.M.; Springer, B.D.; Chen, A.F.; Davis, M.; Fernandez, D.R.; Figgie, M.; Finlayson, H.; George, M.D.; Giles, J.T.; Gililland, J.; et al. 2022 American College of Rheumatology/American Association of Hip and Knee Surgeons Guideline for the Perioperative Management of Antirheumatic Medication in Patients with Rheumatic Diseases Undergoing Elective Total Hip or Total Knee Arthroplasty. Arthritis Rheumatol. 2022, 74, 1464–1473. [Google Scholar] [CrossRef]
- Cohen, A.; Mathiasen, V.D.; Schön, T.; Wejse, C. The global prevalence of latent tuberculosis: A systematic review and meta-analysis. Eur. Respir. J. 2019, 54, 1900655. [Google Scholar] [CrossRef]
- Kim, H.W.; Park, J.K.; Yang, J.A.; Yoon, Y.I.; Lee, E.Y.; Song, Y.W.; Kim, H.R.; Lee, E.B. Comparison of tuberculosis incidence in ankylosing spondylitis and rheumatoid arthritis during tumor necrosis factor inhibitor treatment in an intermediate burden area. Clin. Rheumatol. 2014, 33, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Fan, W.; Yang, G.; Xu, Z.; Wang, J.; Cheng, Q.; Yu, M. Risk of tuberculosis in patients treated with TNF-α antagonists: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2017, 7, e012567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, E.A.; Ernst, J.D. Anti-TNF immunotherapy and tuberculosis reactivation: Another mechanism revealed. J. Clin. Investig. 2009, 119, 1079–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehlers, S. Role of tumour necrosis factor (TNF) in host defence against tuberculosis: Implications for immunotherapies targeting TNF. Ann. Rheum. Dis. 2003, 62 (Suppl. S2), ii37–ii42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarra, S.V.; Tang, B.; Lu, L.; Lin, H.Y.; Mok, C.C.; Asavatanabodee, P.; Suwannalai, P.; Hussein, H.; Rahman, M.U. Risk of tuberculosis with anti-tumor necrosis factor-α therapy: Substantially higher number of patients at risk in Asia. Int. J. Rheum. Dis. 2014, 17, 291–298. [Google Scholar] [CrossRef]
- Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 1975, 72, 3666–3670. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.M.; Kwok, S.K.; Ju, J.H.; Park, Y.B.; Park, S.H. Risk of malignancy in patients with rheumatoid arthritis after anti-tumor necrosis factor therapy: Results from Korean National Health Insurance claims data. Korean J. Intern. Med. 2019, 34, 669–677. [Google Scholar] [CrossRef]
- Raaschou, P.; Frisell, T.; Askling, J. TNF inhibitor therapy and risk of breast cancer recurrence in patients with rheumatoid arthritis: A nationwide cohort study. Ann. Rheum. Dis. 2015, 74, 2137–2143. [Google Scholar] [CrossRef]
- Raaschou, P.; Söderling, J.; Turesson, C.; Askling, J. Tumor Necrosis Factor Inhibitors and Cancer Recurrence in Swedish Patients with Rheumatoid Arthritis: A Nationwide Population-Based Cohort Study. Ann. Intern. Med. 2018, 169, 291–299. [Google Scholar] [CrossRef]
- Wang, J.L.; Yin, W.J.; Zhou, L.Y.; Zhou, G.; Liu, K.; Hu, C.; Zuo, X.C.; Wang, Y.F. Risk of non-melanoma skin cancer for rheumatoid arthritis patients receiving TNF antagonist: A systematic review and meta-analysis. Clin. Rheumatol. 2020, 39, 769–778. [Google Scholar] [CrossRef]
- Urban, K.; Mehrmal, S.; Uppal, P.; Giesey, R.L.; Delost, G.R. The global burden of skin cancer: A longitudinal analysis from the Global Burden of Disease Study, 1990–2017. JAAD Int. 2021, 2, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Coates, L.C.; Soriano, E.R.; Corp, N.; Bertheussen, H.; Callis Duffin, K.; Campanholo, C.B.; Chau, J.; Eder, L.; Fernández-Ávila, D.G.; FitzGerald, O.; et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA): Updated treatment recommendations for psoriatic arthritis 2021. Nature reviews. Rheumatology 2022, 18, 465–479. [Google Scholar] [CrossRef]
- Hawkes, J.E.; Chan, T.C.; Krueger, J.G. Psoriasis pathogenesis and the development of novel targeted immune therapies. J. Allergy Clin. Immunol. 2017, 140, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.M.; Kwon, H.S.; Kim, G.M.; Park, K.S.; Kim, K.J. Paradoxical psoriasis following anti-TNF therapy in ankylosing spondylitis: A population-based cohort study. J. Allergy Clin. Immunol. 2018, 142, 1001–1003.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mylonas, A.; Conrad, C. Psoriasis: Classical vs. Paradoxical. The Yin-Yang of TNF and Type I Interferon. Front. Immunol. 2018, 9, 2746. [Google Scholar] [CrossRef] [PubMed]
- Raimundo, K.; Solomon, J.J.; Olson, A.L.; Kong, A.M.; Cole, A.L.; Fischer, A.; Swigris, J.J. Rheumatoid Arthritis-Interstitial Lung Disease in the United States: Prevalence, Incidence, and Healthcare Costs and Mortality. J. Rheumatol. 2019, 46, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Sparks, J.A.; Jin, Y.; Cho, S.K.; Vine, S.; Desai, R.; Doyle, T.J.; Kim, S.C. Prevalence, incidence and cause-specific mortality of rheumatoid arthritis-associated interstitial lung disease among older rheumatoid arthritis patients. Rheumatology 2021, 60, 3689–3698. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.R.; Sarsour, K.; Napalkov, P.; Costa, L.A.; Schulman, K.L. Incidence and complications of interstitial lung disease in users of tocilizumab, rituximab, abatacept and anti-tumor necrosis factor α agents, a retrospective cohort study. Arthritis Res. Ther. 2015, 17, 319. [Google Scholar] [CrossRef] [Green Version]
- Herrinton, L.J.; Harrold, L.R.; Liu, L.; Raebel, M.A.; Taharka, A.; Winthrop, K.L.; Solomon, D.H.; Curtis, J.R.; Lewis, J.D.; Saag, K.G. Association between anti-TNF-α therapy and interstitial lung disease. Pharmacoepidemiol. Drug Saf. 2013, 22, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Pawar, A.; Desai, R.J.; Solomon, D.H.; Santiago Ortiz, A.J.; Gale, S.; Bao, M.; Sarsour, K.; Schneeweiss, S.; Kim, S.C. Risk of serious infections in tocilizumab versus other biologic drugs in patients with rheumatoid arthritis: A multidatabase cohort study. Ann. Rheum. Dis. 2019, 78, 456–464. [Google Scholar] [CrossRef]
- Jeon, H.L.; Kim, S.C.; Park, S.H.; Shin, J.Y. The risk of serious infection in rheumatoid arthritis patients receiving tocilizumab compared with tumor necrosis factor inhibitors in Korea. Semin. Arthritis Rheum. 2021, 51, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Maini, R.N.; Taylor, P.C.; Szechinski, J.; Pavelka, K.; Bröll, J.; Balint, G.; Emery, P.; Raemen, F.; Petersen, J.; Smolen, J.; et al. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum. 2006, 54, 2817–2829. [Google Scholar] [CrossRef] [PubMed]
- Koike, T.; Harigai, M.; Inokuma, S.; Ishiguro, N.; Ryu, J.; Takeuchi, T.; Takei, S.; Tanaka, Y.; Ito, K.; Yamanaka, H. Postmarketing surveillance of tocilizumab for rheumatoid arthritis in Japan: Interim analysis of 3881 patients. Ann. Rheum. Dis. 2011, 70, 2148–2151. [Google Scholar] [CrossRef] [PubMed]
- Moots, R.J.; Sebba, A.; Rigby, W.; Ostor, A.; Porter-Brown, B.; Donaldson, F.; Dimonaco, S.; Rubbert-Roth, A.; van Vollenhoven, R.; Genovese, M.C. Effect of tocilizumab on neutrophils in adult patients with rheumatoid arthritis: Pooled analysis of data from phase 3 and 4 clinical trials. Rheumatology 2017, 56, 541–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung Sun, L.; Ji Seon, O.; Seokchan, H.; Chang-Keun, L.; Bin, Y.; Yong-Gil, K. Tocilizumab-induced Thrombocytopenia in Patients with Rheumatoid Arthritis. J. Rheum. Dis. 2019, 26, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.; Sebba, A.; Gu, J.; Lowenstein, M.B.; Calvo, A.; Gomez-Reino, J.J.; Siri, D.A.; Tomsic, M.; Alecock, E.; Woodworth, T.; et al. Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: The AMBITION study. Ann. Rheum. Dis. 2010, 69, 88–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alten, R.; Kaine, J.; Keystone, E.; Nash, P.; Delaet, I.; Genovese, M.C. Long-term safety of subcutaneous abatacept in rheumatoid arthritis: Integrated analysis of clinical trial data representing more than four years of treatment. Arthritis Rheumatol. 2014, 66, 1987–1997. [Google Scholar] [CrossRef] [Green Version]
- Salliot, C.; Dougados, M.; Gossec, L. Risk of serious infections during rituximab, abatacept and anakinra treatments for rheumatoid arthritis: Meta-analyses of randomised placebo-controlled trials. Ann. Rheum. Dis. 2009, 68, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.K.; Liao, K.P.; Liu, J.; Kim, S.C. Risk of Hospitalized Infection and Initiation of Abatacept Versus Tumor Necrosis Factor Inhibitors Among Patients with Rheumatoid Arthritis: A Propensity Score-Matched Cohort Study. Arthritis Care Res. 2020, 72, 9–17. [Google Scholar] [CrossRef]
- Deodhar, A.; Mease, P.J.; McInnes, I.B.; Baraliakos, X.; Reich, K.; Blauvelt, A.; Leonardi, C.; Porter, B.; Das Gupta, A.; Widmer, A.; et al. Long-term safety of secukinumab in patients with moderate-to-severe plaque psoriasis, psoriatic arthritis, and ankylosing spondylitis: Integrated pooled clinical trial and post-marketing surveillance data. Arthritis Res. Ther. 2019, 21, 111. [Google Scholar] [CrossRef]
- Davidson, L.; van den Reek, J.; Bruno, M.; van Hunsel, F.; Herings, R.M.C.; Matzaraki, V.; Boahen, C.K.; Kumar, V.; Groenewoud, H.M.M.; van de Veerdonk, F.L.; et al. Risk of candidiasis associated with interleukin-17 inhibitors: A real-world observational study of multiple independent sources. Lancet Reg. Health Eur. 2022, 13, 100266. [Google Scholar] [CrossRef] [PubMed]
- Poizeau, F.; Nowak, E.; Kerbrat, S.; Le Nautout, B.; Droitcourt, C.; Drici, M.D.; Sbidian, E.; Guillot, B.; Bachelez, H.; Ait-Oufella, H.; et al. Association Between Early Severe Cardiovascular Events and the Initiation of Treatment with the Anti-Interleukin 12/23p40 Antibody Ustekinumab. JAMA Dermatol. 2020, 156, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.C.; Fleischmann, R.; Kivitz, A.J.; Rell-Bakalarska, M.; Martincova, R.; Fiore, S.; Rohane, P.; van Hoogstraten, H.; Garg, A.; Fan, C.; et al. Sarilumab Plus Methotrexate in Patients with Active Rheumatoid Arthritis and Inadequate Response to Methotrexate: Results of a Phase III Study. Arthritis Rheumatol. 2015, 67, 1424–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.; Ghang, B.; Jeong, S.; Choi, D.; Lee, J.S.; Park, S.M.; Lee, E.Y. Association of first, second, and third-line bDMARDs and tsDMARD with drug survival among seropositive rheumatoid arthritis patients: Cohort study in A real world setting. Semin. Arthritis Rheum. 2021, 51, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Sieper, J.; Porter-Brown, B.; Thompson, L.; Harari, O.; Dougados, M. Assessment of short-term symptomatic efficacy of tocilizumab in ankylosing spondylitis: Results of randomised, placebo-controlled trials. Ann. Rheum. Dis. 2014, 73, 95–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieper, J.; Braun, J.; Kay, J.; Badalamenti, S.; Radin, A.R.; Jiao, L.; Fiore, S.; Momtahen, T.; Yancopoulos, G.D.; Stahl, N.; et al. Sarilumab for the treatment of ankylosing spondylitis: Results of a Phase II, randomised, double-blind, placebo-controlled study (ALIGN). Ann. Rheum. Dis. 2015, 74, 1051–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madureira, P.; Pimenta, S.S.; Bernardo, A.; Brito, J.S.; Bernardes, M.; Costa, L. Off-label Use of Tocilizumab in Psoriatic Arthritis: Case Series and Review of the Literature. Acta Reumatol. Port. 2016, 41, 251–255. [Google Scholar]
- Burmester, G.R.; Rigby, W.F.; van Vollenhoven, R.F.; Kay, J.; Rubbert-Roth, A.; Kelman, A.; Dimonaco, S.; Mitchell, N. Tocilizumab in early progressive rheumatoid arthritis: FUNCTION, a randomised controlled trial. Ann. Rheum. Dis. 2016, 75, 1081–1091. [Google Scholar] [CrossRef] [Green Version]
- Solomon, D.H.; Xu, C.; Collins, J.; Kim, S.C.; Losina, E.; Yau, V.; Johansson, F.D. The sequence of disease-modifying anti-rheumatic drugs: Pathways to and predictors of tocilizumab monotherapy. Arthritis Res. Ther. 2021, 23, 26. [Google Scholar] [CrossRef]
- Rhodes, B.; Fürnrohr, B.G.; Vyse, T.J. C-reactive protein in rheumatology: Biology and genetics. Nature reviews. Rheumatology 2011, 7, 282–289. [Google Scholar] [CrossRef]
- Gabay, C.; Burmester, G.R.; Strand, V.; Msihid, J.; Zilberstein, M.; Kimura, T.; van Hoogstraten, H.; Boklage, S.H.; Sadeh, J.; Graham, N.M.H.; et al. Sarilumab and adalimumab differential effects on bone remodelling and cardiovascular risk biomarkers, and predictions of treatment outcomes. Arthritis Res. Ther. 2020, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Chiu, W.C.; Lai, H.M.; Ko, C.H.; Chen, J.F.; Hsu, C.Y.; Chen, Y.C. Ultrasound is more reliable than inflammatory parameters to evaluate disease activity in patients with RA receiving tocilizumab therapy. J. Investig. Med. 2018, 66, 1015–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafran, I.H.; Alasti, F.; Smolen, J.S.; Aletaha, D. Implication of baseline levels and early changes of C-reactive protein for subsequent clinical outcomes of patients with rheumatoid arthritis treated with tocilizumab. Ann. Rheum. Dis. 2020, 79, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Sakai, R.; Cho, S.K.; Nanki, T.; Watanabe, K.; Yamazaki, H.; Tanaka, M.; Koike, R.; Tanaka, Y.; Saito, K.; Hirata, S.; et al. Head-to-head comparison of the safety of tocilizumab and tumor necrosis factor inhibitors in rheumatoid arthritis patients (RA) in clinical practice: Results from the registry of Japanese RA patients on biologics for long-term safety (REAL) registry. Arthritis Res. Ther. 2015, 17, 74. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.T.; Huang, W.N.; Hsieh, C.W.; Chen, Y.M.; Chen, D.Y.; Hsieh, T.Y.; Chen, Y.H. Safety and effectiveness of tocilizumab in treating patients with rheumatoid arthritis—A three-year study in Taiwan. J. Microbiol. Immunol. Infect. 2019, 52, 141–150. [Google Scholar] [CrossRef]
- Korhonen, R.; Moilanen, E. Abatacept, a novel CD80/86-CD28 T cell co-stimulation modulator, in the treatment of rheumatoid arthritis. Basic Clin. Pharmacol. Toxicol. 2009, 104, 276–284. [Google Scholar] [CrossRef]
- Kremer, J.M.; Genant, H.K.; Moreland, L.W.; Russell, A.S.; Emery, P.; Abud-Mendoza, C.; Szechinski, J.; Li, T.; Ge, Z.; Becker, J.C.; et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: A randomized trial. Ann. Intern. Med. 2006, 144, 865–876. [Google Scholar] [CrossRef]
- Schiff, M.; Pritchard, C.; Huffstutter, J.E.; Rodriguez-Valverde, V.; Durez, P.; Zhou, X.; Li, T.; Bahrt, K.; Kelly, S.; Le Bars, M.; et al. The 6-month safety and efficacy of abatacept in patients with rheumatoid arthritis who underwent a washout after anti-tumour necrosis factor therapy or were directly switched to abatacept: The ARRIVE trial. Ann. Rheum. Dis. 2009, 68, 1708–1714. [Google Scholar] [CrossRef] [Green Version]
- Song, I.H.; Heldmann, F.; Rudwaleit, M.; Haibel, H.; Weiss, A.; Braun, J.; Sieper, J. Treatment of active ankylosing spondylitis with abatacept: An open-label, 24-week pilot study. Ann. Rheum. Dis. 2011, 70, 1108–1110. [Google Scholar] [CrossRef]
- Mariette, X.; Gottenberg, J.E.; Ravaud, P.; Combe, B. Registries in rheumatoid arthritis and autoimmune diseases: Data from the French registries. Rheumatology 2011, 50, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, N.; Kojima, T.; Kaneko, A.; Kida, D.; Hirano, Y.; Fujibayashi, T.; Yabe, Y.; Takagi, H.; Oguchi, T.; Miyake, H.; et al. Longterm efficacy and safety of abatacept in patients with rheumatoid arthritis treated in routine clinical practice: Effect of concomitant methotrexate after 24 weeks. J. Rheumatol. 2015, 42, 786–793. [Google Scholar] [CrossRef]
- Wei, J.C.; Kim, T.H.; Kishimoto, M.; Ogusu, N.; Jeong, H.; Kobayashi, S. Efficacy and safety of brodalumab, an anti-IL17RA monoclonal antibody, in patients with axial spondyloarthritis: 16-week results from a randomised, placebo-controlled, phase 3 trial. Ann. Rheum. Dis. 2021, 80, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; Helliwell, P.S.; Hjuler, K.F.; Raymond, K.; McInnes, I. Brodalumab in psoriatic arthritis: Results from the randomised phase III AMVISION-1 and AMVISION-2 trials. Ann. Rheum. Dis. 2021, 80, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.; Miossec, P. IL-17 in Rheumatoid Arthritis and Precision Medicine: From Synovitis Expression to Circulating Bioactive Levels. Front. Med. 2018, 5, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.Y.; Chen, Y.M.; Chen, H.H.; Hsieh, C.W.; Lin, C.C.; Lan, J.L. Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy. Arthritis Res. Ther. 2011, 13, R126. [Google Scholar] [CrossRef] [Green Version]
- Blanco, F.J.; Möricke, R.; Dokoupilova, E.; Codding, C.; Neal, J.; Andersson, M.; Rohrer, S.; Richards, H. Secukinumab in Active Rheumatoid Arthritis: A Phase III Randomized, Double-Blind, Active Comparator- and Placebo-Controlled Study. Arthritis Rheumatol. 2017, 69, 1144–1153. [Google Scholar] [CrossRef] [Green Version]
- Genovese, M.C.; Greenwald, M.; Cho, C.S.; Berman, A.; Jin, L.; Cameron, G.S.; Benichou, O.; Xie, L.; Braun, D.; Berclaz, P.Y.; et al. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol. 2014, 66, 1693–1704. [Google Scholar] [CrossRef]
- Champs, B.; Degboé, Y.; Barnetche, T.; Cantagrel, A.; Ruyssen-Witrand, A.; Constantin, A. Short-term risk of major adverse cardiovascular events or congestive heart failure in patients with psoriatic arthritis or psoriasis initiating a biological therapy: A meta-analysis of randomised controlled trials. RMD Open 2019, 5, e000763. [Google Scholar] [CrossRef] [Green Version]
- Sparber, F.; LeibundGut-Landmann, S. Interleukin-17 in Antifungal Immunity. Pathogens 2019, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Elewski, B.E.; Baddley, J.W.; Deodhar, A.A.; Magrey, M.; Rich, P.A.; Soriano, E.R.; Soung, J.; Bao, W.; Keininger, D.; Marfo, K.; et al. Association of Secukinumab Treatment with Tuberculosis Reactivation in Patients with Psoriasis, Psoriatic Arthritis, or Ankylosing Spondylitis. JAMA Dermatol. 2021, 157, 43–51. [Google Scholar] [CrossRef]
- Targan, S.R.; Feagan, B.; Vermeire, S.; Panaccione, R.; Melmed, G.Y.; Landers, C.; Li, D.; Russell, C.; Newmark, R.; Zhang, N.; et al. A Randomized, Double-Blind, Placebo-Controlled Phase 2 Study of Brodalumab in Patients with Moderate-to-Severe Crohn’s Disease. Am. J. Gastroenterol. 2016, 111, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.; Colombel, J.F.; Feagan, B.G.; Reich, K.; Deodhar, A.A.; McInnes, I.B.; Porter, B.; Das Gupta, A.; Pricop, L.; Fox, T. Incidence rates of inflammatory bowel disease in patients with psoriasis, psoriatic arthritis and ankylosing spondylitis treated with secukinumab: A retrospective analysis of pooled data from 21 clinical trials. Ann. Rheum. Dis. 2019, 78, 473–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fauny, M.; Moulin, D.; D’Amico, F.; Netter, P.; Petitpain, N.; Arnone, D.; Jouzeau, J.Y.; Loeuille, D.; Peyrin-Biroulet, L. Paradoxical gastrointestinal effects of interleukin-17 blockers. Ann. Rheum. Dis. 2020, 79, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Kavanaugh, A.; Gottlieb, A.B.; Puig, L.; Rahman, P.; Ritchlin, C.; Brodmerkel, C.; Li, S.; Wang, Y.; Mendelsohn, A.M.; et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 2013, 382, 780–789. [Google Scholar] [CrossRef]
- Ritchlin, C.; Rahman, P.; Kavanaugh, A.; McInnes, I.B.; Puig, L.; Li, S.; Wang, Y.; Shen, Y.K.; Doyle, M.K.; Mendelsohn, A.M.; et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann. Rheum. Dis. 2014, 73, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Coates, L.C.; Gossec, L.; Theander, E.; Bergmans, P.; Neuhold, M.; Karyekar, C.S.; Shawi, M.; Noël, W.; Schett, G.; McInnes, I.B. Efficacy and safety of guselkumab in patients with active psoriatic arthritis who are inadequate responders to tumour necrosis factor inhibitors: Results through one year of a phase IIIb, randomised, controlled study (COSMOS). Ann. Rheum. Dis. 2022, 81, 359–369. [Google Scholar] [CrossRef]
- Östör, A.; Van den Bosch, F.; Papp, K.; Asnal, C.; Blanco, R.; Aelion, J.; Alperovich, G.; Lu, W.; Wang, Z.; Soliman, A.M.; et al. Efficacy and safety of risankizumab for active psoriatic arthritis: 24-week results from the randomised, double-blind, phase 3 KEEPsAKE 2 trial. Ann. Rheum. Dis. 2022, 81, 351–358. [Google Scholar] [CrossRef]
- Kristensen, L.E.; Keiserman, M.; Papp, K.; McCasland, L.; White, D.; Lu, W.; Wang, Z.; Soliman, A.M.; Eldred, A.; Barcomb, L.; et al. Efficacy and safety of risankizumab for active psoriatic arthritis: 24-week results from the randomised, double-blind, phase 3 KEEPsAKE 1 trial. Ann. Rheum. Dis. 2022, 81, 225–231. [Google Scholar] [CrossRef]
- Deodhar, A.; Gensler, L.S.; Sieper, J.; Clark, M.; Calderon, C.; Wang, Y.; Zhou, Y.; Leu, J.H.; Campbell, K.; Sweet, K.; et al. Three Multicenter, Randomized, Double-Blind, Placebo-Controlled Studies Evaluating the Efficacy and Safety of Ustekinumab in Axial Spondyloarthritis. Arthritis Rheumatol. 2019, 71, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Baeten, D.; Østergaard, M.; Wei, J.C.; Sieper, J.; Järvinen, P.; Tam, L.S.; Salvarani, C.; Kim, T.H.; Solinger, A.; Datsenko, Y.; et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: Results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 2018, 77, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Jiang, H.L.; Dai, S.M. No Significant Effects of IL-23 on Initiating and Perpetuating the Axial Spondyloarthritis: The Reasons for the Failure of IL-23 Inhibitors. Front. Immunol. 2022, 13, 818413. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Agarwal, S.K.; Ilivanova, E.; Xu, X.L.; Miao, Y.; Zhuang, Y.; Nnane, I.; Radziszewski, W.; Greenspan, A.; Beutler, A.; et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann. Rheum. Dis. 2017, 76, 831–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ru, Y.; Ding, X.; Luo, Y.; Li, H.; Sun, X.; Zhou, M.; Zhou, Y.; Kuai, L.; Xing, M.; Liu, L.; et al. Adverse Events Associated with Anti-IL-23 Agents: Clinical Evidence and Possible Mechanisms. Front. Immunol. 2021, 12, 670398. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.C.; Szczepanski, L.; Szechinski, J.; Filipowicz-Sosnowska, A.; Emery, P.; Close, D.R.; Stevens, R.M.; Shaw, T. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 2004, 350, 2572–2581. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.B.; Emery, P.; Greenwald, M.W.; Dougados, M.; Furie, R.A.; Genovese, M.C.; Keystone, E.C.; Loveless, J.E.; Burmester, G.R.; Cravets, M.W.; et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 2006, 54, 2793–2806. [Google Scholar] [CrossRef]
- Lee, Y.H.; Bae, S.C.; Song, G.G. The efficacy and safety of rituximab for the treatment of active rheumatoid arthritis: A systematic review and meta-analysis of randomized controlled trials. Rheumatol. Int. 2011, 31, 1493–1499. [Google Scholar] [CrossRef]
- Shi, Y.; Wu, Y.; Ren, Y.; Jiang, Y.; Chen, Y. Infection risks of rituximab versus non-rituximab treatment for rheumatoid arthritis: A systematic review and meta-analysis. Int. J. Rheum. Dis. 2019, 22, 1361–1370. [Google Scholar] [CrossRef]
- Cohen, S.B.; Moreland, L.W.; Cush, J.J.; Greenwald, M.W.; Block, S.; Shergy, W.J.; Hanrahan, P.S.; Kraishi, M.M.; Patel, A.; Sun, G.; et al. A multicentre, double blind, randomised, placebo controlled trial of anakinra (Kineret), a recombinant interleukin 1 receptor antagonist, in patients with rheumatoid arthritis treated with background methotrexate. Ann. Rheum. Dis. 2004, 63, 1062–1068. [Google Scholar] [CrossRef]
- Nikfar, S.; Saiyarsarai, P.; Tigabu, B.M.; Abdollahi, M. Efficacy and safety of interleukin-1 antagonists in rheumatoid arthritis: A systematic review and meta-analysis. Rheumatol. Int. 2018, 38, 1363–1383. [Google Scholar] [CrossRef]
- Saag, K.G.; Khanna, P.P.; Keenan, R.T.; Ohlman, S.; Osterling Koskinen, L.; Sparve, E.; Åkerblad, A.C.; Wikén, M.; So, A.; Pillinger, M.H.; et al. A Randomized, Phase II Study Evaluating the Efficacy and Safety of Anakinra in the Treatment of Gout Flares. Arthritis Rheumatol. 2021, 73, 1533–1542. [Google Scholar] [CrossRef]
- Terkeltaub, R.A.; Schumacher, H.R.; Carter, J.D.; Baraf, H.S.; Evans, R.R.; Wang, J.; King-Davis, S.; Weinstein, S.P. Rilonacept in the treatment of acute gouty arthritis: A randomized, controlled clinical trial using indomethacin as the active comparator. Arthritis Res. Ther. 2013, 15, R25. [Google Scholar] [CrossRef] [PubMed]
- Sundy, J.S.; Schumacher, H.R.; Kivitz, A.; Weinstein, S.P.; Wu, R.; King-Davis, S.; Evans, R.R. Rilonacept for gout flare prevention in patients receiving uric acid-lowering therapy: Results of RESURGE, a phase III, international safety study. J. Rheumatol. 2014, 41, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, N.; Alten, R.E.; Bardin, T.; Schumacher, H.R.; Bloch, M.; Gimona, A.; Krammer, G.; Murphy, V.; Richard, D.; So, A.K. Canakinumab for acute gouty arthritis in patients with limited treatment options: Results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann. Rheum. Dis. 2012, 71, 1839–1848. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.A.; Hueber, A.J.; Wilson, S.; Galm, M.; Baum, W.; Kitson, C.; Auer, J.; Lorenz, S.H.; Moelleken, J.; Bader, M.; et al. Combined inhibition of tumor necrosis factor α and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis: Development and characterization of a novel bispecific antibody. Arthritis Rheumatol. 2015, 67, 51–62. [Google Scholar] [CrossRef]
- Mease, P.J.; Genovese, M.C.; Weinblatt, M.E.; Peloso, P.M.; Chen, K.; Othman, A.A.; Li, Y.; Mansikka, H.T.; Khatri, A.; Wishart, N.; et al. Phase II Study of ABT-122, a Tumor Necrosis Factor- and Interleukin-17A-Targeted Dual Variable Domain Immunoglobulin, in Patients with Psoriatic Arthritis with an Inadequate Response to Methotrexate. Arthritis Rheumatol. 2018, 70, 1778–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genovese, M.C.; Weinblatt, M.E.; Aelion, J.A.; Mansikka, H.T.; Peloso, P.M.; Chen, K.; Li, Y.; Othman, A.A.; Khatri, A.; Khan, N.S.; et al. ABT-122, a Bispecific Dual Variable Domain Immunoglobulin Targeting Tumor Necrosis Factor and Interleukin-17A, in Patients with Rheumatoid Arthritis with an Inadequate Response to Methotrexate: A Randomized, Double-Blind Study. Arthritis Rheumatol. 2018, 70, 1710–1720. [Google Scholar] [CrossRef] [Green Version]
- Hammoura, I.; Fiechter, R.H.; Bryant, S.H.; Westmoreland, S.; Kingsbury, G.; Waegell, W.; Tas, S.W.; Baeten, D.L.; van de Sande, M.G.H.; van Tok, M.N.; et al. Dual Blockade of TNF and IL-17A Inhibits Inflammation and Structural Damage in a Rat Model of Spondyloarthritis. Int. J. Mol. Sci. 2022, 23, 859. [Google Scholar] [CrossRef]
- Lyman, M.; Lieuw, V.; Richardson, R.; Timmer, A.; Stewart, C.; Granger, S.; Woods, R.; Silacci, M.; Grabulovski, D.; Newman, R. A bispecific antibody that targets IL-6 receptor and IL-17A for the potential therapy of patients with autoimmune and inflammatory diseases. J. Biol. Chem. 2018, 293, 9326–9334. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Wu, L.; Li, X. IL-17 family: Cytokines, receptors and signaling. Cytokine 2013, 64, 477–485. [Google Scholar] [CrossRef] [Green Version]
- van der Heijde, D.; Gensler, L.S.; Deodhar, A.; Baraliakos, X.; Poddubnyy, D.; Kivitz, A.; Farmer, M.K.; Baeten, D.; Goldammer, N.; Coarse, J.; et al. Dual neutralisation of interleukin-17A and interleukin-17F with bimekizumab in patients with active ankylosing spondylitis: Results from a 48-week phase IIb, randomised, double-blind, placebo-controlled, dose-ranging study. Ann. Rheum. Dis. 2020, 79, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Coates, L.C.; McInnes, I.B.; Merola, J.F.; Warren, R.B.; Kavanaugh, A.; Gottlieb, A.B.; Gossec, L.; Assudani, D.; Bajracharya, R.; Coarse, J.; et al. Safety and Efficacy of Bimekizumab in Patients with Active Psoriatic Arthritis: 3-Year Results from a Phase 2b Randomized Controlled Trial and its Open-Label Extension Study. Arthritis Rheumatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Moots, R.J.; Xavier, R.M.; Mok, C.C.; Rahman, M.U.; Tsai, W.C.; Al-Maini, M.H.; Pavelka, K.; Mahgoub, E.; Kotak, S.; Korth-Bradley, J.; et al. The impact of anti-drug antibodies on drug concentrations and clinical outcomes in rheumatoid arthritis patients treated with adalimumab, etanercept, or infliximab: Results from a multinational, real-world clinical practice, non-interventional study. PLoS ONE 2017, 12, e0175207. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hu, F.; Wang, H.; Wu, X.; Eltahan, A.S.; Stanford, S.; Bottini, N.; Xiao, H.; Bottini, M.; Guo, W.; et al. Secreted Protein Acidic and Rich in Cysteine Mediated Biomimetic Delivery of Methotrexate by Albumin-Based Nanomedicines for Rheumatoid Arthritis Therapy. ACS Nano 2019, 13, 5036–5048. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, M.Y.; Bhang, S.H.; Kim, B.S.; Kim, Y.S.; Ju, J.H.; Kim, K.S.; Hahn, S.K. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano 2014, 8, 4790–4798. [Google Scholar] [CrossRef]
- Yang, Y.; Santamaria, P. Evolution of nanomedicines for the treatment of autoimmune disease: From vehicles for drug delivery to inducers of bystander immunoregulation. Adv. Drug Deliv. Rev. 2021, 176, 113898. [Google Scholar] [CrossRef]
- Nasra, S.; Bhatia, D.; Kumar, A. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. Nanoscale Adv. 2022, 4, 3479–3494. [Google Scholar] [CrossRef]
bDMARDs | Indication | |
---|---|---|
TNF inhibitors | Etanercept Adalimumab Infliximab Golimumab Certolizumab pegol | RA AS PsA |
Anti-IL-6R Abs | Tocilizumab Sarilumab | RA |
T cell costimulatory inhibitors | Abatacept | RA PsA |
Anti-IL-17A Abs | Secukinumab Ixekizumab | AS PsA |
Anti-IL-17R Abs | Brodalumab | AS PsA |
Anti-IL-23/IL-12 p40 Abs | Ustekinumab | PsA |
Anti-IL-23 p19 Abs | Guselkumab Risankizumab | PsA |
Anti-CD20 Ab | Rituximab | RA |
Anti-IL-1 blockers | Anakinra Rilonacept Canakinumab | RA (only in anakinra) Gout |
bDMARD | Inflammatory Arthritis | Additional Effect | Reference |
---|---|---|---|
TNF inhibitor | RA | Prevention of joint destruction | [49,50,51,52,53,54,55,56,57,58,59,60] |
RA | Cardiovascular event preventive effect superior to csDMARDs | [69,70,71] | |
RA | Cardiovascular event preventive effect inferior to T cell costimulatory inhibitor (abatacept) in specific subgroup (previous history of cardiovascular disease, type 2 DM, and old age) | [72,73,74] | |
AS | Suppression of spinal structural progression | [47,48] | |
AS | Prevention of AAU in monoclonal Ab form of TNF inhibitor | [42,43,44] | |
AS | Cardiovascular event preventive effect | [71] | |
PsA | Prevention of joint destruction | [61,62] | |
PsA | Cardiovascular event preventive effect | [71] | |
Anti-IL-6R Abs | RA | Prevention of joint destruction is superior in anti-IL-6R Ab + methotrexate compared with monotherapy of methotrexate or anti-IL-6R Ab | [78,79,80,81,82] |
RA | Cardiovascular event preventive effect comparable with or superior to TNF inhibitor | [83,84,85] | |
RA | Cardiovascular event preventive effect superior to anti-CD20 Ab or T cell costimulatory inhibitors | [74,85] | |
T cell costimulatory inhibitor | RA | Prevention of joint destruction | [86,87] |
RA | Cardiovascular event preventive effect superior to anti-CD20 Ab (TNF inhibitor non-responder) and superior to TNF inhibitor (previous history of cardiovascular disease, type 2 DM, and old age) | [72,73,74,85] | |
PsA | Prevention of joint destruction | [88] | |
Anti-IL-17A/IL-17R Abs | AS | Suppression of spinal structural progression | [89,90] |
PsA | Prevention of joint destruction | [91,92] | |
Anti-IL-23/IL-12 p40 and anti-IL-23 p19 Abs | PsA | Lower risk for hospitalization due to serious infection than TNF inhibitors or anti-IL-17A Abs | [93] |
Anti-CD20 Ab | RA | Prevention of joint destruction | [94] |
bDMARD | Inflammatory Arthritis | Adverse Events | Reference |
---|---|---|---|
TNF inhibitor | RA | Increased infection risk (esp. tuberculosis) | [97,101] |
RA | Tuberculosis risk: lower in etanercept than other TNF inhibitors (in Asia) | [105] | |
RA | Increased risk of non-melanoma skin cancer | [110] | |
RA | Cardiovascular event preventive effect inferior to T cell costimulatory inhibitor (abatacept) in specific subgroup (previous history of CVD, T2DM, and old age) | [72,73,74] | |
AS | Increased infection risk of tuberculosis | [101] | |
AS | Tuberculosis risk: lower in etanercept than other TNF inhibitors (in Asia) | [105] | |
AS | Paradoxical psoriasis | [114] | |
Anti-IL-6R Abs | RA | General infection risk: comparable with TNF inhibitors Increased risk of serious bacterial infection, skin/soft tissue infection, and diverticulitis compared with TNF inhibitors | [120,121] |
RA | Non-severe and reversible neutropenia, thrombocytopenia, and AST/ALT elevation | [122,123,124,125,126] | |
T cell costimulatory inhibitor | RA | Increased infection risk (especially pneumonia, urinary tract infection, and gastroenteritis) | [127] |
RA | Infection risk comparable with csDMARDs and lower than TNF inhibitor | [128,129] | |
Anti-IL-17A/IL-17R Abs | AS/PsA | Increased infection risk (especially Candida infection) | [130,131] |
Anti-IL-23/IL-12 p40 and anti-IL-23 p19 Abs | PsA | Increased risk of cardiovascular event in patients with baseline high cardiovascular risk | [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, H.K.; Kim, S.H.; Kim, H.-R.; Lee, S.-H. Therapeutic Utility and Adverse Effects of Biologic Disease-Modifying Anti-Rheumatic Drugs in Inflammatory Arthritis. Int. J. Mol. Sci. 2022, 23, 13913. https://doi.org/10.3390/ijms232213913
Min HK, Kim SH, Kim H-R, Lee S-H. Therapeutic Utility and Adverse Effects of Biologic Disease-Modifying Anti-Rheumatic Drugs in Inflammatory Arthritis. International Journal of Molecular Sciences. 2022; 23(22):13913. https://doi.org/10.3390/ijms232213913
Chicago/Turabian StyleMin, Hong Ki, Se Hee Kim, Hae-Rim Kim, and Sang-Heon Lee. 2022. "Therapeutic Utility and Adverse Effects of Biologic Disease-Modifying Anti-Rheumatic Drugs in Inflammatory Arthritis" International Journal of Molecular Sciences 23, no. 22: 13913. https://doi.org/10.3390/ijms232213913
APA StyleMin, H. K., Kim, S. H., Kim, H. -R., & Lee, S. -H. (2022). Therapeutic Utility and Adverse Effects of Biologic Disease-Modifying Anti-Rheumatic Drugs in Inflammatory Arthritis. International Journal of Molecular Sciences, 23(22), 13913. https://doi.org/10.3390/ijms232213913