Progesterone: The Key Factor of the Beginning of Life
Abstract
:1. Introduction
2. History of Progesterone
3. Biological Effects of Progesterone
4. The Immunological Effects of Progesterone
5. Metabolism
6. Circulating Levels of Progesterone
7. The Endometrium
7.1. Markers of Endometrial Function
7.2. Metabolism of Progesterone in the Human Endometrium
8. The Myometrium
9. Progesterone Supplementation: Who, When, and What?
9.1. The Rationale behind LPS in Fresh ART Cycles
9.2. The Rationale for LPS in ART Cycles with Frozen Embryo Transfer
10. Variables to Be Considered in the Relationship between Progesterone Production/Administration by Different Routes and Their Biological Effects
- The production rate, which also depends on the MCR, defined as the volume of blood irreversibly cleared of a substance over time, which in turn supports the serum concentration [68]. Notably, the MCR of progesterone may change depending on exercise, body temperature, and other factors;
- The transport of circulating progesterone. Only free genomically bio-active steroid hormones (corresponding to about 2%) reach the endometrial cell compartment, while the remaining 98% are protein-bound and ineffective [28,111,168,169,170,171,172,173,174]. Steroid hormone transportation from blood to the tissue compartment has been considered a permanent parameter. However, the ultrafilters of basement membranes (BM) located around microvessels and glands (with micropores the size of 75,000 Amstrong) in the endometrium are not an on/off switch; rather, they progressively develop during cycles. Therefore, their function as an ultrafilter may also be progressive [169], and cyclical BM synthesis and degradation also depend on progesterone. In other words, BMs serve to separate tissue compartments in which steroids freely circulate between compartments, while circulating protein-bound steroids are blocked by BM pores [21];
- Metabolites in blood and tissue produced by progesterone vary depending on the route of administration, thereby inducing different effects on target tissues. For instance, the metabolism of oral progesterone differs from non-oral administration because of the first liver pass effect [68,174,175,176] and the first uterine pass effect [112]. As a consequence, different routes of administration have different effects on endometrial pre-decidualization [112];
- The genomic and non-genomic effects of progesterone that differ in terms of duration of the signal-response [54] influence ongoing pregnancy;
- Uterine contractility, with estrogens as myocontractant and progesterone as myorelaxant [6,62], has been widely studied without, however, reaching any conclusive results. The myorelaxant effect exerted on uterine musculature is associated to the myocontractant effects of estrogens, thereby participating in the transport of both the gamete and embryos within the genital tract during the ovarian cycle and embryo nidation [6,62].
11. Routes of Administration
11.1. Progesterone Shots or Injections (Progesterone in Oil) versus Vaginal Progesterone
11.2. Progesterone Capsules (Used Orally)
12. Discussion
13. Future Directions
- Establish both morphological and biochemical endometrial adequacy for embryo nidation using known validated parameters and the correlation with euploid embryo implantation;
- Establish the validated endometrial features required for embryo nidation by using different routes of administration, including associations of routes and related implantation rates as well as live birth rates after euploid ET;
- Compare different types and doses of vaginal progesterone administration with respect to efficiency, safety, and patient reported outcomes in the context of LPS after ovarian stimulation with or without IUI, and in the context of ART treatments, prevention of miscarriage and prevention of preterm birth;
- Evaluate new routes or associations of routes of progesterone administration, including intrauterine progesterone administration;
- Establish the role of circulating progesterone in implantation, progression of trophoblast invasion, and LBR after euploid ET;
- Reinforce the evidence that the corpus luteum plays a protective role in late-pregnancy complications in FET by using HRT.
- Promote and support studies to explore novel issues regarding the role of progesterone in achieving successful IVF programs [192,193]. Indeed, because of the cost and time required to conduct each type of study, the literature is overloaded with systematic reviews and meta-analyses, whereas there is almost a complete lack of new ideas and approaches. We need to pursue new ideas rather than depend on the ideas of others;
- We must reverse the mental order of the approach to this research. Given that physiology never provides evidence of a 1:1 ratio between the transferred embryo and the healthy baby that is born, we should not consider physiology as the gold-standard objective of our scientific commitment. The goal of research aimed at live birth must be more ambitious and supraphysiological. As Heraclitus reminds us, “Whoever does not try the impossible never reaches it”. Moreover, if you see only the stars above you, you will never be a good astronomer.
14. Key Messages
- Progesterone is an ovarian steroid produced by the granulosa cells of follicles after the LH peak at mid-cycle.
- Its main biological role is to prepare the endometrium for embryo nidation and support an ongoing pregnancy.
- Progesterone exerts extra-endometrial biological functions on the central nervous system and on uterine contractility of both pregnant and non-pregnant uteruses.
- The functions of progesterone depend on genomic and non-genomic actions: the former are well known, whereas the latter actions have yet to be fully clarified.
- Exogenous progesterone is administered via oral, vaginal, intramuscular, and subcutaneous routes. The lipophilic nature of progesterone precludes a transdermal formulation.
- The different routes of administration elicit different patterns of metabolites that exert different biological effects, thereby exerting different effects on the endometrium.
- Progesterone is responsible for a large number of morphological and biochemical changes of the endometrium, which optimize the endometrial differentiation in close synchronization with embryo differentiation.
- In IVF programs, progesterone serum concentration > 1.8 ng/mL at the time of trigger is an indication of delayed ET because of dissociation in the endometrial-embryonic synchronization.
- Progesterone is mainly used to prepare the endometrium for fresh ET cycles after IVF and in FET as HRT or natural supplemented cycles.
- Considering that the implantation of a good embryo is the gold standard in ART, the contribution of an adequate progesterone supplementation in endometrial preparation is estimated to be around 15%.
- The vaginal route of progesterone supplementation is considered the standard treatment because it is less painful and has higher compliance than the IM route, and it is equally efficient.
- Progesterone concentration in the endometrial tissue is higher after vaginal administration than after IM or subcutaneous administration, despite lower serum levels.
- The use of progesterone is recommended in the treatment of patients with threatened abortion.
- There is no convincing evidence to support the use of vaginal progesterone in order to prevent recurrent preterm births or improve perinatal outcomes in singleton gestations in women with a history of spontaneous preterm births [194].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ART | Assisted Reproductive Technology |
BM | Basement membranes |
EF | Early follicular |
EGF | Epidermal growth factors |
EIM | European IVF-monitoring |
EL | Early luteal |
ER | Endometrial Receptivity |
ESHRE | European Society of Human Reproduction and Embryology |
FET | Frozen Embryo Transfer |
GABA | Gamma-aminobutyric acid |
GMP | Good Medical Practice |
HRT | Hormone replacement therapy |
LBR | Live birth rates |
LF | Late follicular |
LIF | Leukemia inhibitory factor |
LL | Late luteal |
LP | Luteal phase |
LPS | Luteal phase support |
OHSS | Ovarian hyperstimulation syndrome |
PO | Peri-ovulatory |
PR | Progesterone receptor |
RIF | Recurrent implantation failure |
US | Ultrasound |
WOI | Window of Implantation |
References
- Csapo, A.I.; Pulkkinen, M.O.; Ruttner, B.; Sauvage, J.P.; Wiest, W.G. The Significance of the Human Corpus Luteum in Pregnancy Maintenance. I. Preliminary Studies. Am. J. Obstet. Gynecol. 1972, 112, 1061–1067. [Google Scholar] [CrossRef]
- Csapo, A.I.; Pulkkinen, M.O.; Wiest, W.G. Effects of Luteectomy and Progesterone Replacement Therapy in Early Pregnant Patients. Am. J. Obstet. Gynecol 1973, 115, 759–765. [Google Scholar] [CrossRef]
- Young, S.L.; Lessey, B.A. Progesterone Function in Human Endometrium: Clinical Perspectives. Semin. Reprod. Med. 2010, 28, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Siiteri, P.K.; Febres, F.; Clemens, L.E.; Chang, R.J.; Gondos, B.; Stites, D. Progesterone and Maintenance of Pregnancy: Is Progesterone Nature’s Immunosuppressant? Ann. N. Y. Acad. Sci. 1977, 286, 384–397. [Google Scholar] [CrossRef]
- Hughes, G.C.; Clark, E.A.; Wong, A.H. The Intracellular Progesterone Receptor Regulates CD4+ T Cells and T Cell-Dependent Antibody Responses. J. Leukoc. Biol. 2013, 93, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Bulletti, C.; Prefetto, R.A.; Bazzocchi, G.; Romero, R.; Mimmi, P.; Polli, V.; Lanfranchi, G.A.; Labate, A.M.M.; Flamigni, C. Electromechanical Activities of Human Uteri during Extra-Corporeal Perfusion with Ovarian Steroids. Hum. Reprod. 1993, 8, 1558–1563. [Google Scholar] [CrossRef]
- Metherall, J.E.; Waugh, K. Role of Multidrug Resistance P-Glycoproteins in Cholesterol Biosynthesis. J. Biol. Chem. 1996, 271, 2634–2640. [Google Scholar] [CrossRef] [Green Version]
- Jodhka, P.K.; Kaur, P.; Underwood, W.; Lydon, J.P. The Differences in Neuroprotective Efficacy of Progesterone and Medroxyprogesterone Acetate Correlate with Their Effects on Brain-Derived Neurotrophic Factor Expression. Endocrinology 2009, 150, 3162–3168. [Google Scholar] [CrossRef] [Green Version]
- Arafat, E.S.; Hargrove, J.T.; Maxson, W.S. Sedative and Hypnotic Effects of Oral Administration of Micronized Progesterone May Be Mediated through Its Metabolites. Am. J. Obstet. Gynecol. 1988, 159, 1203–1209. [Google Scholar] [CrossRef]
- Machtinger, R.; Laurent, L.C.; Baccarelli, A.A. Extracellular Vesicles: Roles in Gamete Maturation, Fertilization and Embryo Implantation. Hum. Reprod. Update 2016, 22, 182–193. [Google Scholar] [CrossRef]
- Shin, H.; Bang, S.; Kim, J.; Jun, J.H.; Song, H.; Lim, H.J. The Formation of Multivesicular Bodies in Activated Blastocysts Is Influenced by Autophagy and FGF Signaling in Mice. Sci. Rep. 2017, 7, 41986. [Google Scholar] [CrossRef] [Green Version]
- Beier-Hellwig, K.; Sterzik, K.; Bonn, B.; Beier, H.M. Contribution to the Physiology and Pathology of Endometrial Receptivity: The Determination of Protein Patterns in Human Uterine Secretions. Hum. Reprod. 1989, 4, 115–120. [Google Scholar] [CrossRef]
- Birkenfeld, A.; Navot, D. Endometrial Cultures and Their Application to New Reproductive Technologies: A Look Ahead. J. Vitr. Fert. Embryo. Transf. 1991, 8, 119–126. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Gevi, F.; Palini, S.; Bulletti, C.; Zolla, L. A Mass Spectrometry-Based Targeted Metabolomics Strategy of Human Blastocoele Fluid: A Promising Tool in Fertility Research. Mol. Biosyst. 2012, 8, 953–958. [Google Scholar] [CrossRef]
- Giacomini, E.; Scotti, G.M.; Vanni, V.S.; Lazarevic, D.; Makieva, S.; Privitera, L.; Signorelli, S.; Cantone, L.; Bollati, V.; Murdica, V.; et al. Global Transcriptomic Changes Occur in Uterine Fluid-Derived Extracellular Vesicles during the Endometrial Window for Embryo Implantation. Hum. Reprod. 2021, 36, 2249–2274. [Google Scholar] [CrossRef]
- Jones, H.W., Jr. Luteal-Phase Defect: The Role of Georgeanna Seegar Jones. Fertil. Steril. 2008, 90, e5–e7. [Google Scholar] [CrossRef]
- Lessey, B.A. Assessment of Endometrial Receptivity. Fertil. Steril. 2011, 96, 522–529. [Google Scholar] [CrossRef]
- Noyes, R.W.; Hertig, A.T.; Rock, M.D. Dating the Endometrial Biopsy. Fertil. Steril. 1950, 1, 3–25. [Google Scholar] [CrossRef]
- Acosta, A.A.; Elberger, L.; Borghi, M.; Calamera, J.C.; Chemes, H.; Doncel, G.F.; Kliman, H.; Lema, B.; Lustig, L.; Papier, S. Endometrial Dating and Determination of the Window of Implantation in Healthy Fertile Women. Fertil. Steril. 2000, 73, 788–798. [Google Scholar] [CrossRef]
- Gurpide, E.; Fleming, H.; Fridman, O.; Hausknecht, V.; Holinka, C. Receptors, Enzymes, and Hormonal Responses of Endometrial Cells. Prog. Clin. Biol. Res. 1981, 74, 427–446. [Google Scholar]
- Bulletti, C.; Galassi, A.; Jasonni, V.M.; Martinelli, G.; Tabanelli, S.; Flamigni, C. Basement Membrane Components in Normal Hyperplastic and Neoplastic Endometrium. Cancer 1988, 62, 142–149. [Google Scholar] [CrossRef]
- Martel, D.; Monier, M.N.; Roche, D.; Psychoyos, A. Hormonal Dependence of Pinopode Formation at the Uterine Luminal Surface. Hum. Reprod. 1991, 6, 597–603. [Google Scholar] [CrossRef]
- Díaz-Gimeno, P.; Horcajadas, J.A.; Martínez-Conejero, J.A.; Esteban, F.J.; Alamá, P.; Pellicer, A.; Simón, C. A Genomic Diagnostic Tool for Human Endometrial Receptivity Based on the Transcriptomic Signature. Fertil. Steril. 2011, 95, 50–60. [Google Scholar] [CrossRef]
- Díaz-Gimeno, P.; Ruiz-Alonso, M.; Bosch, N.; Martínez-Conejero, J.A.; Alamá, P.; Garrido, N.; Pellicer, A.; Simón, C. The Accuracy and Reproducibility of the Endometrial Receptivity Array Is Superior to Histology as a Diagnostic Method for Endometrial Receptivity. Fertil. Steril. 2013, 99, 508–517. [Google Scholar] [CrossRef]
- European IVF-monitoring Consortium (EIM); European Society of Human Reproduction and Embryology (ESHRE); Calhaz-Jorge, C.; De Geyter, C.; Kupka, M.S.; de Mouzon, J.; Erb, K.; Mocanu, E.; Motrenko, T.; Scaravelli, G.; et al. Assisted Reproductive Technology in Europe, 2013: Results Generated from European Registers by ESHRE. Hum. Reprod. 2017, 32, 1957–1973. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, M.; Buckingham, K.; Farquhar, C.; Kremer, J.A.; Metwally, M. Luteal Phase Support for Assisted Reproduction Cycles. Cochrane. Database Syst. Rev. 2015, 2015, CD009154. [Google Scholar] [CrossRef] [Green Version]
- Melo, P.; Chung, Y.; Pickering, O.; Price, M.J.; Fishel, S.; Khairy, M.; Kingsland, C.; Lowe, P.; Petsas, G.; Rajkhowa, M.; et al. Serum Luteal Phase Progesterone in Women Undergoing Frozen Embryo Transfer in Assisted Conception: A Systematic Review and Meta-Analysis. Fertil. Steril. 2021, 116, 1534–1556. [Google Scholar] [CrossRef]
- Miles, R.A.; Paulson, R.J.; Lobo, R.A.; Press, M.F.; Dahmoush, L.; Sauer, M.V. Pharmacokinetics and Endometrial Tissue Levels of Progesterone after Administration by Intramuscular and Vaginal Routes: A Comparative Study. Fertil. Steril. 1994, 62, 485–490. [Google Scholar] [CrossRef]
- Van de Vijver, A.; Polyzos, N.P.; Van Landuyt, L.; Mackens, S.; Stoop, D.; Camus, M.; De Vos, M.; Tournaye, H.; Blockeel, C. What Is the Optimal Duration of Progesterone Administration before Transferring a Vitrified-Warmed Cleavage Stage Embryo? A Randomized Controlled Trial. Hum. Reprod. 2016, 31, 1097–1104. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.M.; van Wely, M.; Mol, F.; Repping, S.; Mastenbroek, S. Fresh versus Frozen Embryo Transfers in Assisted Reproduction. Cochrane Database Syst. Rev. 2017, 3, CD011184. [Google Scholar] [CrossRef]
- Devine, K.; Richter, K.S.; Jahandideh, S.; Widra, E.A.; McKeeby, J.L. Intramuscular Progesterone Optimizes Live Birth from Programmed Frozen Embryo Transfer: A Randomized Clinical Trial. Fertil. Steril. 2021, 116, 633–643. [Google Scholar] [CrossRef]
- Labarta, E.; Mariani, G.; Paolelli, S.; Rodriguez-Varela, C.; Vidal, C.; Giles, J.; Bellver, J.; Cruz, F.; Marzal, A.; Celada, P.; et al. Impact of Low Serum Progesterone Levels on the Day of Embryo Transfer on Pregnancy Outcome: A Prospective Cohort Study in Artificial Cycles with Vaginal Progesterone. Hum. Reprod. 2021, 36, 683–692. [Google Scholar] [CrossRef]
- Aplin, J.D.; Stevens, A. Use of ’omics for Endometrial Timing: The Cycle Moves On. Hum. Reprod. 2022, 37, 644–650. [Google Scholar] [CrossRef]
- Corner, G.W.; Willard, A.M. Physiology of the Corpus Luteum II. Production of a Special Uterine Reaction (Progestational Proliferation) by Extracts of the Corpus Luteum. Am. Physiol. Soc. 1929, 88, 326–339. [Google Scholar] [CrossRef]
- Corner, G.W.; Willard, A.M. Classic Pages in Obstetrics and Gynecology. Am. J. Obstet. Gynecol. 1970, 107, 318. [Google Scholar]
- Frobenius, W. Ludwig Fraenkel: “spiritus Rector” of the Early Progesterone Research. Eur. J. Obstet. Gynecol. Reprod. Biol. 1999, 83, 115–119. [Google Scholar] [CrossRef]
- Simmer, H.H.; Suss, J. Der Corner-Allen-Test: Die Entwicklung eines spezifischen semiquantitativen biologischen Nachweisverfahrens für da Gelbkörperhormon (Progesteron). Wurzbg. Medizinhist. Mitt. 1998, 17, 291–313. [Google Scholar]
- Cunningham, G.R.; Tindall, D.J.; Means, A.R. Differences in Steroid Specificity for Rat Androgen Binding Protein and the Cytoplasmic Receptor. Steroids 1979, 33, 261–276. [Google Scholar] [CrossRef]
- Lobo, R.A.; Speroff, L. International Consensus Conference on Postmenopausal Hormone Therapy and the Cardiovascular System. Fertil. Steril. 1994, 61, 592–595. [Google Scholar] [CrossRef]
- Wright, F.; Giacomini, M.; Riahi, M.; Mowszowicz, I. The Anti-Hormone Activity of Progesterone and Progestins. In Progesterone and Progestins; Bardin, C.W., Milgrom, E., Mauvais-Jarvis, P., Eds.; Raven Press: New York, NY, USA, 1983; pp. 121–134. [Google Scholar]
- Corvol, P.; Elkik, F.; Oblin, M.E.; Michaud, A.; Claire, A.; Menard, J. Effect of Progesterone and Progestinson Water and Salt Metabolism. In Progesterone and Progestins; Bardin, C.W., Milgrom, E., Mauvais-Jarvis, P., Eds.; Raven Press: New York, NY, USA, 1983; pp. 179–186. [Google Scholar]
- Jones, G.S. The Historic Review of the Clinical Use of Progesterone and Progestin. In Progesterone and Progestins; Bardin, C.W., Milgrom, E., Mauvais-Jarvis, P., Eds.; Raven Press: New York, NY, USA, 1983; pp. 189–202. [Google Scholar]
- Smitz, J.; Devroey, P.; Faguer, B.; Bourgain, C.; Camus, M.; van Steirteghem, A. A Prospective Randomized Comparison of Intramuscular or Intravaginal Natural Progesterone as a Luteal Phase and Early Pregnancy Supplement. Hum. Reprod. 1992, 7, 168–175. [Google Scholar] [CrossRef]
- Moyer, D.L.; de Lignieres, B.; Driguez, P.; Pez, J.P. Prevention of Endometrial Hyperplasia by Progesterone during Long-Term Estradiol Replacement: Influence of Bleeding Pattern and Secretory Changes. Fertil. Steril. 1993, 59, 992–997. [Google Scholar] [CrossRef]
- Mani, S. Progestin Receptor Subtypes in the Brain: The Known and the Unknown. Endocrinology 2008, 149, 2750–2756. [Google Scholar] [CrossRef] [Green Version]
- Holzbauer, M. Physiological Aspects of Steroids with Anaesthetic Properties. Med. Biol. 1976, 54, 227–242. [Google Scholar]
- Freeman, E.; Rickels, K.; Sondheimer, S.J.; Polansky, M. Ineffectiveness of Progesterone Suppository Treatment for Premenstrual Syndrome. JAMA 1990, 264, 349–353. [Google Scholar] [CrossRef]
- Dennerstein, L.; Spencer-Gardner, C.; Gotts, G.; Brown, J.B.; Burrows, G.D. Progesterone and the Premenstrual Syndrome: A Double Blind Crossover Trial. Br. Med. J. (Clin. Res. Ed.) 1985, 290, 1617–1621. [Google Scholar] [CrossRef] [Green Version]
- De Lignières, B.; Vincens, M. Differential Effects of Exogenous Oestradiol and Progesterone on Mood in Post-Menopausal Women: Individual Dose/Effect Relationship. Maturitas 1982, 4, 67–72. [Google Scholar] [CrossRef]
- Norman, T.R.; Morse, C.A.; Dennerstein, L. Comparative Bioavailability of Orally and Vaginally Administered Progesterone. Fertil. Steril. 1991, 56, 1034–1039. [Google Scholar] [CrossRef]
- Carl, P.; Høgskilde, S.; Nielsen, J.W.; Sørensen, M.B.; Lindholm, M.; Karlen, B.; Bäckstrøm, T. Pregnanolone Emulsion. A Preliminary Pharmacokinetic and Pharmacodynamic Study of a New Intravenous Anaesthetic Agent. Anaesthesia 1990, 45, 189–197. [Google Scholar] [CrossRef]
- Majewska, M.D.; Harrison, N.L.; Schwartz, R.D.; Barker, J.L.; Paul, S.M. Steroid Hormone Metabolites Are Barbiturate-like Modulators of the GABA Receptor. Science 1986, 232, 1004–1007. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.M.; Lai, P.F.; Imami, N.; Johnson, M.R. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front. Endocrinol. 2019, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Su, C.; Ng, S. Non-Genomic Mechanisms of Progesterone Action in the Brain. Front. Neurosci. 2013, 7, 159. [Google Scholar] [CrossRef] [Green Version]
- Djebaili, M.; Hoffman, S.W.; Stein, D.G. Allopregnanolone and Progesterone Decrease Cell Death and Cognitive Deficits after a Contusion of the Rat Pre-Frontal Cortex. Neuroscience 2004, 123, 349–359. [Google Scholar] [CrossRef]
- He, J.; Evans, C.-O.; Hoffman, S.W.; Oyesiku, N.M.; Stein, D.G. Progesterone and Allopregnanolone Reduce Inflammatory Cytokines after Traumatic Brain Injury. Exp. Neurol. 2004, 189, 404–412. [Google Scholar] [CrossRef]
- Ardeshiri, A.; Kelley, M.H.; Korner, I.P.; Hurn, P.D.; Herson, P.S. Mechanism of Progesterone Neuroprotection of Rat Cerebellar Purkinje Cells Following Oxygen-Glucose Deprivation. Eur. J. Neurosci. 2006, 24, 2567–2574. [Google Scholar] [CrossRef]
- Sayeed, I.; Parvez, S.; Wali, B.; Siemen, D.; Stein, D.G. Direct Inhibition of the Mitochondrial Permeability Transition Pore: A Possible Mechanism for Better Neuroprotective Effects of Allopregnanolone over Progesterone. Brain Res. 2009, 1263, 165–173. [Google Scholar] [CrossRef]
- Coomarasamy, A.; Harb, H.M.; Devall, A.J.; Cheed, V.; Roberts, T.E.; Goranitis, I.; Ogwulu, C.B.; Williams, H.M.; Gallos, I.D.; Eapen, A.; et al. Progesterone to Prevent Miscarriage in Women with Early Pregnancy Bleeding: The PRISM RCT. Health Technol. Assess 2020, 24, 1–70. [Google Scholar] [CrossRef]
- Sharma, S.; Majumdar, A. Determining the Optimal Duration of Progesterone Supplementation Prior to Transfer of Cryopreserved Embryos and Its Impact on Implantation and Pregnancy Rates: A Pilot Study. Int. J. Reprod. Med. 2016, 2016, 7128485. [Google Scholar] [CrossRef]
- Ranisavljevic, N.; Huberlant, S.; Montagut, M.; Alonzo, P.-M.; Darné, B.; Languille, S.; Anahory, T.; Cédrin-Durnerin, I. Low Luteal Serum Progesterone Levels Are Associated With Lower Ongoing Pregnancy and Live Birth Rates in ART: Systematic Review and Meta-Analyses. Front. Endocrinol. 2022, 13, 892753. [Google Scholar] [CrossRef]
- Bulletti, C.; de Ziegler, D.; Polli, V.; Diotallevi, L.; Del Ferro, E.; Flamigni, C. Uterine Contractility during the Menstrual Cycle. Hum. Reprod. 2000, 15 (Suppl. S1), 81–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-H.; Aldo, P.; You, Y.; Ding, J.; Kaislasuo, J.; Petersen, J.F.; Lokkegaard, E.; Peng, G.; Paidas, M.J.; Simpson, S.; et al. Trophoblast-Secreted Soluble-PD-L1 Modulates Macrophage Polarization and Function. J. Leukoc. Biol. 2020, 108, 983–998. [Google Scholar] [CrossRef]
- Quao, Z.C.; Tong, M.; Bryce, E.; Guller, S.; Chamley, L.W.; Abrahams, V.M. Low Molecular Weight Heparin and Aspirin Exacerbate Human Endometrial Endothelial Cell Responses to Antiphospholipid Antibodies. Am. J. Reprod. Immunol. 2018, 79, e12785. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.D.; Dunk, C.E.; Aplin, J.D.; Harris, L.K.; Jones, R.L. Evidence for Immune Cell Involvement in Decidual Spiral Arteriole Remodeling in Early Human Pregnancy. Am. J. Pathol. 2009, 174, 1959–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweat, M.L.; Bryson, M.J. Comparative Metabolism of Progesterone in Proliferative Human Endometrium and Myometrium. Am. J. Obstet. Gynecol. 1970, 106, 193–201. [Google Scholar] [CrossRef]
- Little, B.; Tait, J.F.; Tait, S.A.; Erlenmeyer, F. The Metabolic Clearance Rate of Progesterone in Males and Ovariectomized Females. J. Clin. Investig. 1966, 45, 901–912. [Google Scholar] [CrossRef]
- Billiar, R.B.; Lin, T.J.; Little, B. Metabolic Clearance Rate and Production Rate of 20 Alpha-Hydroxypregn-4-En-3-One in the Menstrual Cycle. Gynecol. Investig. 1973, 4, 148–154. [Google Scholar] [CrossRef]
- Bäckström, T.; Andersson, A.; Baird, D.T.; Selstam, G. The Human Corpus Luteum Secretes 5 Alpha-Pregnane-3,20-Dione. Acta Endocrinol. (Copenh.) 1986, 111, 116–121. [Google Scholar] [CrossRef]
- Harper, M.J. The Implantation Window. Baillieres Clin. Obstet. Gynaecol. 1992, 6, 351–371. [Google Scholar] [CrossRef]
- Lawrenz, B.; Melado, L.; Fatemi, H. Premature Progesterone Rise in ART-Cycles. Reprod. Biol. 2018, 18, 1–4. [Google Scholar] [CrossRef]
- Labarta, E.; Martínez-Conejero, J.A.; Alamá, P.; Horcajadas, J.A.; Pellicer, A.; Simón, C.; Bosch, E. Endometrial Receptivity Is Affected in Women with High Circulating Progesterone Levels at the End of the Follicular Phase: A Functional Genomics Analysis. Hum. Reprod. 2011, 26, 1813–1825. [Google Scholar] [CrossRef] [Green Version]
- Van Vaerenbergh, I.; Fatemi, H.M.; Blockeel, C.; Van Lommel, L.; In’t Veld, P.; Schuit, F.; Kolibianakis, E.M.; Devroey, P.; Bourgain, C. Progesterone Rise on HCG Day in GnRH Antagonist/RFSH Stimulated Cycles Affects Endometrial Gene Expression. Reprod. Biomed. Online 2011, 22, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Bosch, E.; Labarta, E.; Crespo, J.; Simón, C.; Remohí, J.; Jenkins, J.; Pellicer, A. Circulating Progesterone Levels and Ongoing Pregnancy Rates in Controlled Ovarian Stimulation Cycles for in Vitro Fertilization: Analysis of over 4000 Cycles. Hum. Reprod. 2010, 25, 2092–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, J.; Craig, K.; Clifton, D.K.; Soules, M.R. Luteal Phase Defect: The Sensitivity and Specificity of Diagnostic Methods in Common Clinical Use. Fertil. Steril. 1994, 62, 54–62. [Google Scholar] [CrossRef]
- Labarta, E.; Mariani, G.; Holtmann, N.; Celada, P.; Remohí, J.; Bosch, E. Low Serum Progesterone on the Day of Embryo Transfer Is Associated with a Diminished Ongoing Pregnancy Rate in Oocyte Donation Cycles after Artificial Endometrial Preparation: A Prospective Study. Hum. Reprod. 2017, 32, 2437–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Foruria, I.; Gaggiotti-Marre, S.; Álvarez, M.; Martínez, F.; García, S.; Rodríguez, I.; Coroleu, B.; Polyzos, N.P. Factors Associated with Serum Progesterone Concentrations the Day before Cryopreserved Embryo Transfer in Artificial Cycles. Reprod. Biomed. Online 2020, 40, 797–804. [Google Scholar] [CrossRef]
- Alsbjerg, B.; Labarta, E.; Humaidan, P. Serum Progesterone Levels on Day of Embryo Transfer in Frozen Embryo Transfer Cycles-the Truth Lies in the Detail. J. Assist. Reprod. Genet 2020, 37, 2045–2046. [Google Scholar] [CrossRef]
- Álvarez, M.; Gaggiotti-Marre, S.; Martínez, F.; Coll, L.; García, S.; González-Foruria, I.; Rodríguez, I.; Parriego, M.; Polyzos, N.P.; Coroleu, B. Individualised Luteal Phase Support in Artificially Prepared Frozen Embryo Transfer Cycles Based on Serum Progesterone Levels: A Prospective Cohort Study. Hum. Reprod. 2021, 36, 1552–1560. [Google Scholar] [CrossRef]
- Kofinas, J.D.; Blakemore, J.; McCulloh, D.H.; Grifo, J. Serum Progesterone Levels Greater than 20 Ng/Dl on Day of Embryo Transfer Are Associated with Lower Live Birth and Higher Pregnancy Loss Rates. J. Assist. Reprod. Genet 2015, 32, 1395–1399. [Google Scholar] [CrossRef] [Green Version]
- Akaeda, S.; Kobayashi, D.; Shioda, K.; Momoeda, M. Relationship between Serum Progesterone Concentrations and Pregnancy Rates in Hormone Replacement Treatment-Frozen Embryo Transfer Using Progesterone Vaginal Tablets. Clin. Exp. Obstet. Gynecol. 2020, 46, 695–698. [Google Scholar] [CrossRef]
- Yovich, J.L.; Conceicao, J.L.; Stanger, J.D.; Hinchliffe, P.M.; Keane, K.N. Mid-Luteal Serum Progesterone Concentrations Govern Implantation Rates for Cryopreserved Embryo Transfers Conducted under Hormone Replacement. Reprod. Biomed. Online 2015, 31, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Baird, D.T.; Scaramuzzi, R.J. Changes in the Secretion of Ovarian Steroid and Pituitary Luteinizing Hormone in the Peri-Ovulatory Period in the Ewe: The Effect of Progesterone. J. Endocrinol. 1976, 70, 237–245. [Google Scholar] [CrossRef]
- Bulletti, C.; de Ziegler, D.; Flamigni, C.; Giacomucci, E.; Polli, V.; Bolelli, G.; Franceschetti, F. Targeted Drug Delivery in Gynaecology: The First Uterine Pass Effect. Hum. Reprod. 1997, 12, 1073–1079. [Google Scholar] [CrossRef] [Green Version]
- Adlercreutz, H.; Martin, F. Biliary Excretion and Intestinal Metabolism of Progesterone and Estrogens in Man. J. Steroid. BioChem. 1980, 13, 231–244. [Google Scholar] [CrossRef]
- De Lignieres, B.; Dennerstein, L.; Backstrom, T. Influence of Route of Administration on Progesterone Metabolism. Maturitas 1995, 21, 251–257. [Google Scholar] [CrossRef]
- Ghaedi, B.; Cheng, W.; Ameri, S.; Abdulkarim, K.; Costain, N.; Zia, A.; Thiruganasambandamoorthy, V. Performance of Single Serum Progesterone in the Evaluation of Symptomatic First-Trimester Pregnant Patients: A Systematic Review and Meta-Analysis. CJEM 2022, 24, 611–621. [Google Scholar] [CrossRef]
- Casey, M.L.; MacDonald, P.C.; Andersson, S. 17 Beta-Hydroxysteroid Dehydrogenase Type 2: Chromosomal Assignment and Progestin Regulation of Gene Expression in Human Endometrium. J. Clin. Investig. 1994, 94, 2135–2141. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.T.; Snyder, R.R.; Strickland, D.M.; Tyburski, C.C.; Bagnall, J.A.; Reed, K.R.; Adair, C.A.; Hensley, S.B. The Effect of Interobserver Variation in Dating Endometrial Histology on the Diagnosis of Luteal Phase Defects. Fertil. Steril. 1988, 50, 888–892. [Google Scholar] [CrossRef]
- Shoupe, D.; Mishell, D.R.; Lacarra, M.; Lobo, R.A.; Horenstein, J.; d’Ablaing, G.; Moyer, D. Correlation of Endometrial Maturation with Four Methods of Estimating Day of Ovulation. Obstet. Gynecol. 1989, 73, 88–92. [Google Scholar] [PubMed]
- Bulletti, C.; Galassi, A.; Parmeggiani, R.; Polli, V.; Alfieri, S.; Labate, A.M.; Flamigni, C. Dating the Endometrial Biopsy by Flow Cytometry. Fertil. Steril. 1994, 62, 96–102. [Google Scholar] [CrossRef]
- Nikas, G.; Drakakis, P.; Loutradis, D.; Mara-Skoufari, C.; Koumantakis, E.; Michalas, S.; Psychoyos, A. Uterine Pinopodes as Markers of the “nidation Window” in Cycling Women Receiving Exogenous Oestradiol and Progesterone. Hum. Reprod. 1995, 10, 1208–1213. [Google Scholar] [CrossRef]
- Psychoyos, A. Uterine Receptivity for Nidation. Ann. N. Y. Acad. Sci. 1986, 476, 36–42. [Google Scholar] [CrossRef]
- Nikas, G.; Psychoyos, A. Uterine Pinopodes in Peri-Implantation Human Endometrium. Clinical Relevance. Ann. N. Y. Acad. Sci. 1997, 816, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Lessey, B.A.; Damjanovich, L.; Coutifaris, C.; Castelbaum, A.; Albelda, S.M.; Buck, C.A. Integrin Adhesion Molecules in the Human Endometrium. Correlation with the Normal and Abnormal Menstrual Cycle. J. Clin. Investig. 1992, 90, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psychoyos, A. Uterine Receptivity for Egg-Implantation and Scanning Electron Microscopy. Acta Eur. Fertil. 1993, 24, 41–42. [Google Scholar] [PubMed]
- Lessey, B.A. Adhesion Molecules and Implantation. J. Reprod. Immunol. 2002, 55, 101–112. [Google Scholar] [CrossRef]
- Lessey, B.A.; Castelbaum, A.J.; Buck, C.A.; Lei, Y.; Yowell, C.W.; Sun, J. Further Characterization of Endometrial Integrins during the Menstrual Cycle and in Pregnancy. Fertil. Steril. 1994, 62, 497–506. [Google Scholar] [CrossRef]
- Tabibzadeh, S. Patterns of Expression of Integrin Molecules in Human Endometrium throughout the Menstrual Cycle. Hum. Reprod. 1992, 7, 876–882. [Google Scholar] [CrossRef]
- Stewart, C.L.; Kaspar, P.; Brunet, L.J.; Bhatt, H.; Gadi, I.; Köntgen, F.; Abbondanzo, S.J. Blastocyst Implantation Depends on Maternal Expression of Leukaemia Inhibitory Factor. Nature 1992, 359, 76–79. [Google Scholar] [CrossRef]
- Nachtigall, M.J.; Kliman, H.J.; Feinberg, R.F.; Olive, D.L.; Engin, O.; Arici, A. The Effect of Leukemia Inhibitory Factor (LIF) on Trophoblast Differentiation: A Potential Role in Human Implantation. J. Clin. Endocrinol. Metab. 1996, 81, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Cullinan, E.B.; Abbondanzo, S.J.; Anderson, P.S.; Pollard, J.W.; Lessey, B.A.; Stewart, C.L. Leukemia Inhibitory Factor (LIF) and LIF Receptor Expression in Human Endometrium Suggests a Potential Autocrine/Paracrine Function in Regulating Embryo Implantation. Proc. Natl. Acad. Sci. USA 1996, 93, 3115–3120. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.E.; Acosta, A.A.; Hsiu, J.G.; Jones, H.W. Advanced Endometrial Maturation after Ovulation Induction with Human Menopausal Gonadotropin/Human Chorionic Gonadotropin for in Vitro Fertilization. Fertil. Steril. 1984, 41, 31–35. [Google Scholar] [CrossRef]
- Borini, A.; Bulletti, C.; Cattoli, M.; Serrao, L.; Polli, V.; Alfieri, S.; Flamigni, C. Use of Recombinant Leukemia Inhibitory Factor in Embryo Implantation. Ann. N. Y. Acad. Sci. 1997, 828, 157–161. [Google Scholar] [CrossRef]
- Bulletti, C.; de Ziegler, D. Uterine Contractility and Embryo Implantation. Curr. Opin. Obstet. Gynecol. 2005, 17, 265–276. [Google Scholar] [CrossRef]
- Taylor, R.N.; Savouret, J.F.; Vaisse, C.; Vigne, J.L.; Ryan, I.; Hornung, D.; Seppälä, M.; Milgrom, E. Promegestone (R5020) and Mifepristone (RU486) Both Function as Progestational Agonists of Human Glycodelin Gene Expression in Isolated Human Epithelial Cells. J. Clin. Endocrinol. Metab. 1998, 83, 4006–4012. [Google Scholar] [CrossRef]
- Enciso, M.; Carrascosa, J.P.; Sarasa, J.; Martínez-Ortiz, P.A.; Munné, S.; Horcajadas, J.A.; Aizpurua, J. Development of a New Comprehensive and Reliable Endometrial Receptivity Map (ER Map/ER Grade) Based on RT-QPCR Gene Expression Analysis. Hum. Reprod. 2018, 33, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Garcia, E.; Bouchard, P.; De Brux, J.; Berdah, J.; Frydman, R.; Schaison, G.; Milgrom, E.; Perrot-Applanat, M. Use of Immunocytochemistry of Progesterone and Estrogen Receptors for Endometrial Dating. J. Clin. Endocrinol. Metab. 1988, 67, 80–87. [Google Scholar] [CrossRef]
- Cozzolino, M.; Diáz-Gimeno, P.; Pellicer, A.; Garrido, N. Use of the Endometrial Receptivity Array to Guide Personalized Embryo Transfer after a Failed Transfer Attempt Was Associated with a Lower Cumulative and per Transfer Live Birth Rate during Donor and Autologous Cycles. Fertil. Steril. 2022, 118, 724–736. [Google Scholar] [CrossRef]
- Arici, A.; Marshburn, P.B.; MacDonald, P.C.; Dombrowski, R.A. Progesterone Metabolism in Human Endometrial Stromal and Gland Cells in Culture. Steroids 1999, 64, 530–534. [Google Scholar] [CrossRef]
- Bulletti, C.; Jasonni, V.M.; Lubicz, S.; Flamigni, C.; Gurpide, E. Extracorporeal Perfusion of the Human Uterus. Am. J. Obstet. Gynecol. 1986, 154, 683–688. [Google Scholar] [CrossRef]
- Bulletti, C.; Ziegler, D.D.; Boschi, S.; Moreo, M.; Flamigni, C. Uterine Metabolism of Progesterone (P4) after Vaginal Administration in an Extracorporeal Organ Perfusion System. Fertil. Steril. 2001, 76, S71. [Google Scholar] [CrossRef]
- Li, W.-N.; Dickson, M.J.; DeMayo, F.J.; Wu, S.-P. The Role of Progesterone Receptor Isoforms in the Myometrium. J. Steroid. Biochem. Mol. Biol. 2022, 224, 106160. [Google Scholar] [CrossRef]
- Markiewicz, L.; Gurpide, E. Estrogenic and Progestagenic Activities Coexisting in Steroidal Drugs: Quantitative Evaluation by in Vitro Bioassays with Human Cells. J. Steroid. Biochem. Mol. Biol. 1994, 48, 89–94. [Google Scholar] [CrossRef]
- Fanchin, R.; Righini, C.; Olivennes, F.; Taylor, S.; de Ziegler, D.; Frydman, R. Uterine Contractions at the Time of Embryo Transfer Alter Pregnancy Rates after In-Vitro Fertilization. Hum. Reprod. 1998, 13, 1968–1974. [Google Scholar] [CrossRef]
- Fanchin, R.; Ayoubi, J.M.; Righini, C.; Olivennes, F.; Schönauer, L.M.; Frydman, R. Uterine Contractility Decreases at the Time of Blastocyst Transfers. Hum. Reprod. 2001, 16, 1115–1119. [Google Scholar] [CrossRef]
- Bulletti, C.; De Ziegler, D.; Polli, V.; Del Ferro, E.; Palini, S.; Flamigni, C. Characteristics of Uterine Contractility during Menses in Women with Mild to Moderate Endometriosis. Fertil. Steril. 2002, 77, 1156–1161. [Google Scholar] [CrossRef]
- Bulletti, C.; Montini, A.; Setti, P.L.; Palagiano, A.; Ubaldi, F.; Borini, A. Vaginal Parturition Decreases Recurrence of Endometriosis. Fertil. Steril. 2010, 94, 850–855. [Google Scholar] [CrossRef] [Green Version]
- Tesarik, J.; Hazout, A.; Mendoza, C. Enhancement of Embryo Developmental Potential by a Single Administration of GnRH Agonist at the Time of Implantation. Hum. Reprod. 2004, 19, 1176–1180. [Google Scholar] [CrossRef] [Green Version]
- Navot, D.; Bergh, P. Preparation of the Human Endometrium for Implantation. Ann. N. Y. Acad. Sci. 1991, 622, 212–219. [Google Scholar] [CrossRef]
- De Ziegler, D.; Pirtea, P.; Ayoubi, J.M. Implantation Failures and Miscarriages in Frozen Embryo Transfers Timed in Hormone Replacement Cycles (HRT): A Narrative Review. Life 2021, 11, 1357. [Google Scholar] [CrossRef]
- Pabuccu, R.; Akar, M.E. Luteal Phase Support in Assisted Reproductive Technology. Curr. Opin. Obstet. Gynecol. 2005, 17, 277–281. [Google Scholar] [CrossRef]
- Fatemi, H.M. The Luteal Phase after 3 Decades of IVF: What Do We Know? Reprod. Biomed. Online 2009, 19 (Suppl. S4), 4331. [Google Scholar] [CrossRef]
- Salehpour, S.; Nazari, L.; Hosseini, S.; Azizi, E.; Borumandnia, N.; Hashemi, T. Efficacy of Daily GnRH Agonist for Luteal Phase Support Following GnRH Agonist Triggered ICSI Cycles versus Conventional Strategy: A Randomized Controlled Trial. JBRA Assist. Reprod. 2021, 25, 368–372. [Google Scholar] [CrossRef]
- Okada, H.; Tsuzuki, T.; Murata, H. Decidualization of the Human Endometrium. Reprod. Med. Biol. 2018, 17, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjuresten, K.; Landgren, B.-M.; Hovatta, O.; Stavreus-Evers, A. Luteal Phase Progesterone Increases Live Birth Rate after Frozen Embryo Transfer. Fertil. Steril. 2011, 95, 534–537. [Google Scholar] [CrossRef] [PubMed]
- EUCTR2020-005552-38-SE; Vaginal Progesterone as Luteal Support for Improvement of Live Birth in Frozen/Thawed in-Vitro Fertilization Natural Cycles; a Multicenter, Open, Randomized Trial. 2020. Available online: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-02256261/full (accessed on 27 January 2022).
- Lee, V.C.Y.; Li, R.H.W.; Yeung, W.S.B.; Pak Chung, H.O.; Ng, E.H.Y. A Randomized Double-Blinded Controlled Trial of HCG as Luteal Phase Support in Natural Cycle Frozen Embryo Transfer. Hum. Reprod. 2017, 32, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Stadelmann, C.; Bergh, C.; Brännström, M.; Olsen, K.H.; Khatibi, A.; Kitlinski, M.; Liffner, S.; Lundborg, E.; Rodriguez-Wallberg, K.A.; Strandell, A.; et al. Vaginal Progesterone as Luteal Phase Support in Natural Cycle Frozen-Thawed Embryo Transfer (ProFET): Protocol for a Multicentre, Open-Label, Randomised Controlled Trial. BMJ Open 2022, 12, e062400. [Google Scholar] [CrossRef]
- Vuong, L.N.; Pham, T.D.; Le, K.T.Q.; Ly, T.T.; Le, H.L.; Nguyen, D.T.N.; Ho, V.N.A.; Dang, V.Q.; Phung, T.H.; Norman, R.J.; et al. Micronized Progesterone plus Dydrogesterone versus Micronized Progesterone Alone for Luteal Phase Support in Frozen-Thawed Cycles (MIDRONE): A Prospective Cohort Study. Hum. Reprod. 2021, 36, 1821–1831. [Google Scholar] [CrossRef]
- Wanggren, K. Progesterone Supplementation in Natural Cycles Improves Live Birth Rates after Frozen Embryo Transfers through Higher Implantation Rate and Reduced Pregnancy Loss. In Proceedings of the 35th Annual Meeting of the European Society of Human Reproduction and Embryology, Vienna, Austria, 23–26 June 2019. [Google Scholar]
- Zaat, T.R.; de Bruin, J.P.; Goddijn, M.; van Baal, M.; Benneheij, E.B.; Brandes, E.M.; Broekmans, F.; Cantineau, A.E.P.; Cohlen, B.; van Disseldorp, J.; et al. Is Home-Based Monitoring of Ovulation to Time Frozen Embryo Transfer a Cost-Effective Alternative for Hospital-Based Monitoring of Ovulation? Study Protocol of the Multicentre, Non-Inferiority Antarctica-2 Randomised Controlled Trial. Hum. Reprod. Open 2021, 2021, hoab035. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.M.; van Wely, M.; Verhoeve, H.R.; Kaaijk, E.M.; Mol, F.; van der Veen, F.; Repping, S.; Mastenbroek, S. Transfer of Fresh or Frozen Embryos: A Randomised Controlled Trial. Hum. Reprod. 2021, 36, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Casper, R.F.; Yanushpolsky, E.H. Optimal Endometrial Preparation for Frozen Embryo Transfer Cycles: Window of Implantation and Progesterone Support. Fertil. Steril. 2016, 105, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Adamson, G.D.; de Mouzon, J.; Chambers, G.M.; Zegers-Hochschild, F.; Mansour, R.; Ishihara, O.; Banker, M.; Dyer, S. International Committee for Monitoring Assisted Reproductive Technology: World Report on Assisted Reproductive Technology, 2011. Fertil. Steril. 2018, 110, 1067–1080. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention, American Society for Reproductive Medicine, Society for Assisted Reproductive Technology. 2016 Assisted Reproductive Technology National Summary Report; US Dept of Health and Human Services: Atlanta, GA, USA, 2018.
- Kushnir, V.A.; Barad, D.H.; Albertini, D.F.; Darmon, S.K.; Gleicher, N. Systematic Review of Worldwide Trends in Assisted Reproductive Technology 2004–2013. Reprod. Biol. Endocrinol. 2017, 15, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wang, Y.A.; Ledger, W.; Edgar, D.H.; Sullivan, E.A. Clinical Outcomes Following Cryopreservation of Blastocysts by Vitrification or Slow Freezing: A Population-Based Cohort Study. Hum. Reprod. 2014, 29, 2794–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastenbroek, S.; Twisk, M.; van Echten-Arends, J.; Sikkema-Raddatz, B.; Korevaar, J.C.; Verhoeve, H.R.; Vogel, N.E.A.; Arts, E.G.J.M.; de Vries, J.W.A.; Bossuyt, P.M.; et al. In Vitro Fertilization with Preimplantation Genetic Screening. N. Engl. J. Med. 2007, 357, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.E.; Whitney, J.B.; Schiewe, M.C. Clinical Benefits of Preimplantation Genetic Testing for Aneuploidy (PGT-A) for All in Vitro Fertilization Treatment Cycles. Eur. J. Med. Genet. 2020, 63, 103731. [Google Scholar] [CrossRef] [PubMed]
- Roque, M.; Valle, M.; Guimarães, F.; Sampaio, M.; Geber, S. Freeze-All Policy: Fresh vs. Frozen-Thawed Embryo Transfer. Fertil. Steril. 2015, 103, 1190–1193. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Sun, Y.; Hao, C.; Zhang, H.; Wei, D.; Zhang, Y.; Zhu, Y.; Deng, X.; Qi, X.; Li, H.; et al. Transfer of Fresh versus Frozen Embryos in Ovulatory Women. N. Engl. J. Med. 2018, 378, 126–136. [Google Scholar] [CrossRef]
- Navot, D.; Laufer, N.; Kopolovic, J.; Rabinowitz, R.; Birkenfeld, A.; Lewin, A.; Granat, M.; Margalioth, E.J.; Schenker, J.G. Artificially Induced Endometrial Cycles and Establishment of Pregnancies in the Absence of Ovaries. N. Engl. J. Med. 1986, 314, 806–811. [Google Scholar] [CrossRef]
- Mackens, S.; Santos-Ribeiro, S.; van de Vijver, A.; Racca, A.; Van Landuyt, L.; Tournaye, H.; Blockeel, C. Frozen Embryo Transfer: A Review on the Optimal Endometrial Preparation and Timing. Hum. Reprod. 2017, 32, 2234–2242. [Google Scholar] [CrossRef]
- Glujovsky, D.; Pesce, R.; Fiszbajn, G.; Sueldo, C.; Hart, R.J.; Ciapponi, A. Endometrial Preparation for Women Undergoing Embryo Transfer with Frozen Embryos or Embryos Derived from Donor Oocytes. Cochrane Database Syst. Rev. 2010, 10, CD006359. [Google Scholar] [CrossRef]
- Mubarak, S.; Acharyya, S.; Viardot-Foucault, V.; Tan, H.H.; Phoon, J.W.L. A Comparison of the Miscarriage and Live Birth Rate for Frozen Embryo Transfer According to Two Endometrial Preparations: Natural or Primed with Estrogens. FandR 2019, 1, 43–49. [Google Scholar] [CrossRef]
- Lawrenz, B.; Fatemi, H.M. Are Serum Progesterone Measurements Truly Representative for the Identification of an Adequate Luteal Phase in Hormonal Replacement Therapy Frozen Embryo Transfers? Hum. Reprod. 2022, 37, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Licciardi, F.L.; Kwiatkowski, A.; Noyes, N.L.; Berkeley, A.S.; Krey, L.L.; Grifo, J.A. Oral versus Intramuscular Progesterone for in Vitro Fertilization: A Prospective Randomized Study. Fertil. Steril. 1999, 71, 614–618. [Google Scholar] [CrossRef]
- Friedler, S.; Raziel, A.; Schachter, M.; Strassburger, D.; Bukovsky, I.; Ron-El, R. Luteal Support with Micronized Progesterone Following In-Vitro Fertilization Using a down-Regulation Protocol with Gonadotrophin-Releasing Hormone Agonist: A Comparative Study between Vaginal and Oral Administration. Hum. Reprod. 1999, 14, 1944–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, J.A.; Robinson, D.E.; Andrews, M.C.; Hildebrand, J.R.; Rocci, M.L.; Blake, R.E.; Hodgen, G.D. The Absorption of Oral Micronized Progesterone: The Effect of Food, Dose Proportionality, and Comparison with Intramuscular Progesterone. Fertil. Steril. 1993, 60, 26–33. [Google Scholar] [CrossRef]
- Huisman, D.; Raymakers, X.; Hoomans, E.H. Understanding the Burden of Ovarian Stimulation: Fertility Expert and Patient Perceptions. Reprod. Biomed. Online 2009, 19 (Suppl. S2), 5–10. [Google Scholar] [CrossRef]
- Yanushpolsky, E.; Hurwitz, S.; Greenberg, L.; Racowsky, C.; Hornstein, M. Crinone Vaginal Gel Is Equally Effective and Better Tolerated than Intramuscular Progesterone for Luteal Phase Support in in Vitro Fertilization-Embryo Transfer Cycles: A Prospective Randomized Study. Fertil. Steril. 2010, 94, 2596–2599. [Google Scholar] [CrossRef]
- Beltsos, A.N.; Sanchez, M.D.; Doody, K.J.; Bush, M.R.; Domar, A.D.; Collins, M.G. Patients’ Administration Preferences: Progesterone Vaginal Insert (Endometrin®) Compared to Intramuscular Progesterone for Luteal Phase Support. Reprod. Health 2014, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Haddad, G.; Saguan, D.A.; Maxwell, R.; Thomas, M.A. Intramuscular Route of Progesterone Administration Increases Pregnancy Rates during Non-Downregulated Frozen Embryo Transfer Cycles. J. Assist. Reprod. Genet. 2007, 24, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Berger, B.M.; Phillips, J.A. Pregnancy Outcomes in Oocyte Donation Recipients: Vaginal Gel versus Intramuscular Injection Progesterone Replacement. J. Assist. Reprod. Genet. 2012, 29, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Kaser, D.J.; Ginsburg, E.S.; Missmer, S.A.; Correia, K.F.; Racowsky, C. Intramuscular Progesterone versus 8% Crinone Vaginal Gel for Luteal Phase Support for Day 3 Cryopreserved Embryo Transfer. Fertil. Steril. 2012, 98, 1464–1469. [Google Scholar] [CrossRef]
- Shapiro, D.B.; Pappadakis, J.A.; Ellsworth, N.M.; Hait, H.I.; Nagy, Z.P. Progesterone Replacement with Vaginal Gel versus i.m. Injection: Cycle and Pregnancy Outcomes in IVF Patients Receiving Vitrified Blastocysts. Hum. Reprod. 2014, 29, 1706–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feinberg, E.C.; Beltsos, A.N.; Nicolaou, E.; Marut, E.L.; Uhler, M.L. Endometrin as Luteal Phase Support in Assisted Reproduction. Fertil. Steril. 2013, 99, 174–178.e1. [Google Scholar] [CrossRef] [PubMed]
- SART National Summary Report. 2019. Available online: https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?reportingYear=2019 (accessed on 27 January 2022).
- Ata, B.; Kalafat, E.; Somigliana, E. A New Definition of Recurrent Implantation Failure on the Basis of Anticipated Blastocyst Aneuploidy Rates across Female Age. Fertil. Steril. 2021, 116, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Busnelli, A.; Somigliana, E.; Cirillo, F.; Baggiani, A.; Levi-Setti, P.E. Efficacy of Therapies and Interventions for Repeated Embryo Implantation Failure: A Systematic Review and Meta-Analysis. Sci. Rep. 2021, 11, 1747. [Google Scholar] [CrossRef]
- Thiyagarajan, D.K.; Basit, H.; Jeanmonod, R. Physiology, Menstrual Cycle; StatPearls: Treasure Island, FL, USA, 2019. [Google Scholar]
- Gibbons, W.E.; Toner, J.P.; Hamacher, P.; Kolm, P. Experience with a Novel Vaginal Progesterone Preparation in a Donor Oocyte Program. Fertil. Steril. 1998, 69, 96–101. [Google Scholar] [CrossRef]
- De Ziegler, D.; Bergeron, C.; Cornel, C.; Medalie, D.A.; Massai, M.R.; Milgrom, E.; Frydman, R.; Bouchard, P. Effects of Luteal Estradiol on the Secretory Transformation of Human Endometrium and Plasma Gonadotropins. J. Clin. Endocrinol. Metab. 1992, 74, 322–331. [Google Scholar] [CrossRef]
- Rosenwaks, Z. Donor Eggs: Their Application in Modern Reproductive Technologies. Fertil. Steril. 1987, 47, 895–909. [Google Scholar] [CrossRef]
- Navot, D.; Bergh, P.A.; Williams, M.; Garrisi, G.J.; Guzman, I.; Sandler, B.; Fox, J.; Schreiner-Engel, P.; Hofmann, G.E.; Grunfeld, L. An Insight into Early Reproductive Processes through the in Vivo Model of Ovum Donation. J. Clin. Endocrinol. Metab. 1991, 72, 408–414. [Google Scholar] [CrossRef]
- Bourgain, C.; Devroey, P.; Van Waesberghe, L.; Smitz, J.; Van Steirteghem, A.C. Effects of Natural Progesterone on the Morphology of the Endometrium in Patients with Primary Ovarian Failure. Hum. Reprod. 1990, 5, 537–543. [Google Scholar] [CrossRef]
- Bulletti, C.; Jasonni, V.M.; Martinelli, G.; Govoni, E.; Tabanelli, S.; Ciotti, P.M.; Flamigni, C. A 48-Hour Preservation of an Isolated Human Uterus: Endometrial Responses to Sex Steroids. Fertil. Steril. 1987, 47, 122–129. [Google Scholar] [CrossRef]
- Bulletti, C.; Jasonni, V.M.; Ciotti, P.M.; Tabanelli, S.; Naldi, S.; Flamigni, C. Extraction of Estrogens by Human Perfused Uterus. Effects of Membrane Permeability and Binding by Serum Proteins on Differential Influx into Endometrium and Myometrium. Am. J. Obstet. Gynecol. 1988, 159, 509–515. [Google Scholar] [CrossRef]
- Pardridge, W.M.; Mietus, L.J. Transport of Steroid Hormones through the Rat Blood-Brain Barrier. Primary Role of Albumin-Bound Hormone. J. Clin. Investig. 1979, 64, 145–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardridge, W.M. Transport of Protein-Bound Hormones into Tissues in Vivo. Endocr. Rev. 1981, 2, 103–123. [Google Scholar] [CrossRef]
- Laufer, L.R.; Gambone, J.C.; Chaudhuri, G.; Pardridge, W.M.; Judd, H.L. The Effect of Membrane Permeability and Binding by Human Serum Proteins on Sex Steroid Influx into the Uterus. J. Clin. Endocrinol. Metab. 1983, 56, 1282–1287. [Google Scholar] [CrossRef] [PubMed]
- Verheugen, C.; Pardridge, W.M.; Judd, H.L.; Chaudhuri, G. Differential Permeability of Uterine and Liver Vascular Beds to Estrogens and Estrogen Conjugates. J. Clin. Endocrinol. Metab. 1984, 59, 1128–1132. [Google Scholar] [CrossRef] [PubMed]
- Steingold, K.A.; Cefalu, W.; Pardridge, W.; Judd, H.L.; Chaudhuri, G. Enhanced Hepatic Extraction of Estrogens Used for Replacement Therapy. J. Clin. Endocrinol. Metab 1986, 62, 761–766. [Google Scholar] [CrossRef]
- Cedars, M.I.; Judd, H.L. Nonoral Routes of Estrogen Administration. Obstet. Gynecol. Clin. N. Am. 1987, 14, 269–298. [Google Scholar] [CrossRef]
- Schindler, A.E.; Bolt, H.M.; Zwirner, M.; Hochlehnert, G.; Göser, R. Comparative Pharmacokinetics of Oestradiol, Oestrone, Oestrone Sulfate and “Conjugated Oestrogens” after Oral Administration. Arzneimittelforschung 1982, 32, 787–791. [Google Scholar]
- Cicinelli, E.; de Ziegler, D.; Bulletti, C.; Matteo, M.G.; Schonauer, L.M.; Galantino, P. Direct Transport of Progesterone from Vagina to Uterus. Obstet. Gynecol. 2000, 95, 403–406. [Google Scholar]
- Cerrillo, M.; Cecchino, G.N.; Cruz, M.; Mayoral, M.; Pacheco, A.; García-Velasco, J.A. Impact of Administration Route on Serum Progesterone Levels in Women Undergoing Artificial Endometrial Preparation. Med. Reprod. Embriol. Clínica 2022, 9, 100124. [Google Scholar] [CrossRef]
- Doblinger, J.; Cometti, B.; Trevisan, S.; Griesinger, G. Subcutaneous Progesterone Is Effective and Safe for Luteal Phase Support in IVF: An Individual Patient Data Meta-Analysis of the Phase III Trials. PLoS ONE 2016, 11, e0151388. [Google Scholar] [CrossRef] [PubMed]
- Salang, L.; Teixeira, D.M.; Solà, I.; Sothornwit, J.; Martins, W.P.; Bofill Rodriguez, M.; Lumbiganon, P. Luteal Phase Support for Women Trying to Conceive by Intrauterine Insemination or Sexual Intercourse. Cochrane Database Syst. Rev. 2022, 8, CD012396. [Google Scholar] [CrossRef] [PubMed]
- Nahoul, K.; Dehennin, L.; Jondet, M.; Roger, M. Profiles of Plasma Estrogens, Progesterone and Their Metabolites after Oral or Vaginal Administration of Estradiol or Progesterone. Maturitas 1993, 16, 185–202. [Google Scholar] [CrossRef]
- Geber, S.; Moreira, A.C.F.; de Paula, S.O.C.; Sampaio, M. Comparison between Two Forms of Vaginally Administered Progesterone for Luteal Phase Support in Assisted Reproduction Cycles. Reprod. Biomed. Online 2007, 14, 155–158. [Google Scholar] [CrossRef]
- Whitehead, M.I.; Townsend, P.T.; Gill, D.K.; Collins, W.P.; Campbell, S. Absorption and Metabolism of Oral Progesterone. Br. Med. J. 1980, 280, 825–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, W.C. Did the NICE Guideline for Progesterone Treatment of Threatened Miscarriage Get It Right? Reprod. Fertil. 2022, 3, C4–C6. [Google Scholar] [CrossRef]
- Kol, S. Luteal Support Post GnRH Agonist Trigger: Do Not Stop Too Soon. Hum. Reprod. 2005, 20, 3257–3258. [Google Scholar] [CrossRef] [Green Version]
- Conrad, K.P.; von Versen-Höynck, F.; Baker, V.L. Potential Role of the Corpus Luteum in Maternal Cardiovascular Adaptation to Pregnancy and Preeclampsia Risk. Am. J. Obstet. Gynecol. 2022, 226, 683–699. [Google Scholar] [CrossRef]
- Ruane, P.T.; Garner, T.; Parsons, L.; Babbington, P.A.; Wangsaputra, I.; Kimber, S.J.; Stevens, A.; Westwood, M.; Brison, D.R.; Aplin, J.D. Trophectoderm Differentiation to Invasive Syncytiotrophoblast Is Promoted by Endometrial Epithelial Cells during Human Embryo Implantation. Hum. Reprod. 2022, 37, 777–792. [Google Scholar] [CrossRef]
- Neumann, K.; Masuch, A.; Vonthein, R.; Depenbusch, M.; Schultze-Mosgau, A.; Eggersmann, T.K.; Griesinger, G. Dydrogesterone and 20α-Dihydrodydrogesterone Plasma Levels on Day of Embryo Transfer and Clinical Outcome in an Anovulatory Programmed Frozen-Thawed Embryo Transfer Cycle: A Prospective Cohort Study. Hum. Reprod. 2022, 37, 1183–1193. [Google Scholar] [CrossRef]
- Mizrachi, Y.; Weissman, A.; Rozen, G.; Rogers, P.A.W.; Stern, C.; Polyakov, A. Timing of Progesterone Luteal Support in Natural Cryopreserved Embryo Transfer Cycles: Back to Basics. Reprod. Biomed. Online 2022, 45, 63–68. [Google Scholar] [CrossRef] [PubMed]
- NICE. Ectopic Pregnancy and Miscarriage: Diagnosis and Initial Management. In National Institute for Health and Care Excellence: Guidelines; National Institute for Health and Care Excellence (NICE): London, UK, 2021; ISBN 978-1-4731-3380-8. [Google Scholar]
- Herlihy, N.S.; Klimczak, A.M.; Cheung, J.K.W.; Seli, E.; Scott, R.T. The Chances of Obtaining a Euploid Embryo and Subsequent Live Birth Remain Consistent with National Age-Based Rates after an in Vitro Fertilization Cycle That Produced Only Aneuploid Embryos. Fertil. Steril. 2022, 118, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Blockeel, C.; Drakopoulos, P.; Polyzos, N.P.; Tournaye, H.; García-Velasco, J.A. Review the “Peer Review”. Reprod. Biomed. Online 2017, 35, 747–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fauser, B.C. Protecting Data Integrity in Reproductive Medicine. Reprod. Biomed. Online 2022, 44, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Conde-Agudelo, A.; Romero, R. Does Vaginal Progesterone Prevent Recurrent Preterm Birth in Women with a Singleton Gestation and a History of Spontaneous Preterm Birth? Evidence from a Systematic Review and Meta-Analysis. Am. J. Obstet. Gynecol 2022, 227, 440–461.e2. [Google Scholar] [CrossRef] [PubMed]
% Endometrial Steroids during Perfusion at Time Intervals after P4 Administration | ||||||
Steroids | 3 h | 6 h | 9 h | 12 h | 24 h | |
% P | 485.21 | 83.36 | 84.82 | 91.56 | 93.36 | |
% 20 alpha | 1.53 | 2.18 | 2.05 | 1.90 | 2.19 | |
% | −14.79 | −16.64 | −15.18 | −8.44 | −6.64 | |
% 5 alpha | 4.45 | 5.13 | 5.73 | 3.34 | 1.73 | |
% allo | 8.81 | 9.33 | 7.40 | 3.20 | 2.72 | |
% Myometrial steroids during perfusion at time intervals from P administration | ||||||
Steroids | 3 h | 6 h | 9 h | 12 h | 24 h | 48 h |
% P | 89.0 | 86.6 | 79.9 | 81.9 | 83.3 | 84.1 |
% 20 alpha | 3.4 | 3.5 | 3.1 | 3.5 | 3.0 | 3.2 |
% | −11.0 | −13.4 | −20.1 | −18.1 | −16.7 | −15.9 |
% 5 alpha | 2.7 | 3.7 | 7.1 | 6.6 | 5.6 | 6.1 |
% allo | 4.9 | 6.2 | 9.9 | 8.0 | 8.1 | 6.6 |
Vaginal gel | Available in prefilled applicators, the vaginal gel coats the walls of the vagina, thereby resulting in a controlled, steady release of progesterone. In IVF, it is used once/twice daily. Vaginal progesterone gel is approved by the authority control agencies for ART in fresh ET and for up to 12 weeks of pregnancy. Progesterone gel twice daily is also indicated for progesterone replacement in donor egg recipients and FET. |
Vaginal suppositories | Produced by specialized fertility pharmacies, usually using cocoa-butter. The suppositories are placed into the vagina two or three times a day and they dissolve over time. Vaginal suppositories are safe and effective, but are not approved for fertility treatments by the FDA. |
Vaginal tablets or inserts | The tablets are inserted into the vagina two or three times daily using a disposable applicator. Vaginal tablets are FDA-approved for women who need progesterone supplementation. |
Progesterone capsules (used vaginally) | Progesterone capsules used vaginally, instead of orally, prevent side-effects. They also help to boost progesterone absorption. Oral progesterone capsules for vaginal use are not approved by regulatory agencies. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulletti, C.; Bulletti, F.M.; Sciorio, R.; Guido, M. Progesterone: The Key Factor of the Beginning of Life. Int. J. Mol. Sci. 2022, 23, 14138. https://doi.org/10.3390/ijms232214138
Bulletti C, Bulletti FM, Sciorio R, Guido M. Progesterone: The Key Factor of the Beginning of Life. International Journal of Molecular Sciences. 2022; 23(22):14138. https://doi.org/10.3390/ijms232214138
Chicago/Turabian StyleBulletti, Carlo, Francesco Maria Bulletti, Romualdo Sciorio, and Maurizio Guido. 2022. "Progesterone: The Key Factor of the Beginning of Life" International Journal of Molecular Sciences 23, no. 22: 14138. https://doi.org/10.3390/ijms232214138
APA StyleBulletti, C., Bulletti, F. M., Sciorio, R., & Guido, M. (2022). Progesterone: The Key Factor of the Beginning of Life. International Journal of Molecular Sciences, 23(22), 14138. https://doi.org/10.3390/ijms232214138