Zingiber officinale Rosc. in the Treatment of Metabolic Syndrome Disorders—A Review of In Vivo Studies
Abstract
:1. Introduction
2. Methods
3. Pharmacological Properties of Ginger
3.1. Anti-Inflammatory Properties of Zingiber Officinale
3.2. Influence of Ginger on the Cardiovascular System
Extract/Natural Product | Study Group and Duration of Treatment | Dosage | Comments | References |
---|---|---|---|---|
Ginger rhizome | Patients ≤ 50 years 8 weeks | ≥3 g per day | ↓ Systolic and diastolic blood pressure, possibly due to antioxidant potential | [43,44] |
Ginger rhizome | Patients | (0–2, 2–4 and 4–6 g/day) | ↓Hypertension by 8 and 13% | [48,49] |
Ginger rhizome | Patients | ≥2 g per day | ↓ TAG and LDL-C in blood | [51] |
Ginger extract | 120 patients | 30 mg of ginger extract in 2 capsules a day for 1 month | ↓ Pain ↑ Joint motion | [32] |
Ginger extract with Echinacea extract | 15 patients with osteoarthritis; >60 years of age; men/women ratio: 2/13 | 25 mg ginger and 5 mg of Echinacea extract, 30 days | ↓ Pain ↓ Knee circumference | [33] |
Ginger rhizome | 60 patients with postoperative sequelae; men/women ratio: 24/36 | 500 mg of powdered ginger rhizome; oral administration, every 6 h after surgery | ↓ Pain Similar effects to ibuprofen | |
Ginger rhizome | 24 healthy overweight women 20–30 years of age | 3 g of powdered ginger a day; oral administration for 10 weeks with and without training | ↓ Systolic blood pressure ↓ Diastolic blood pressure in the group treated with ginger with no training | [49] |
Ginger extract | 32 50-day-old male Sprague-Dawley rats | 250 mg/kg b.w. water extract, 3 times a week; oral gavage, 4 weeks | ↓TAG, TC and LDL; ↑HDL in combination with aerobic training ↑ LHD and AST biomarkers ↑ CK-MB, cTn-I and cTN-T in plasma | [52] |
Ginger extract | 24 male albino Wistar rats (200–250 g) | 250 mg/kg b.w. of methanolic ginger extract daily for 3 weeks | ↓Plasma sugar levels ↓ Hyperglycemia ↓ Hyperinsulinemia | [55] |
Ginger juice | Rats with alloxan-induced diabetes (150 mg/kg b.w.) | 4 mL/kg b.w. daily, oral administration for 6 weeks | ↓Plasma sugar levels ↑ HDL ↓ TC, TAG, LDL, creatinine, uric acid | [54] |
Ginger extract | Rats with streptozotocin-induced diabetes | 200 mg/kg b.w. of water extract, 20 days | ↓ Hyperglycemia ↓ TC ↑ Cholesterol 7-alpha-hydroxylase activity ↓ Levels of liver and pancreas thiobarbituric-acid-reactive substances | [11] |
6-Shogaol | Guinea pig | - | ↓ Sleep apnea ↑ Relaxation of blood vessels ↓ Blood pressure | [50] |
Ginger extract | 7-week-old male mice [55] and male Sprague-Dawley rats [55] | 0.3–0.4% ginger extract added to the high-sugar and high-fat diet feed for 2 weeks [55] and 35 days [55] | ↓ Obesity by PPAR receptor regulation ↓ Body weight ↑Energy expenditure, heat production ↓ Hyperglycemia | [55,56] |
Ginger extract | 24 male Sprague-Dawley rats | 20 and 50 mg/kg b.w. of 95% ethanol extract daily by oral gavage for 5 weeks together with fructose solution | ↑ Heat production ↓Fructose-overconsumption-induced adipose tissue insulin resistance in rats ↓ Cytokines | [57] |
Ginger essential oils | Rats | 12 weeks | Treatment of nonalcoholic fatty liver disease → Modulation of the hepatic-SREBP-1c- and CYP2E1-mediated pathway ↓ Hyperlipidemia ↓TG, TC | [58] |
Ginger extract | 40 5-week-old female BALB/c mice with induced colitis | p.o., 100, 300 and 500 mg/kg b.w. 21 days, once a day | ↓ Body weight ↓ Colon length ↓ Number of neutrophils and pro-inflammatory cytokines (IL-6 and TNF-α) | [22] |
6-Gingerol | 40 I/R-induced male Sprague-Dawley rats | Oral gavage, 25 and 50 mg/kg b.w., 3 days before operation, once a day | ↓ IL-1β, IL-6 and TNF-α | [21] |
6-Shogaol | Improved translocation of Nrf2 factor ↑ OH-1 | [40] | ||
6-Gingerol | 40 I/R-induced Male Sprague-Dawley rats | Oral gavage, 25 and 50 mg/kg b.w., 3 days before operation, once a day | ↓ Lipid peroxidation ↑ SOD, glutathione and peroxidase activity | [21] |
Ginger extract with Lactobacillus acidophilus | 75 Wistar rats, 8–10 weeks old with DMH-induced inflammation | 50 mg/kg of ginger CO2 extract and 109 CFU of L. acidophilus; 1 month, once a day | ↓ MDA, TNF-α, COX-2, iNOS, c-Myc ↑ CAT, SOD levels | [23] |
GEO | Mice with autoimmune encephalomyelitis (EAE) | 200 and 300 mg/kg | ↓ IL-12, TGF-β | [24] |
GEO | 48 male albino rats, 12 weeks old, with induced nephrotoxicity | Essential oil from ginger, 50 mg/kg b.w.; oral administration | ↓ Urea, creatinine and blood urea nitrogen ↑ Renoprotection ↑ Adenosine deaminase activity resulting in neuroprotective effect | [25,26] |
6-Gingerol | Streptozotocin-induced (50mg/kg) 7-week-old male Wistar rats | 75 mg/kg/day oral administration | ↓ Acetylcholinesterase levels ↓ Pro-inflammatory cytokines Treatment of Alzheimer’s disease ↓ BWG%, ↓ GSH/GSSG | [59] |
3.3. Ginger as an Anti-Obesity and Anti-Diabetes Mellitus Drug
3.4. The Treatment of Nonalcoholic Fatty Liver Disease
3.5. Application of Ginger to Treat Alcohol Addiction
3.6. Ginger in the Treatment of Prostate Complications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ADA | Adenosine deaminase activity |
BUN | Blood urea nitrogen |
BWG% | Body weight gain percent |
c-Myc | Multifunctional transcription factor |
CAT | Catalase |
COX-2 | Cyclooxygenase 2 |
DAI | Disease activity index |
EAE | Experimental autoimmune encephalomyelitis |
ERK1/2 | MAPK3 mitogen-activated protein kinase 3 |
FAS | Fetal alcohol syndrome |
FBG | Fasting blood glucose |
GSH | Glutathione |
GSSG | Oxidized glutathione |
HDL | High-density lipoprotein |
HDL-C | High-density lipoprotein cholesterol |
HMGCR | 3-Hydroxy-3-methylglutaryl-CoA reductase |
HO-1 | Heme oxygenase-1 |
IC50 | Half-maximal inhibitory concentration |
IL-8 | Interleukin-8 |
IL-1 α | Interleukin 1-α |
IL-6 | Interleukin 6 |
IL-1β | Interleukin 1β |
IL-10 | Interleukin 10 |
iNOS | Inducible nitric oxide synthase |
5-LOX | 5-Lipooxygenase |
LDL-C | Low-density lipoprotein cholesterol |
MAPK | Mitogen-activated protein kinases |
MDA | Malondialdehyde |
MPO | Myeloperoxidase |
mTOR | The mammalian target of rapamycin |
NADP | Nicotinamide adenine dinucleotide phosphate |
NAFLD | Nonalcoholic fatty liver disease |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
Nrf2 | Nrf2 transcription factor |
NSAIDs | Non-steroidal anti-inflammatory drugs |
8-OHdG | Deoxyguanosine |
Ox-LDL | Oxidized low-density lipoprotein |
PCNA | Proliferating cell nuclear antigen |
PGE2 | Prostaglandin E2 |
PPAR | Peroxisome proliferator-activated receptor |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
SREBP1 | Sterol regulatory element-binding protein 1 |
T2DM | Type 2 diabetes mellitus |
TAG | Triacylglycerols |
TC | Total cholesterol |
TGF-β | Transforming growth factor β |
TNFα | Tumor necrosis factor alpha |
ZO-1 | Zonula occludens-1 protein |
References
- Mao, Q.-Q.; Xu, X.-Y.; Cao, S.-Y.; Gan, R.-Y.; Corke, H.; Beta, T.; Li, H.-B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salaramoli, S.; Mehri, S.; Yarmohammadi, F.; Hashemy, S.I.; Hosseinzadeh, H. The effects of ginger and its constituents in the prevention of metabolic syndrome: A review. Iran. J. Basic Med. Sci. 2022, 25, 664–674. [Google Scholar]
- Kiyama, R. Nutritional implications of ginger: Chemistry, biological activities and signaling pathways. J. Nutr. Biochem. 2020, 86, 108486–108501. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, H.; Song, Z.; Wang, X.; Zhenshuang Sun, Z. Effects of Ginger (Zingiber officinale Roscoe) on Type 2 Diabetes Mellitus and Components of the Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Evid. Based Complement. Altern. Med. 2018, 2018, 5692962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honarvar, N.M.; Zarezadeh, M.; Khorshidi, M.; Arzati, M.M.; Yekaninejad, M.S.; Abdollahi, M.; Effatpanah, M.; Hashemi, R.; Saedisomeolia, A. The effect of an oral ginger supplementation on NF-κB concentration in peripheral blood mononuclear cells and anthropomorphic data of patients with type 2 diabetes: A randomized double-blind, placebo-controlled clinical trial. Complement. Ther. Med. 2019, 42, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Jabborova, D.; Choudhary, R.; Azimov, A.; Jabbarov, Z.; Selim, S.; Abu-Elghait, M.; Desouky, S.E.; Azab, I.H.E.; Alsuhaibani, A.M.; Khattab, A.; et al. Composition of Zingiber officinale Roscoe (Ginger), Soil Properties and Soil Enzyme Activities Grown in Different Concentration of Mineral Fertilizers. Horticulturae 2022, 8, 43. [Google Scholar] [CrossRef]
- Koch, W.; Kukula-Koch, W.; Marzec, Z.; Kasperek, E.; Wyszogrodzka-Koma, L.; Szwerc, W.; Yoshinori Asakawa, Y. Application of Chromatographic and Spectroscopic Methods towards the Quality Assessment of Ginger (Zingiber officinale) Rhizomes from Ecological Plantations. Int. J. Mol. Sci. 2017, 18, 452. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.-Y.; Ma, J.-P.; Cai, Y.-J.; Yang, L.; Liu, Z.-L. Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger. J. Ethnopharmacol. 2005, 102, 177–184. [Google Scholar] [CrossRef]
- Arcusa, R.; Villaño, D.; Marhuenda, J.; Cano, M.; Cerdà, B.; Zafrilla, P. Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Front. Nutr. 2022, 9, 809621. [Google Scholar] [CrossRef]
- Cisowski, W.; Kowalczyk, A.; Jamontt, J. Kłącze imbiru—Zastosowanie lecznicze oraz składniki czynne. Postępy Fitoter. 2004, 2, 71–76. [Google Scholar]
- Bhandari, U.; Kanojia, R.; Pillai, K.K. Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats. J. Ethnopharmacol. 2005, 97, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; DuBois, R.N. The role of anti-inflammatory drugs in colorectal cancer. Annu. Rev. Med. 2013, 64, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Viennois, E.; Prasad, M.; Zhang, Y.; Wang, L.; Zhang, Z.; Han, M.K.; Xiao, B.; Xu, C.; Srinivasan, S.; et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016, 101, 321–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ensign, L.M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012, 64, 557–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, B.; Laroui, H.; Viennois, E.; Ayyadurai, S.; Charania, M.A.; Zhang, Y.; Zhang, Z.; Baker, M.T.; Zhang, B.; Gewirtz, A.T.; et al. Nanoparticles with surface antibody against CD98 and carrying CD98 small interfering RNA reduce colitis in mice. Gastroenterology 2014, 146, 1289–1300. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Xu, C.; Liu, D.; Han, M.K.; Wang, L.; Merlin, D. Oral Delivery of Nanoparticles Loaded with Ginger Active Compound, 6-Shogaol, Attenuates Ulcerative Colitis and Promotes Wound Healing in a Murine Model of Ulcerative Colitis. J. Crohns Colitis 2018, 12, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Ashok, A.; Rai, N.K.; Tripathi, S.; Bandyopadhyay, S. Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol. Sci. 2015, 143, 64–80. [Google Scholar] [CrossRef] [Green Version]
- Roudsari, N.M.; Lashgari, N.-A.; Momtaz, S.; Roufogalis, B.; Abdolghaffari, A.H.; Sahebkar, A. Ginger: A complementary approach for management of cardiovascular diseases. Biofactors 2021, 47, 933–951. [Google Scholar] [CrossRef]
- Kim, J.-K.; Kim, Y.; Na, K.-M.; Surh, Y.-J.; Kim, T.-Y. [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Radic. Res. 2007, 41, 603–614. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Lee, K.-C.; Chen, S.-Y.; Chang, H.-H. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-alpha and NF-kappaB pathways in lipopolysaccharide-stimulated mouse macrophages. Biochem. Biophys. Res. Commun. 2009, 382, 134–139. [Google Scholar] [CrossRef]
- Li, Y.; Xu, B.; Xu, M.; Chen, D.; Xiong, Y.; Lian, M.; Sun, Y.; Tang, Z.; Wang, L.; Jiang, C.; et al. 6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-κB signaling. Pharmacol. Res. 2017, 119, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kim, J.Y. Ginger attenuates inflammation in a mouse model of dextran sulfate sodium-induced colitis. Food Sci. Biotechnol. 2018, 27, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Deol, P.K.; Khare, P.; Bishnoi, M.; Kondepudi, K.K.; Kaur, I.P. Coadministration of ginger extract-Lactobacillus acidophilus (cobiotic) reduces gut inflammation and oxidative stress via downregulation of COX-2, i-NOS, and c-Myc. Phytother. Res. 2018, 32, 1950–1956. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, A.; Ahangar-Parvin, R.; Nemat, M.; Taghipour, Z.; Shamsizadeh, A.; Ayoobi, F.; Hassan, Z.M. Ginger extract modulates the expression of IL-12 and TGF-β in the central nervous system and serum of mice with experimental autoimmune encephalomyelitis. Avicenna J. Phytomed. 2017, 7, 54–65. [Google Scholar] [PubMed]
- Akinyemi, A.J.; Faboya, O.L.; Paul, A.A.; Olayide, I.; Faboya, O.A.; Oluwasola, T.A. Nephroprotective Effect of Essential Oils from Ginger (Zingiber officinale) and Turmeric (Curcuma longa) Rhizomes against Cadmium-induced Nephrotoxicity in Rats. J. Oleo Sci. 2018, 67, 1339–1345. [Google Scholar] [CrossRef] [Green Version]
- Akinyemi, A.J.; Adeniyi, P.A. Effect of Essential Oils from Ginger (Zingiber officinale) and Turmeric (Curcuma longa) Rhizomes on Some Inflammatory Biomarkers in Cadmium Induced Neurotoxicity in Rats. J. Toxicol. 2018, 8, 4109491–4109498. [Google Scholar] [CrossRef] [Green Version]
- Saberi, H.; Keshavarzi, B.; Shirpoor, A.; Gharalari, F.H.; Rasmi, Y. Rescue effects of ginger extract on dose dependent radiation-induced histological and biochemical changes in the kidneys of male Wistar rats. Biomed. Pharmacother. 2017, 94, 569–576. [Google Scholar] [CrossRef]
- Dedov, V.N.; Tran, V.H.; Duke, C.C.; Connor, M.; MacDonald, J.C.; Mandadi, S.; Roufogalis, B.D. Gingerols: A novel class of vanilloid receptor (VR1) agonists. Br. J. Pharmacol. 2002, 137, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Torkzadeh-Mahani, S.; Esmaeili-Mahani, S.; Nasri, S.; Darvishzadeh, F.; Naderi, R. Ginger Extract Reduces Chronic Morphine-Induced Neuroinflammation and Glial Activation in Nucleus Accumbens of Rats. Addict. Health 2019, 11, 66–72. [Google Scholar]
- Grzanna, R.; Lindmark, L.; Frondoza, C.G. Ginger—An herbal medicinal product with broad anti-inflammatory actions. J. Med. Food Summer 2005, 8, 125–132. [Google Scholar] [CrossRef]
- Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol. 2008, 46, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, M.; Khalvat, A.; Toliat, T.; Jallaei, S. Comparing the Effects of ginger (Zingiber officinale) extract and ibuprofen on patients with osteoarthritis. Arch. Iran. Med. 2005, 8, 267–271. [Google Scholar]
- Rondanelli, M.; Riva, A.; Morazzoni, P.; Allegrini, P.; Faliva, M.A.; Naso, M.; Miccono, A.; Peroni, G.; Agosti, I.D.; Perna, S. The effect and safety of highly standardized Ginger (Zingiber officinale) and Echinacea (Echinacea angustifolia) extract supplementation on inflammation and chronic pain in NSAIDs poor responders. A pilot study in subjects with knee arthrosis Nat. Prod. Res. 2017, 31, 1309–1313. [Google Scholar]
- Abascal, K.; Yarnell, E. Clinical Uses of Zingiber officinale (Ginger). Altern. Complement. Ther. 2009, 15, 231–237. [Google Scholar] [CrossRef]
- Rayati, F.; Hajmanouchehri, F.; Najafi, E. Comparison of anti-inflammatory and analgesic effects of Ginger powder and Ibuprofen in postsurgical pain model: A randomized, double-blind, case-control clinical trial. Dent. Res. J. 2017, 14, 1–7. [Google Scholar] [CrossRef]
- Adib-Rad, H.; Basirat, Z.; Bakouei, F.; Moghadamnia, A.A.; Khafri, S.; Kotenaei, Z.F.; Nikpour, M.; Kazemi, S. Effect of Ginger and Novafen on menstrual pain: A cross-over trial. Taiwan. J. Obstet. Gynecol. 2018, 57, 806–809. [Google Scholar] [CrossRef] [PubMed]
- Głogowska-Szeląg, J.; Marek, B.; Nowak, M. Choroba zwyrodnieniowa stawów a preparaty imbiru. Acta Balneol. 2010, 2, 103–106. [Google Scholar]
- Martins, L.B.; Dos Santos Rodrigues, A.M.; Rodrigues, D.F.; Dos Santos, L.C.; Teixeira, A.L.; Ferreira, A.V.M. Double-blind placebo-controlled randomized clinical trial of ginger (Zingiber officinale Rosc.) addition in migraine acute treatment. Cephalalgia 2019, 39, 68–76. [Google Scholar] [CrossRef]
- Wilson, P.B. Ginger (Zingiber officinale) as an Analgesic and Ergogenic Aid in Sport: A Systemic Review. J. Strength Cond. Res. 2015, 29, 2980–2995. [Google Scholar] [CrossRef]
- Chen, F.; Tang, Y.; Sun, Y.; Veeraraghavan, V.P.; Mohan, S.K.; Cui, C. 6-shogaol, a active constiuents of ginger prevents UVB radiation mediated inflammation and oxidative stress through modulating NrF2 signaling in human epidermal keratinocytes (HaCaT cells). J. Photochem. Photobiol. B 2019, 197, 111518–111525. [Google Scholar] [CrossRef]
- Ma, Q.; Kinneer, K.; Bi, Y.; Chan, J.Y.; Kan, Y.W. Induction of murine NAD(P)H:quinone oxidoreductase by 2,3,7,8-tetrachlorodibenzo-p-dioxin requires the CNC (cap ‘n’ collar) basic leucine zipper transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2): Cross-interaction between AhR (aryl hydrocarbon receptor) and Nrf2 signal transduction. Biochem. J. 2004, 377, 205–213. [Google Scholar] [PubMed]
- Wang, Z.; Ma, W.; Chabot, J.-G.; Quirion, R. Cell-type specific activation of p38 and ERK mediates calcitonin gene-related peptide involvement in tolerance to morphine-induced analgesia. FASEB J. 2009, 23, 2576–2586. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, I.; Chin, N.L.; Fakurazi, S.; Palanisamy, A. Comparison of Phytochemicals, Antioxidant and Anti-Inflammatory Properties of Sun-, Oven- and Freeze-Dried Ginger Extracts. Foods 2019, 8, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahmi, A.; Hassanen, N.; Abdur-Rahman, M.; Shams-Eldin, E. Phytochemicals, antioxidant activity and hepatoprotective effect of ginger (Zingiber officinale) on diethylnitrosamine toxicity in rats. Biomarkers 2019, 24, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Baj, T.; Kukula-Koch, W.; Wirginia Marzec, Z. Dietary intake of specific phenolic compounds and their effect on the antioxidant activity of daily food rations. Open Chem. 2015, 13, 869–876. [Google Scholar] [CrossRef]
- Hasani, H.; Arab, A.; Hadi, A.; Pourmasoumi, M.; Ghavami, A.; Miraghajani, M. Does ginger supplementation lower blood pressure? A systematic review and meta-analysis of clinical trials. Phytother. Res. 2019, 33, 1639–1647. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-C.; Horng, C.-T.; Tsai, S.-C.; Lee, Y.-L.; Hsu, S.-C.; Tsai, Y.-J.; Tsai, F.-J.; Chiang, J.-H.; Daih-Huang Kuo, D.-H.; Jai-Sing Yang, J.-S. Relaxant and vasoprotective effects of ginger extracts on porcine coronary arteries. Int. J. Mol. Med. 2018, 41, 2420–2428. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yu, H.; Zhang, X.; Feng, Q.; Guo, X.; Li, S.; Li, R.; Chu, D.; Ma, Y. Evaluation of daily ginger consumption for the prevention of chronic diseases in adults: A cross-sectional study. Nutrition 2017, 36, 79–84. [Google Scholar] [CrossRef]
- Nayebifar, S.; Afzalpour, M.E.; Kazemi, T.; Eivary, S.H.A.; Mogharnasi, M. Changes in blood pressure, body composition, and Vo2max after 10 weeks of high intense interval training and ginger consumption in overweight women. Qum 2017, 11, 19–27. [Google Scholar]
- Grys, A.; Łowicki, Z.; Parus, A. Właściwości lecznicze imbiru. Postępy Fitoter. 2010, 1, 42–45. [Google Scholar]
- Pourmasoumi, M.; Hadi, A.; Rafie, N.; Najafgholizadeh, A.; Mohammadi, H.; Rouhani, M.H. The effect of ginger supplementation on lipid profile: A systematic review and meta-analysis of clinical trials. Phytomedicine 2018, 43, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Khosravani, M.; Azarbayjani, M.A.; Abolmaesoomi, M.; Yusof, A.; Abidin, N.Z.; Rahimi, E.; Feizolahi, F.; Akbari, M.; Seyedjalali, S.; Dehghan, F. Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 1617–1622. [Google Scholar]
- Reddy, K.S.; Subbaiah, G.V.; Mallikarjuna, K.; Shanmugam, B.; Ravi, S.; Taj, P.U. Ginger treatment ameliorates alcohol-induced myocardial damage by suppression of hyperlipidemia and cardiac biomarkers in rats. Pharmacogn. Mag. 2017, 13 (Suppl. S1), S69–S75. [Google Scholar] [CrossRef] [PubMed]
- Elshater, A.-E.A.; Salman, M.M.A.; Moussa, M.M.A. Effect of Ginger Extract Consumption on levels of blood Glucose, Lipid Profile and Kidney Functions in Alloxan Induced-Diabetic Rats. EAJBS A Entomol. 2009, 2, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Misawa, K.; Hashizume, K.; Yamamoto, M.; Minegishi, Y.; Hase, T.; Shimotoyodome, A. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway. J. Nutr. Biochem. 2015, 26, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, H.; Ke, D.; Zuo, G.; Yang, Y.; Yamahara, J.; Li, Y. Improvement of liquid fructose-induced adipose tissue insulin resistance by ginger treatment in rats is associated with suppression of adipose macrophage-related proinflammatory cytokines. Evid. Based Complement. Alternat. Med. 2013, 2013, 590376–590388. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, P.; Li, D.; Hu, X.; Fang Chen, F. Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice. Eur. J. Nutr. 2020, 59, 699–718. [Google Scholar]
- Serviddio, G.; Bellanti, F.; Vendemiale, G. Free radical biology for medicine: Learning from nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2013, 65, 952–968. [Google Scholar] [CrossRef] [Green Version]
- Eid, B.G.; Mosli, H.; Hasan, A.; El-Bassossy, H.M. Ginger Ingredients Alleviate Diabetic Prostatic Complications: Effect on Oxidative Stress and Fibrosis. Evid. Based Complement. Altern. Med. 2017, 2017, 6090269. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ke, W.; Bao, R.; Hu, X.; Chen, F. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: A review. Ann. N. Y. Acad. Sci. 2017, 1398, 83–98. [Google Scholar] [CrossRef]
- Kleinert, M.; Clemmensen, C.; Hofmann, S.M.; Moore, M.C. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 2018, 14, 140–162. [Google Scholar]
- Dongare, S.; Gupta, S.K.; Mathur, R.; Saxena, R.; Mathur, S.; Agarwal, R.; Nag, T.C.; Srivastava, S.; Kumar, P. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms. Mol. Vis. 2016, 22, 599–609. [Google Scholar] [PubMed]
- Kadnur, S.V.; Goyal, R.K. Beneficial effects of Zingiber officinale Roscoe on fructose induced hyperlipidemia and hyperinsulinemia in rats. Indian J. Exp. Biol. 2005, 43, 1161–1164. [Google Scholar] [PubMed]
- Raal, F.J.; Hovingh, G.K.; Catapano, A.L. Familial hypercholesterolemia treatments: Guidelines and new therapies. Atherosclerosis 2018, 277, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Levenson, A.E.; de Ferranti, S.D.; Feingold, K.R.; Anawalt, B.; Boyce, A. Familial Hypercholesterolemia. J. Atheroscler. Thromb 2022, 29, 608–638. [Google Scholar]
- Lai, Y.-S.; Lee, W.-C.; Lin, Y.-E.; Ho, C.-T.; Lu, K.-H.; Lin, S.-H.; Panyod, S.; Chu, Y.-L.; Sheen, L.-Y. Ginger Essential Oil Ameliorates Hepatic Injury and Lipid Accumulation in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease. J. Agric. Food Chem. 2016, 64, 2062–2071. [Google Scholar] [CrossRef]
- Heshmati, E.; Shirpoor, A.; Kheradmand, F.; Alizadeh, M.; Gharalari, F.H. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIδ gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract. Anatol. J. Cardiol. 2018, 19, 19–26. [Google Scholar] [CrossRef]
- Rafieian-Kopaei, M.; Nasri, H. The Ameliorative Effect of Zingiber officinale in Diabetic Nephropathy. Iran. Red Crescent Med. J. 2014, 16, 11324–11325. [Google Scholar] [CrossRef]
- Shirpoor, A.; Gharalari, F.H.; Rasmi, Y.; Heshmati, E. Ginger extract attenuates ethanol-induced pulmonary histological changes and oxidative stress in rats. J. Biomed. Res. 2017, 31, 521–527. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumbarewicz, E.; Jarząb, A.; Stepulak, A.; Kukula-Koch, W. Zingiber officinale Rosc. in the Treatment of Metabolic Syndrome Disorders—A Review of In Vivo Studies. Int. J. Mol. Sci. 2022, 23, 15545. https://doi.org/10.3390/ijms232415545
Gumbarewicz E, Jarząb A, Stepulak A, Kukula-Koch W. Zingiber officinale Rosc. in the Treatment of Metabolic Syndrome Disorders—A Review of In Vivo Studies. International Journal of Molecular Sciences. 2022; 23(24):15545. https://doi.org/10.3390/ijms232415545
Chicago/Turabian StyleGumbarewicz, Ewelina, Agata Jarząb, Andrzej Stepulak, and Wirginia Kukula-Koch. 2022. "Zingiber officinale Rosc. in the Treatment of Metabolic Syndrome Disorders—A Review of In Vivo Studies" International Journal of Molecular Sciences 23, no. 24: 15545. https://doi.org/10.3390/ijms232415545
APA StyleGumbarewicz, E., Jarząb, A., Stepulak, A., & Kukula-Koch, W. (2022). Zingiber officinale Rosc. in the Treatment of Metabolic Syndrome Disorders—A Review of In Vivo Studies. International Journal of Molecular Sciences, 23(24), 15545. https://doi.org/10.3390/ijms232415545