Flavones, Flavonols, Lignans, and Caffeic Acid Derivatives from Dracocephalum moldavica and Their In Vitro Effects on Multiple Myeloma and Acute Myeloid Leukemia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Identification
2.2. Biological Activity
3. Materials and Methods
3.1. Plant Material, Reagents and Experimental Procedures
3.2. Extraction and Isolation
3.3. Cytotoxicity Assays, Proliferation Assays, and FLT3 Kinase Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdallah, N.; Rajkumar, S.V.; Greipp, P.; Kapoor, P.; Gertz, M.A.; Dispenzieri, A.; Baughn, L.B.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; et al. Cytogenetic Abnormalities in Multiple Myeloma: Association with Disease Characteristics and Treatment Response. Blood Cancer J. 2020, 10, 82. [Google Scholar] [CrossRef]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and Management of AML in Adults: 2017 ELN Recommendations from an International Expert Panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willer, J.; Jöhrer, K.; Greil, R.; Zidorn, C.; Çiçek, S.S. Cytotoxic Properties of Damiana (Turnera diffusa) Extracts and Constituents and A Validated Quantitative UHPLC-DAD Assay. Molecules 2019, 24, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jöhrer, K.; Stuppner, H.; Greil, R.; Çiçek, S.S. Structure-Guided Identification of Black Cohosh (Actaea racemosa) Triterpenoids with In Vitro Activity against Multiple Myeloma. Molecules 2020, 25, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çiçek, S.S.; Willer, J.; Preziuso, F.; Sönnichsen, F.; Greil, R.; Girreser, U.; Zidorn, C.; Jöhrer, K. Cytotoxic Constituents and a New Hydroxycinnamic Acid Derivative from Leontodon saxatilis (Asteraceae, Cichorieae). RSC Adv. 2021, 11, 10489–10496. [Google Scholar] [CrossRef]
- The Plant List. Version 1.1. Available online: http://www.theplantlist.org/ (accessed on 15 August 2022).
- Cao, W.; Hu, N.; Yuan, Y.; Cheng, J.; Guo, X.; Wang, Y.; Wang, X.; Hu, P. Effects of Tilianin on Proliferation, Migration and TGF-β/Smad Signaling in Rat Vascular Smooth Muscle Cells Induced with Angiotensin II. Phytother. Res. 2017, 31, 1240–1248. [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.; Wang, M.; Cui, H.; Zhou, W.; Li, G. Chemical Constituents from Dracocephalum moldavica L. and Their Chemotaxonomic Significance. Biochem. Syst. Ecol. 2022, 102, 104422. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, L.; Liu, X.; Fan, J.; Wang, X.; Shen, T.; Wang, S.; Ren, D. Dracomolphesin A–E, Five 3,4-Seco-Phenylpropanoids with Nrf2 Inducing Activity from Dracocephalum moldavica. Chin. Chem. Lett. 2020, 31, 1259–1262. [Google Scholar] [CrossRef]
- Zeng, Q.; Jin, H.-Z.; Qin, J.-J.; Fu, J.-J.; Hu, X.-J.; Liu, J.-H.; Yan, L.; Chen, M.; Zhang, W.-D. Chemical Constituents of Plants from the Genus Dracocephalum. Chem. Biodivers. 2010, 7, 1911–1929. [Google Scholar] [CrossRef]
- Yang, L.-N.; Xing, J.-G.; He, C.-H.; Wu, T. The Phenolic Compounds from Dracocephalum moldavica L. Biochem. Syst. Ecol. 2014, 54, 19–22. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Yan, R.-J.; Yu, N.; Zhang, X.; Chen, D.-J.; Wu, T.; Xin, J.-G. A New Caffeic Acid Tetramer from the Dracocephalum moldavica L. Nat. Prod. Res. 2018, 32, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; He, C.; Jiang, W.; Zeng, C.; Yu, N.; Huang, W.; Gao, Z.; Xing, J. Development of Solid Lipid Nanoparticles Containing Total Flavonoid Extract from Dracocephalum moldavica L. and Their Therapeutic Effect against Myocardial Ischemia-Reperfusion Injury in Rats. Int. J. Nanomed. 2017, 12, 3253–3265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Wang, J.; Jin, L.; Duan, Y.; Zhang, X.; Sun, J.; Zhou, W.; Li, G. Isolation and Structural Characterization of Two Polysaccharides from Dracocephalum moldavica and Their Anti-Complementary Activity. Chem. Biodivers. 2022, 19, e202200294. [Google Scholar] [CrossRef]
- Nie, L.; Li, R.; Huang, J.; Wang, L.; Ma, M.; Huang, C.; Wu, T.; Yan, R.; Hu, X. Abietane Diterpenoids from Dracocephalum moldavica L. and Their Anti-Inflammatory Activities in Vitro. Phytochemistry 2021, 184, 112680. [Google Scholar] [CrossRef] [PubMed]
- Bai, N.; He, K.; Roller, M.; Lai, C.-S.; Shao, X.; Pan, M.-H.; Bily, A.; Ho, C.-T. Flavonoid Glycosides from Microtea Debilis and Their Cytotoxic and Anti-Inflammatory Effects. Fitoterapia 2011, 82, 168–172. [Google Scholar] [CrossRef]
- Zhao, H.-Y.; Yang, L.; Wei, J.; Huang, M.; Jiang, J.-G. Bioactivity Evaluations of Ingredients Extracted from the Flowers of Citrus aurantium L. Var. Amara Engl. Food Chem. 2012, 135, 2175–2181. [Google Scholar] [CrossRef]
- El-Ansari, M.A.; Abdalla, M.F.; Saleh, N.A.M.; Barron, D.; Le Quéré, J.L. Flavonoid Constituents of Stachys aegyptiaca. Phytochemistry 1991, 30, 1169–1173. [Google Scholar] [CrossRef]
- Xu, Y.; Tao, Z.; Jin, Y.; Yuan, Y.; Dong, T.T.X.; Tsim, K.W.K.; Zhou, Z. Flavonoids, a Potential New Insight of Leucaena leucocephala Foliage in Ruminant Health. J. Agric. Food Chem. 2018, 66, 7616–7626. [Google Scholar] [CrossRef]
- Lin, L.-C.; Pai, Y.-F.; Tsai, T.-H. Isolation of Luteolin and Luteolin-7-O-Glucoside from Dendranthema Morifolium Ramat Tzvel and Their Pharmacokinetics in Rats. J. Agric. Food Chem. 2015, 63, 7700–7706. [Google Scholar] [CrossRef]
- Kipchakbaeva, A.K.; Eskalieva, B.K.; Burasheva, G.S.; Aisa, H.A. Polyphenols from the Plant Climacoptera Korshinskyi. Chem. Nat. Compd. 2019, 55, 131–132. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Wang, Y.; Zhang, Y. Bioassay-Guided Screening and Isolation of α-Glucosidase and Tyrosinase Inhibitors from Leaves of Morus alba. Food Chem. 2012, 131, 617–625. [Google Scholar] [CrossRef]
- Iida, T.; Noro, Y.; Ito, K. Magnostellin A and B, Novel Lignans from Magnolia Stellata. Phytochemistry 1983, 22, 211–213. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.-T.; Zhang, D.; Guo, S.-S.; Xi, C.; Du, S.-S. Repellent and Feeding Deterrent Activities of Butanolides and Lignans Isolated from Cinnamomum camphora against Tribolium castaneum. J. Chem. 2020, 2020, 5685294. [Google Scholar] [CrossRef]
- Anh, L.T.T.; Son, N.T.; Van Tuyen, N.; Thuy, P.T.; Quan, P.M.; Ha, N.T.T.; Tra, N.T. Antioxidative and α-Glucosidase Inhibitory Constituents of Polyscias guilfoylei: Experimental and Computational Assessments. Mol. Divers. 2022, 26, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Taning, C.N.T.; Bonneure, E.; Mangelinckx, S.; Smagghe, G.; Ahmad, R.; Fatima, N.; Asif, M.; Shah, M.M. Bioactivity-Guided Isolation of Rosmarinic Acid as the Principle Bioactive Compound from the Butanol Extract of Isodon rugosus against the Pea Aphid, Acyrthosiphon pisum. PLoS ONE 2019, 14, e0215048. [Google Scholar] [CrossRef] [Green Version]
- Baba, S.; Osakabe, N.; Natsume, M.; Terao, J. Orally Administered Rosmarinic Acid Is Present as the Conjugated and/or Methylated Forms in Plasma, and Is Degraded and Metabolized to Conjugated Forms of Caffeic Acid, Ferulic Acid and m-Coumaric Acid. Life Sci. 2004, 75, 165–178. [Google Scholar] [CrossRef]
- Yen, S.-C.; Chen, L.-C.; Huang, H.-L.; Ngo, S.-T.; Wu, Y.-W.; Lin, T.E.; Sung, T.-Y.; Lien, S.-T.; Tseng, H.-J.; Pan, S.-L.; et al. Investigation of Selected Flavonoid Derivatives as Potent FLT3 Inhibitors for the Potential Treatment of Acute Myeloid Leukemia. J. Nat. Prod. 2021, 84, 1–10. [Google Scholar] [CrossRef]
- Arai, Y.; Chi, S.; Minami, Y.; Yanada, M. FLT3-Targeted Treatment for Acute Myeloid Leukemia. Int. J. Hematol. 2022, 116, 351–363. [Google Scholar] [CrossRef]
- Acharya, B.; Saha, D.; Armstrong, D.; Lakkaniga, N.R.; Frett, B. FLT3 Inhibitors for Acute Myeloid Leukemia: Successes, Defeats, and Emerging Paradigms. RSC Med. Chem. 2022, 13, 798–816. [Google Scholar] [CrossRef]
- Steiner, N.; Hajek, R.; Sevcikova, S.; Borjan, B.; Jöhrer, K.; Göbel, G.; Untergasser, G.; Gunsilius, E. High Levels of FLT3-Ligand in Bone Marrow and Peripheral Blood of Patients with Advanced Multiple Myeloma. PLoS ONE 2017, 12, e0181487. [Google Scholar] [CrossRef]
- Steiner, N.; Jöhrer, K.; Plewan, S.; Brunner-Véber, A.; Göbel, G.; Nachbaur, D.; Wolf, D.; Gunsilius, E.; Untergasser, G. The FMS like Tyrosine Kinase 3 (FLT3) Is Overexpressed in a Subgroup of Multiple Myeloma Patients with Inferior Prognosis. Cancers 2020, 12, 2341. [Google Scholar] [CrossRef] [PubMed]
- Murakami, A.; Ohigashi, H. Polymethylated Flavonoids: Cancer Preventive and Therapeutic Potentials Derived from Anti-Inflammatory and Drug Metabolism-Modifying Properties. In Phytochemicals in Health and Disease, 1st ed.; Bao, Y., Fenwick, R., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 169–192. [Google Scholar]
- Guo, L.; Li, Y.; Mao, X.; Tao, R.; Tao, B.; Zhou, Z. Antifungal Activity of Polymethoxylated Flavonoids (PMFs)-Loaded Citral Nanoemulsion against Penicillium italicum by Causing Cell Membrane Damage. J. Fungi 2022, 8, 388. [Google Scholar] [CrossRef]
- Park, E.-J.; Pezzuto, J.M. Flavonoids in Cancer Prevention. Anti-Cancer Agents Med. Chem. 2012, 12, 836–851. [Google Scholar] [CrossRef] [PubMed]
- Walle, T. Methoxylated Flavones, a Superior Cancer Chemopreventive Flavonoid Subclass? Semin. Cancer Biol. 2007, 17, 354–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jöhrer, K.; Çiçek, S.S. Multiple Myeloma Inhibitory Activity of Plant Natural Products. Cancers 2021, 13, 2678. [Google Scholar] [CrossRef]
- Almatroodi, S.A.; Alsahli, M.A.; Almatroudi, A.; Verma, A.K.; Aloliqi, A.; Allemailem, K.S.; Khan, A.A.; Rahmani, A.H. Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways. Molecules 2021, 26, 1315. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Parama, D.; Daimari, E.; Girisa, S.; Banik, K.; Harsha, C.; Dutta, U.; Kunnumakkara, A.B. Rationalizing the Therapeutic Potential of Apigenin against Cancer. Life Sci. 2021, 267, 118814. [Google Scholar] [CrossRef]
- Feng, J.; Zheng, T.; Hou, Z.; Lv, C.; Xue, A.; Han, T.; Han, B.; Sun, X.; Wei, Y. Luteolin, an Aryl Hydrocarbon Receptor Ligand, Suppresses Tumor Metastasis in Vitro and in Vivo. Oncol. Rep. 2020, 44, 2231–2240. [Google Scholar] [CrossRef]
- Yao, Y.; Rao, C.; Zheng, G.; Wang, S. Luteolin Suppresses Colorectal Cancer Cell Metastasis via Regulation of the MiR-384/Pleiotrophin Axis. Oncol. Rep. 2019, 42, 131–141. [Google Scholar] [CrossRef]
KMS-12-PE | Molm-13 | ||||
---|---|---|---|---|---|
Compound | Concentration | % Alive | EC50 | % Alive | EC50 |
1 | 50 µM | 58.9 ± 28.6 (4) | 12.9 ± 4.1 (4) | ||
25 µM | 76.6 ± 25.6 (4) | >50 | 48.4 ± 12.0 (4) | 21.74 | |
12.5 µM | 86.8 ± 14.5 (4) | 77.3 ± 9.0 (4) | |||
2 | 50 µM | 93.1 ± 10.2 (3) | 88.6 ± 1.8 (2) | ||
25 µM | 93.4 ± 9.3 (3) | >50 | 90.9 ± 0.4 (2) | >50 | |
12.5 µM | 94.6 ± 10.2 (3) | 91.1 ± 3.4 (2) | |||
3 | 50 µM | 55.4 ± 13.1 (4) | 47.0 ± 2.7 (4) | ||
25 µM | 62.6 ± 13.1 (4) | 45.39 | 53.5 ± 1.0 (4) | 27.98 | |
12.5 µM | 69.5 ± 16.0 (4) | 56.4 ± 9.1 (4) | |||
4 | 50 µM | 59.6 ± 16.1 (4) | 58.4 ± 14.2 (4) | ||
25 µM | 69.4 ± 31.3 (4) | >50 | 89.5 ± 3.9 (4) | >50 | |
12.5 µM | 85.5 ± 10.6 (4) | 98.0 ± 1.6 (4) | |||
5 | 50 µM | 50.3 ± 18.4 (4) | 30.2 ± 13.7 (4) | ||
25 µM | 70.5 ± 5.6 (4) | >50 | 72.4 ± 4.0 (4) | 42.31 | |
12.5 µM | 80.3 ± 5.4 (4) | 86.5 ± 5.2 (4) | |||
6 | 50 µM | 31.1 ± 5.3 (4) | 39.8 ± 5.8 (4) | ||
25 µM | 44.2 ± 19.0 (4) | 25.65 | 76.2 ± 6.7 (4) | >50 | |
12.5 µM | 77.3 ± 6.9 (4) | 91.5 ± 2.8 (4) | |||
7 | 50 µM | 76.3 ± 17.3 (3) | 50.2 ± 11.4 (4) | ||
25 µM | 91.2 ± 15.0 (3) | >50 | 83.1 ± 5.7 (4) | >50 | |
12.5 µM | 98.0 ± 2.7 (3) | 93.1 ± 5.1 (4) | |||
8 | 50 µM | 43.7 ± 8.3 (3) | 79.8 ± 10.2 (4) | ||
25 µM | 79.0 ± 4.8 (3) | >50 | 94.4 ± 3.9 (4) | >50 | |
12.5 µM | 96.6 ± 2.7 (3) | 100.1 ± 2.2 (4) | |||
9 | 50 µM | 97.1 ± 4.1 (2) | 97.5 ± 2.4 (2) | ||
25 µM | 100.1 ± 0.8 (2) | >50 | 100.0 ± 2.1 (2) | >50 | |
12.5 µM | 102.8 ± 0.8 (2) | 101.8 ± 1.3 (2) | |||
10 | 50 µM | 89.4 ± 0.8 (2) | 98.7 ± 1.7 (2) | ||
25 µM | 96.7 ± 0.5 (2) | >50 | 100.2 ± 2.0 (2) | >50 | |
12.5 µM | 99.0 ± 0.6 (2) | 101.1 ± 1.4 (2) | |||
11 | 50 µM | 102.6 ± 0.5 (2) | 98.8 ± 2.8 (2) | ||
25 µM | 102.5 ± 0.9 (2) | >50 | 98.1 ± 3.8 (2) | >50 | |
12.5 µM | 102.3 ± 1.8 (2) | 96.9 ± 4.6 (2) | |||
12 | 50 µM | 98.2 ± 1.5 (2) | 100.8 ± 0.6 (2) | ||
25 µM | 101.6 ± 1.5 (2) | >50 | 98.5 ± 3.6 (2) | >50 | |
12.5 µM | 100.2 ± 0.9 (2) | 97.6 ± 3.2 (2) | |||
13 | 50 µM | 100.7 ± 3.4 (2) | 97.8 ± 4.0 (2) | ||
25 µM | 101.3 ± 1.8 (2) | >50 | 99.4 ± 1.9 (2) | >50 | |
12.5 µM | 101.5 ± 1.6 (2) | 99.6 ± 2.6 (2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jöhrer, K.; Galarza Pérez, M.; Kircher, B.; Çiçek, S.S. Flavones, Flavonols, Lignans, and Caffeic Acid Derivatives from Dracocephalum moldavica and Their In Vitro Effects on Multiple Myeloma and Acute Myeloid Leukemia. Int. J. Mol. Sci. 2022, 23, 14219. https://doi.org/10.3390/ijms232214219
Jöhrer K, Galarza Pérez M, Kircher B, Çiçek SS. Flavones, Flavonols, Lignans, and Caffeic Acid Derivatives from Dracocephalum moldavica and Their In Vitro Effects on Multiple Myeloma and Acute Myeloid Leukemia. International Journal of Molecular Sciences. 2022; 23(22):14219. https://doi.org/10.3390/ijms232214219
Chicago/Turabian StyleJöhrer, Karin, Mayra Galarza Pérez, Brigitte Kircher, and Serhat Sezai Çiçek. 2022. "Flavones, Flavonols, Lignans, and Caffeic Acid Derivatives from Dracocephalum moldavica and Their In Vitro Effects on Multiple Myeloma and Acute Myeloid Leukemia" International Journal of Molecular Sciences 23, no. 22: 14219. https://doi.org/10.3390/ijms232214219
APA StyleJöhrer, K., Galarza Pérez, M., Kircher, B., & Çiçek, S. S. (2022). Flavones, Flavonols, Lignans, and Caffeic Acid Derivatives from Dracocephalum moldavica and Their In Vitro Effects on Multiple Myeloma and Acute Myeloid Leukemia. International Journal of Molecular Sciences, 23(22), 14219. https://doi.org/10.3390/ijms232214219