Lysosomal Acid Lipase Deficiency: Genetics, Screening, and Preclinical Study
Abstract
:1. Introduction
2. Genetics
2.1. Prevalence
2.2. E8SJM (c.G894A; p.delS275_Q298)
2.3. Single Nucleotide Polymorphism (SNP)
3. Diagnosis and Screening
3.1. Biochemical Assay
3.2. Surrogate Markers
3.3. High-Risk Screening
3.3.1. Genetic High-Risk Screening
Method | Year | Country | Author | Population | n | LDLR | ApoB | Pcsk9 | APOE | LDLRAP | ABCG5 | ABCG8 | LIPA | STAP1 | Others | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Children | Adults | ||||||||||||||||
NGS+Sanger | 2022 | Slovenia | Sustar, U | FH | 669 | 669 | 0 | 189 (LDLR+ApoB+Pcsk9) | NR | NR | NR | NR | 3 | NR | [20] | |||
NGS | 2021 | Netherlands | Reeskamp, LF | FH | 1528 | 0 | 1528 | 227 (LDLR+ApoB+Pcsk9) | 0 | 0 | 0 | 2 | 0 | NR | [36] | |||
NGS+Sanger | 2021 | Russia | Miroshnikova, VV | Suspected FH | 59 | 28 | 31 | 24 | 5 | 1 | NR | 0 | 3 | 2 (ApoB+ABCG8) | 1 | NR | [22] | |
NGS+Sanger | 2020 | Brazil | de Paiva Silvino, JP | FH | 143 (a) | Combined | 5 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | [37] | ||
NGS | 2020 | Argentina | Corral, P | FH | 246 | 0 | 246 | 12 | 1 (ApoB+ApoE) | NR | 1 (ApoB+ApoE) | NR | NR | NR | 1 | NR | [38] | |
NGS+Sanger+TaqMan | 2019 | Gran Canaria (Spain) | Sánchez-Hernández, RM | FH | 70 | 0 | 70 | 41 | 1 | 1 | 0 | 0 | NR | NR | 1 | 0 | [39] | |
NGS+Sanger | 2018 | Slovenia | Groselj, U | FH | 170 | 170 | 0 | 49 | 27 | 0 | NR | NR | NR | NR | 1 | NR | [40] | |
NGS | 2018 | Slovenia | Corral, P | Hypercholesterolemia | 69 | 0 | 69 | 20 | 3 | 0 | 2 | 0 | 7 (ABCG5+ABCG8) | 2 | NR | CYP27A1(3), LIPC(1), LIPG(1), LPL(0), and SCARB1(1) | [41] | |
Sanger | 2020 | Portugal | Mariano, C | FH | 731 | 311 | 420 | 282 (LDLR+ApoB+Pcsk9) | NR | NR | NR | NR | 3 | NR | [42] | |||
Sanger+TaqMan | 2019 | U.K. | Ashfield-Watt, P | FH | 663 | 0 | 663 | NR | NR | NR | NR | NR | NR | NR | 3 | NR | [23] | |
Sanger | 2017 | Portugal | Chora, JR | FH +dyslipidemia (b) | 750 | 193 | 557 | NR | NR | NR | NR | NR | NR | NR | 4 | NR | [43] | |
Sanger | 2016 | Netherlands | Sjouke, B | FH | 276 | 63 | 213 | Excluded | Excluded | NR | NR | NR | NR | NR | 6 | NR | [24] |
3.3.2. Biochemical High-Risk Screening
Method | Year | Country | Author | Population | n | Affected | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
Total | Children | Adult | Wolman | CESD | ||||||
4MU | 2021 | France | Tebani, A | Clinical screening | 4174 | 157 | 4017 | 6 | 13 | [44] |
4MU | 2019 | Russia | Mayanskiy, N | Clinical screening | 537 | 239 | 298 | 6 positives | [45] | |
4MU | 2018 | U.K. | Reynolds, TM | ↓HDL; ↑ALT | 1825 | Combined | 0 | 0 | [46] | |
4MU | 2017 | Italy | Tovoli, F | NAFLD | 159 | 0 | 159 | 0 | 0 | [47] |
4MU | 2017 | Italy | Vespasiani-Gentilucci U | Healthy subjects | 172 | 0 | 172 | 0 | 0 | [29] |
4MU | 2016 | Italy | Vespasiani-Gentilucci, U | Cirrhosis + Healthy controls | 252 | 0 | 252 | 0 | 0 | [48] |
4MU | 2016 | Italy | Selvakakumar, PKC | Children with NAFLD | 168 | 168 | 0 | 0 | 0 | [49] |
4MU | 2016 | Israel | Shteyer, E | Cirrhosis without known etiology | 22 | Combined | 0 | 0 | [50] | |
4MU | 2015 | Italy | Baratta, F | Adult NAFLD | 240 | 0 | 240 | 0 | 0 | [51] |
4MU | 2014 | Japan | Dairaku T | CESD + Normal control | 65 | Not described | 0 | 7 | [28] |
3.4. Newborn Screening
4. Tertiary Structure of Human LAL Protein
5. Phenotype of Lipa-Deficient Mice
5.1. Lipid Accumulation
5.2. Immune Cells
5.3. Tumorigenesis
6. Treatment
6.1. Enzyme Replacement Therapy
6.2. Gene Therapy
7. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernstein, D.L.; Hülkova, H.; Bialer, M.G.; Desnick, R.J. Cholesteryl ester storage disease: Review of the findings in 135 reported patients with an underdiagnosed disease. J. Hepatol. 2013, 58, 1230–1243. [Google Scholar] [CrossRef] [Green Version]
- Maciejko, J.J. Managing Cardiovascular Risk in Lysosomal Acid Lipase Deficiency. Am. J. Cardiovasc. Drugs 2017, 17, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Gomaraschi, M.; Bonacina, F.; Norata, G.D. Lysosomal Acid Lipase: From Cellular Lipid Handler to Immunometabolic Target. Trends Pharmacol. Sci. 2019, 40, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, H. Lysosomal Acid Lipase in Lipid Metabolism and Beyond. Arter. Thromb. Vasc. Biol. 2019, 39, 850–856. [Google Scholar] [CrossRef]
- Aguisanda, F.; Thorne, N.; Zheng, W. Targeting Wolman Disease and Cholesteryl Ester Storage Disease: Disease Pathogenesis and Therapeutic Development. Curr. Chem. Genom. Transl. Med. 2017, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Pastores, G.M.; Hughes, D.A. Lysosomal Acid Lipase Deficiency: Therapeutic Options. Drug Des. Dev. Ther. 2020, 14, 591–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pericleous, M.; Kelly, C.; Wang, T.; Livingstone, C.; Ala, A. Wolman’s disease and cholesteryl ester storage disorder: The phenotypic spectrum of lysosomal acid lipase deficiency. Lancet Gastroenterol. Hepatol. 2017, 2, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.A.; Valayannopoulos, V.; Schneider, E.; Eckert, S.; Banikazemi, M.; Bialer, M.; Cederbaum, S.; Chan, A.; Dhawan, A.; Di Rocco, M.; et al. Rapid progression and mortality of lysosomal acid lipase deficiency presenting in infants. Genet. Med. 2016, 18, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.A.; Rojas-Caro, S.; Quinn, A.G.; Friedman, M.; Marulkar, S.; Ezgu, F.; Zaki, O.; Gargus, J.J.; Hughes, J.; Plantaz, D.; et al. Survival in infants treated with sebelipase Alfa for lysosomal acid lipase deficiency: An open-label, multicenter, dose-escalation study. Orphanet J. Rare Dis. 2017, 12, 25. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.; Jones, I.; Srivastava, R.; Galloway, P. A new method for the measurement of lysosomal acid lipase in dried blood spots using the inhibitor Lalistat 2. Clin. Chim. Acta 2012, 413, 1207–1210. [Google Scholar] [CrossRef]
- Shenoy, P.; Karegowda, L.; Sripathi, S.; Mohammed, N. Wolman disease in an infant. BMJ Case Rep. 2014, 2014, bcr2014203656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foladi, N.; Aien, M.T. CT features of Wolman disease (lysosomal acid lipase enzyme deficiency)—A case report. Radiol. Case Rep. 2021, 16, 2857–2861. [Google Scholar] [CrossRef] [PubMed]
- Platt, F.M.; D’Azzo, A.L.; Davidson, B.; Neufeld, E.F.; Tifft, C.J. Lysosomal storage diseases. Nat. Rev. Dis. Prim. 2018, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Ohira, M.; Kikuchi, E.; Mizuta, S.; Yoshida, N.; Onodera, M.; Nakanishi, M.; Okuyama, T.; Mashima, R. Production of therapeutic iduronate-2-sulfatase enzyme with a novel single-stranded RNA virus vector. Genes Cells 2021, 26, 891–904. [Google Scholar] [CrossRef] [PubMed]
- Burton, B.K.; Balwani, M.; Feillet, F.; Barić, I.; Burrow, T.A.; Grande, C.C.; Coker, M.; Consuelo-Sánchez, A.; Deegan, P.; Di Rocco, M.; et al. A Phase 3 Trial of Sebelipase Alfa in Lysosomal Acid Lipase Deficiency. N. Engl. J. Med. 2015, 373, 1010–1020. [Google Scholar] [CrossRef]
- Valayannopoulos, V.; Malinova, V.; Honzík, T.; Balwani, M.; Breen, C.; Deegan, P.B.; Enns, G.M.; Jones, S.A.; Kane, J.P.; Stock, E.O.; et al. Sebelipase alfa over 52weeks reduces serum transaminases, liver volume and improves serum lipids in patients with lysosomal acid lipase deficiency. J. Hepatol. 2014, 61, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Potter, J.E.; Petts, G.; Ghosh, A.; White, F.J.; Kinsella, J.L.; Hughes, S.; Roberts, J.; Hodgkinson, A.; Brammeier, K.; Church, H.; et al. Enzyme replacement therapy and hematopoietic stem cell transplant: A new paradigm of treatment in Wolman disease. Orphanet J. Rare Dis. 2021, 16, 235. [Google Scholar] [CrossRef]
- Carter, A.; Brackley, S.M.; Gao, J.; Mann, J.P. The global prevalence and genetic spectrum of lysosomal acid lipase deficiency: A rare condition that mimics NAFLD. J. Hepatol. 2019, 70, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.A.; Liu, B.; Nazarenko, I.; Martis, S.; Kozlitina, J.; Yang, Y.; Ramirez, C.; Kasai, Y.; Hyatt, T.; Peter, I.; et al. Frequency of the cholesteryl ester storage disease common LIPA E8SJM mutation (c.894G>A) in various racial and ethnic groups. Hepatology 2013, 58, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Sustar, U.; Groselj, U.; Podkrajsek, K.T.; Mlinaric, M.; Kovac, J.; Thaler, M.; Torkar, A.D.; Skarlovnik, A.; Battelino, T.; Hovnik, T. Early Discovery of Children With Lysosomal Acid Lipase Deficiency With the Universal Familial Hypercholesterolemia Screening Program. Front. Genet. 2022, 13, 936121. [Google Scholar] [CrossRef]
- Pasta, A.; Borro, P.; Cremonini, A.L.; Formisano, E.; Tozzi, G.; Cecchi, S.; Fresa, R.; Labanca, S.; Djahandideh, A.; Sukkar, S.G.; et al. Effect of a common missense variant in LIPA gene on fatty liver disease and lipid phenotype: New perspectives from a single-center observational study. Pharmacol. Res. Perspect. 2021, 9, e00820. [Google Scholar] [CrossRef] [PubMed]
- Miroshnikova, V.V.; Romanova, O.V.; Ivanova, O.N.; Fedyakov, M.A.; Panteleeva, A.A.; Barbitoff, Y.A.; Muzalevskaya, M.V.; Urazgildeeva, S.A.; Gurevich, V.S.; Urazov, S.P.; et al. Identification of novel variants in the LDLR gene in Russian patients with familial hypercholesterolemia using targeted sequencing. Biomed. Rep. 2021, 14, 15. [Google Scholar] [CrossRef]
- Ashfield-Watt, P.; Haralambos, K.; Edwards, R.; Townsend, D.; Gingell, R.; Li, K.W.; Humphries, S.E.; McDowell, I. Estimation of the prevalence of cholesteryl ester storage disorder in a cohort of patients with clinical features of familial hypercholesterolaemia. Ann. Clin. Biochem. 2019, 56, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Sjouke, B.; Defesche, J.C.; de Randamie, J.S.E.; Wiegman, A.; Fouchier, S.W.; Hovingh, G.K. Sequencing for LIPA mutations in patients with a clinical diagnosis of familial hypercholesterolemia. Atherosclerosis 2016, 251, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Pullinger, C.R.; Stock, E.O.; Movsesyan, I.; Malloy, M.J.; Frost, P.H.; Tripuraneni, R.; Quinn, A.G.; Ishida, B.Y.; Schaefer, E.J.; Asztalos, B.F.; et al. Identification and metabolic profiling of patients with lysosomal acid lipase deficiency. J. Clin. Lipidol. 2015, 9, 716–726.e1. [Google Scholar] [CrossRef]
- Muntoni, S.; Wiebusch, H.; Jansen-Rust, M.; Rust, S.; Schulte, H.; Berger, K.; Pisciotta, L.; Bertolini, S.; Funke, H.; Seedorf, U.; et al. Heterozygosity for lysosomal acid lipase E8SJM mutation and serum lipid concentrations. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Muntoni, S.; Wiebusch, H.; Jansen-Rust, M.; Rust, S.; Seedorf, U.; Schulte, H.; Berger, K.; Funke, H.; Assmann, G. Prevalence of Cholesteryl Ester Storage Disease. Arter. Thromb. Vasc. Biol. 2007, 27, 1866–1868. [Google Scholar] [CrossRef] [PubMed]
- Pisciotta, L.; Tozzi, G.; Travaglini, L.; Taurisano, R.; Lucchi, T.; Indolfi, G.; Papadia, F.; Di Rocco, M.; D’Antiga, L.; Crock, P.; et al. Molecular and clinical characterization of a series of patients with childhood-onset lysosomal acid lipase deficiency. Retrospective investigations, follow-up and detection of two novel LIPA pathogenic variants. Atherosclerosis 2017, 265, 124–132. [Google Scholar] [CrossRef]
- Lukacs, Z.; Barr, M.; Hamilton, J. Best practice in the measurement and interpretation of lysosomal acid lipase in dried blood spots using the inhibitor Lalistat 2. Clin. Chim. Acta 2017, 471, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Dairaku, T.; Iwamoto, T.; Nishimura, M.; Endo, M.; Ohashi, T.; Eto, Y. A practical fluorometric assay method to measure lysosomal acid lipase activity in dried blood spots for the screening of cholesteryl ester storage disease and Wolman disease. Mol. Genet. Metab. 2014, 111, 193–196. [Google Scholar] [CrossRef]
- Vespasiani-Gentilucci, U.; D’Amico, J.; De Vincentis, A.; Tozzi, G.; Vorini, F.; Gallo, P.; Carotti, S.; Valentini, F.; Galati, G.; Dell’Unto, C.; et al. Platelet count may impact on lysosomal acid lipase activity determination in dried blood spot. Clin. Biochem. 2017, 50, 726–728. [Google Scholar] [CrossRef] [PubMed]
- Masi, S.; Chennamaneni, N.; Turecek, F.; Ronald Scott, C.; Gelb, M.H. Specific Substrate for the Assay of Lysosomal Acid Lipase. Clin. Chem. 2018, 64, 690–696. [Google Scholar] [CrossRef]
- Ohira, M.; Barr, M.; Okuyama, T.; Mashima, R. LC-MS/MS-based enzyme assay for lysosomal acid lipase using dried blood spots. Mol. Genet. Metab. Rep. 2022, 33, 100913. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Sidhu, R.; Porter, F.D.; Yanjanin, N.M.; Speak, A.O.; te Vruchte, D.T.; Platt, F.M.; Fujiwara, H.; Scherrer, D.E.; Zhang, J.; et al. A Sensitive and Specific LC-MS/MS Method for Rapid Diagnosis of Niemann-Pick C1 Disease from Human Plasma. J. Lipid Res. 2011, 52, 1435–1445. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.A.; Church, H.J.; Wu, H.Y. Cholestane-3β, 5α, 6β-Triol: Further Insights into the Performance of This Oxysterol in Diagnosis of Niemann-Pick Disease Type C. Mol. Genet. Metab. 2020, 130, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Reeskamp, L.F.; Tromp, T.R.; Defesche, J.C.; Grefhorst, A.; Stroes, E.S.G.; Hovingh, G.K.; Zuurbier, L. Next-Generation Sequencing to Confirm Clinical Familial Hypercholesterolemia. Eur. J. Prev. Cardiol. 2021, 28, 875–883. [Google Scholar] [CrossRef] [PubMed]
- de Paiva Silvino, J.P.; Jannes, C.E.; Tada, M.T.; Lima, I.R.; de Fátima Oliveira Silva, I.; Pereira, A.C.; Gomes, K.B. Cascade Screening and Genetic Diagnosis of Familial Hypercholesterolemia in Clusters of the Southeastern Region from Brazil. Mol. Biol. Rep. 2020, 47, 9279–9288. [Google Scholar] [CrossRef]
- Corral, P.; Bañares, V.; Sáenz, B.; Zago, V.; Sarobe, A.; López, G.; Berg, G.; Schreier, L. Phenotype of Definite Familial Hypercholesterolemia with Negative Genetic Study in Argentina. Arch. Cardiol. Mex. 2020, 90, 130–136. [Google Scholar] [CrossRef]
- Sánchez-Hernández, R.M.; Tugores, A.; Nóvoa, F.J.; Brito-Casillas, Y.; Expósito-Montesdeoca, A.B.; Garay, P.; Bea, A.M.; Riaño, M.; Pocovi, M.; Civeira, F.; et al. The Island of Gran Canaria: A Genetic Isolate for Familial Hypercholesterolemia. J. Clin. Lipidol. 2019, 13, 618–626. [Google Scholar] [CrossRef]
- Groselj, U.; Kovac, J.; Sustar, U.; Mlinaric, M.; Fras, Z.; Podkrajsek, K.T.; Battelino, T. Universal Screening for Familial Hypercholesterolemia in Children: The Slovenian Model and Literature Review. Atherosclerosis 2018, 277, 383–391. [Google Scholar] [CrossRef]
- Corral, P.; Geller, A.S.; Polisecki, E.Y.; Lopez, G.I.; Bañares, V.G.; Cacciagiu, L.; Berg, G.; Hegele, R.A.; Schaefer, E.J.; Schreier, L.E. Unusual Genetic Variants Associated with Hypercholesterolemia in Argentina. Atherosclerosis 2018, 277, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Mariano, C.; Alves, A.C.; Medeiros, A.M.; Chora, J.R.; Antunes, M.; Futema, M.; Humphries, S.E.; Bourbon, M. The Familial Hypercholesterolaemia Phenotype: Monogenic Familial Hypercholesterolaemia, Polygenic Hypercholesterolaemia and Other Causes. Clin Genet 2020, 97, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Chora, J.R.; Alves, A.C.; Medeiros, A.M.; Mariano, C.; Lobarinhas, G.; Guerra, A.; Mansilha, H.; Cortez-Pinto, H.; Bourbon, M. Lysosomal Acid Lipase Deficiency: A Hidden Disease among Cohorts of Familial Hypercholesterolemia? J. Clin. Lipidol. 2017, 11, 477–484.e2. [Google Scholar] [CrossRef] [Green Version]
- Tebani, A.; Sudrié-Arnaud, B.; Boudabous, H.; Brassier, A.; Anty, R.; Snanoudj, S.; Abergel, A.; Abi Warde, M.T.; Bardou-Jacquet, E.; Belbouab, R.; et al. Large-scale screening of lipase acid deficiency in at risk population. Clin. Chim. Acta 2021, 519, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Mayanskiy, N.; Brzhozovskaya, E.; Pushkov, A.; Strokova, T.; Vlasov, N.; Surkov, A.; Gundobina, O.; Savostianov, K. A kinetic assay of total lipase activity for detecting lysosomal acid lipase deficiency (LAL-D) and the molecular characterization of 18 LAL-D patients from Russia. JIMD Rep. 2019, 48, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, T.M.; Mewies, C.; Hamilton, J.; Wierzbicki, A.S. Identification of rare diseases by screening a population selected on the basis of routine pathology results—The PATHFINDER project: Lysosomal acid lipase/cholesteryl ester storage disease substudy. J. Clin. Pathol. 2018, 71, 608–613. [Google Scholar] [CrossRef]
- Tovoli, F.; Napoli, L.; Negrini, G.; D’Addato, S.; Tozzi, G.; D’Amico, J.; Piscaglia, F.; Bolondi, L. A Relative Deficiency of Lysosomal Acid Lypase Activity Characterizes Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2017, 18, 1134. [Google Scholar] [CrossRef] [Green Version]
- Vespasiani-Gentilucci, U.; Gallo, P.; Piemonte, F.; Riva, E.; Porcari, A.; Vorini, F.; Tozzi, G.; Piccioni, L.; Galati, G.; De Vincentis, A.; et al. Lysosomal Acid Lipase Activity Is Reduced Both in Cryptogenic Cirrhosis and in Cirrhosis of Known Etiology. PLoS ONE 2016, 11, e0156113. [Google Scholar] [CrossRef] [Green Version]
- Selvakumar, P.K.C.; Kabbany, M.N.; Lopez, R.; Tozzi, G.; Alisi, A.; Alkhouri, N.; Nobili, V. Reduced lysosomal acid lipase activity—A potential role in the pathogenesis of non alcoholic fatty liver disease in pediatric patients. Dig. Liver Dis. 2016, 48, 909–913. [Google Scholar] [CrossRef]
- Shteyer, E.; Villenchik, R.; Mahamid, M.; Nator, N.; Safadi, R. Low Serum Lysosomal Acid Lipase Activity Correlates with Advanced Liver Disease. Int. J. Mol. Sci. 2016, 17, 312. [Google Scholar] [CrossRef]
- Baratta, F.; Pastori, D.; Del Ben, M.; Polimeni, L.; Labbadia, G.; Di Santo, S.; Piemonte, F.; Tozzi, G.; Violi, F.; Angelico, F. Reduced Lysosomal Acid Lipase Activity in Adult Patients with Non-Alcoholic Fatty Liver Disease. eBioMedicine 2015, 2, 750–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peake, R.W.A.; Marsden, D.L.; Bodamer, O.A.; Gelb, M.H.; Millington, D.S.; Wijburg, F. Newborn Screening for Lysosomal Storage Disorders: Quo Vadis? Clin. Chem. 2016, 62, 1430–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.S.; Tan, E.S.; John, C.M.; Poh, S.; Yeo, S.J.; Ang, J.S.M.; Adakalaisamy, P.; Rozalli, R.A.; Hart, C.; Tan, E.T.H.; et al. Inborn Error of Metabolism (IEM) screening in Singapore by electrospray ionization-tandem mass spectrometry (ESI/MS/MS): An 8year journey from pilot to current program. Genet. Med. 2019, 21, 631–640. [Google Scholar] [CrossRef]
- Schielen, P.C.J.I.; Kemper, E.A.; Gelb, M.H. Newborn Screening for Lysosomal Storage Diseases: A Concise Review of the Literature on Screening Methods, Therapeutic Possibilities and Regional Programs. Int. J. Neonatal Screen. 2017, 3, 6. [Google Scholar] [CrossRef]
- Wasserstein, M.P.; Caggana, M.; Bailey, S.M.; Desnick, R.J.; Edelmann, L.; Estrella, L.; Holzman, I.; Kelly, N.R.; Kornreich, R.; Kupchik, S.G.; et al. The New York pilot newborn screening program for lysosomal storage diseases: Report of the First 65,000 Infants. Anesthesia Analg. 2019, 21, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-C.; Chiang, C.-C.; Niu, D.-M.; Wang, C.-H.; Kao, S.-M.; Tsai, F.-J.; Huang, Y.-H.; Liu, H.-C.; Huang, C.-K.; Gao, H.-J.; et al. Detecting multiple lysosomal storage diseases by tandem mass spectrometry—A national newborn screening program in Taiwan. Clin. Chim. Acta 2014, 431, 80–86. [Google Scholar] [CrossRef]
- Jongco, A.M.; Sporter, R.; Hon, E.; Elshaigi, O.; Zhang, S.; Daian, F.; Bae, E.; Innamorato, A.; Capo, C.; Navetta-Modrov, B.; et al. Characterization of Infants with Idiopathic Transient and Persistent T Cell Lymphopenia Identified by Newborn Screening—A Single-Center Experience in New York State. J. Clin. Immunol. 2021, 41, 610–620. [Google Scholar] [CrossRef]
- Gans, M.D.; Gavrilova, T. Retrospective Analysis of a New York Newborn Screen Severe Combined Immunodeficiency Referral Center. J. Clin. Immunol. 2020, 40, 456–465. [Google Scholar] [CrossRef]
- Roussel, A.; Canaan, S.; Egloff, M.-P.; Rivière, M.; Dupuis, L.; Verger, R.; Cambillau, C. Crystal Structure of Human Gastric Lipase and Model of Lysosomal Acid Lipase, Two Lipolytic Enzymes of Medical Interest. J. Biol. Chem. 1999, 274, 16995–17002. [Google Scholar] [CrossRef] [Green Version]
- Roussel, A.; Miled, N.; Berti-Dupuis, L.; Rivière, M.; Spinelli, S.; Berna, P.; Gruber, V.; Verger, R.; Cambillau, C. Crystal Structure of the Open Form of Dog Gastric Lipase in Complex with a Phosphonate Inhibitor. J. Biol. Chem. 2002, 277, 2266–2274. [Google Scholar] [CrossRef]
- Saito, S.; Ohno, K.; Suzuki, T.; Sakuraba, H. Structural bases of Wolman disease and cholesteryl ester storage disease. Mol. Genet. Metab. 2012, 105, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Rajamohan, F.; Reyes, A.R.; Tu, M.; Nedoma, N.L.; Hoth, L.R.; Schwaid, A.G.; Kurumbail, R.G.; Ward, J.; Han, S. Crystal structure of human lysosomal acid lipase and its implications in cholesteryl ester storage disease. J. Lipid Res. 2020, 61, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Rajamohan, F.; Reyes, A.R.; Ruangsiriluk, W.; Hoth, L.R.; Han, S.; Caspers, N.; Tu, M.; Ward, J.; Kurumbail, R.G. Expression and functional characterization of human lysosomal acid lipase gene (LIPA) mutation responsible for cholesteryl ester storage disease (CESD) phenotype. Protein Expr. Purif. 2015, 110, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Pajed, L.; Wagner, C.; Taschler, U.; Schreiber, R.; Kolleritsch, S.; Fawzy, N.; Pototschnig, I.; Schoiswohl, G.; Pusch, L.-M.; Wieser, B.I.; et al. Hepatocyte-specific deletion of lysosomal acid lipase leads to cholesteryl ester but not triglyceride or retinyl ester accumulation. J. Biol. Chem. 2019, 294, 9118–9133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Duanmu, M.; Witte, D.; Grabowski, G.A. Targeted disruption of the mouse lysosomal acid lipase gene: Long-term survival with massive cholesteryl ester and triglyceride storage. Hum. Mol. Genet. 1998, 7, 1347–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Heur, M.; Duanmu, M.; Grabowski, G.A.; Hui, D.Y.; Witte, D.P.; Mishra, J. Lysosomal acid lipase-deficient mice: Depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. J. Lipid Res. 2001, 42, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Grumet, L.; Eichmann, T.O.; Taschler, U.; Zierler, K.A.; Leopold, C.; Moustafa, T.; Radovic, B.; Romauch, M.; Yan, C.; Du, H.; et al. Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover. J. Biol. Chem. 2016, 291, 17977–17987. [Google Scholar] [CrossRef] [Green Version]
- Qu, P.; Du, H.; Wilkes, D.S.; Yan, C. Critical Roles of Lysosomal Acid Lipase in T Cell Development and Function. Am. J. Pathol. 2009, 174, 944–956. [Google Scholar] [CrossRef] [Green Version]
- Qu, P.; Shelley, W.C.; Yoder, M.C.; Wu, L.; Du, H.; Yan, C. Critical Roles of Lysosomal Acid Lipase in Myelopoiesis. Am. J. Pathol. 2010, 176, 2394–2404. [Google Scholar] [CrossRef]
- Zhao, T.; Ding, X.; Du, H.; Yan, C. Myeloid-Derived Suppressor Cells Are Involved in Lysosomal Acid Lipase Deficiency–Induced Endothelial Cell Dysfunctions. J. Immunol. 2014, 193, 1942–1953. [Google Scholar] [CrossRef]
- Ding, X.; Zhao, T.; Lee, C.-C.; Yan, C.; Du, H. Lysosomal Acid Lipase Deficiency Controls T- and B-Regulatory Cell Homeostasis in the Lymph Nodes of Mice with Human Cancer Xenotransplants. Am. J. Pathol. 2021, 191, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Liu, S.; Ding, X.; Johnson, E.M.; Hanna, N.H.; Singh, K.; Sen, C.K.; Wan, J.; Du, H.; Yan, C. Lysosomal acid lipase, CSF1R and PD-L1 determine functions of CD11c+ myeloid-derived suppressor cells. JCI Insight 2022, 7, e156623. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Ding, X.; Yan, C.; Du, H. Endothelial Rab7 GTPase mediates tumor growth and metastasis in lysosomal acid lipase–deficient mice. J. Biol. Chem. 2017, 292, 19198–19208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helderman, R.C.; Whitney, D.G.; Duta-Mare, M.; Akhmetshina, A.; Vujic, N.; Jayapalan, S.; Nyman, J.S.; Misra, B.B.; Rosen, C.J.; Czech, M.P.; et al. Loss of function of lysosomal acid lipase (LAL) profoundly impacts osteoblastogenesis and increases fracture risk in humans. Bone 2021, 148, 115946. [Google Scholar] [CrossRef]
- Leopold, C.; Duta-Mare, M.; Sachdev, V.; Goeritzer, M.; Maresch, L.K.; Kolb, D.; Reicher, H.; Wagner, B.; Stojakovic, T.; Ruelicke, T.; et al. Hepatocyte-specific lysosomal acid lipase deficiency protects mice from diet-induced obesity but promotes hepatic inflammation. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2019, 1864, 500–511. [Google Scholar] [CrossRef]
- Qu, P.; Yan, C.; Blum, J.S.; Kapur, R.; Du, H. Myeloid-Specific Expression of Human Lysosomal Acid Lipase Corrects Malformation and Malfunction of Myeloid-Derived Suppressor Cells in lal−/− Mice. J. Immunol. 2011, 187, 3854–3866. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Zhao, T.; Ding, X.; Yan, C. Hepatocyte-Specific Expression of Human Lysosome Acid Lipase Corrects Liver Inflammation and Tumor Metastasis in lal−/− Mice. Am. J. Pathol. 2015, 185, 2379–2389. [Google Scholar] [CrossRef]
- Zhao, T.; Ding, X.; Du, H.; Yan, C. Lung Epithelial Cell–Specific Expression of Human Lysosomal Acid Lipase Ameliorates Lung Inflammation and Tumor Metastasis in Lipa−/− Mice. Am. J. Pathol. 2016, 186, 2183–2192. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, S.; Iwama, A.; Takayanagi, S.-I.; Eto, K.; Ema, H.; Nakauchi, H. TGF-β as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 2009, 113, 1250–1256. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.D.; Ticer, T.; Bastian, D.; Kuril, S.; Li, H.; Du, H.; Yan, C.; Yu, X.-Z. Lysosomal Acid Lipase Is Required for Donor T Cells to Induce Graft-versus-Host Disease. Cell Rep. 2020, 33, 108316. [Google Scholar] [CrossRef]
- Zhao, T.; Du, H.; Ding, X.; Walls, K.; Yan, C. Activation of mTOR pathway in myeloid-derived suppressor cells stimulates cancer cell proliferation and metastasis in lal−/− mice. Oncogene 2015, 34, 1938–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elleder, M.; Chlumská, A.; Hyánek, J.; Poupětová, H.; Ledvinová, J.; Maas, S.; Lohse, P. Subclinical course of cholesteryl ester storage disease in an adult with hypercholesterolemia, accelerated atherosclerosis, and liver cancer. J. Hepatol. 2000, 32, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Elleder, M.; Chlumska, A.; Ledvinová, J.; Poupětová, H. Testis—A Novel Storage Site in Human Cholesteryl Ester Storage Disease. Autopsy Report of an Adult Case with a Long-Standing Subclinical Course Complicated by Accelerated Atherosclerosis and Liver Carcinoma. Virchows Arch. 2000, 436, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Viswanadhapalli, S.; Kumar, S.; Lee, T.-K.; Moore, A.; Ma, S.; Chen, L.; Hsieh, M.; Li, M.; Sareddy, G.R.; et al. Targeting LIPA independent of its lipase activity is a therapeutic strategy in solid tumors via induction of endoplasmic reticulum stress. Nat. Cancer 2022, 3, 866–884. [Google Scholar] [CrossRef]
- Lopresti, M.W.; Cui, W.; Abernathy, B.E.; Fredrickson, G.; Barrow, F.; Desai, A.S.; Revelo, X.S.; Mashek, D.G. Hepatic lysosomal acid lipase overexpression worsens hepatic inflammation in mice fed a Western diet. J. Lipid Res. 2021, 62, 100133. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, Y.-H.; Du, H.; Quinn, B.; Liou, B.; Stanton, L.; Inskeep, V.; Ran, H.; Jakubowitz, P.; Grilliot, N.; et al. Reversal of advanced disease in lysosomal acid lipase deficient mice: A model for lysosomal acid lipase deficiency disease. Mol. Genet. Metab. 2014, 112, 229–241. [Google Scholar] [CrossRef]
- Kuriwaki, K.; Yoshida, H. Morphological characteristics of lipid accumulation in liver-constituting cells of acid lipase deficiency rats (Wolman’s disease model rats). Pathol. Int. 1999, 49, 291–297. [Google Scholar] [CrossRef]
- Du, H.; Levine, M.; Ganesa, C.; Witte, D.P.; Cole, E.S.; Grabowski, G.A. The Role of Mannosylated Enzyme and the Mannose Receptor in Enzyme Replacement Therapy. Am. J. Hum. Genet. 2005, 77, 1061–1074. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Cameron, T.L.; Garger, S.J.; Pogue, G.P.; Hamm, L.A.; White, E.; Hanley, K.M.; Grabowski, G.A. Wolman disease/cholesteryl ester storage disease: Efficacy of plant-produced human lysosomal acid lipase in mice. J. Lipid Res. 2008, 49, 1646–1657. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Heur, M.; Witte, D.P.; Ameis, D.; Grabowski, G.A. Lysosomal Acid Lipase Deficiency: Correction of Lipid Storage by Adenovirus-Mediated Gene Transfer in Mice. Hum. Gene Ther. 2002, 13, 1361–1372. [Google Scholar] [CrossRef]
- Lam, P.; Ashbrook, A.; Zygmunt, D.A.; Yan, C.; Du, H.; Martin, P.T. Therapeutic Efficacy of rscAAVrh74.miniCMV.LIPA Gene Therapy in a Mouse Model of Lysosomal Acid Lipase Deficiency. Mol. Ther.-Methods Clin. Dev. 2022, 26, 413–426. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Country | Author | Population | n Total | Children | Adults | E8SJM c.G894A | Method | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|---|
Homo Zygote | Hetero Zygote | ||||||||||
High-risk screening | 2022 | Slovenia | Suster, U | FH | 669 | 669 | 0 | 3 | 0 | NGS/Sanger | [20] |
2021 | Italy | Pasta, A | Hypoapolipoproteinemia or mixed hyperlipemia | 74 | 0 | 74 | NR | NR | Sanger | [21] | |
2021 | Russia | Miroshnikova, VV | Suspected FH | 59 | 28 | 31 | 1 | 0 | NGS/Sanger | [22] | |
2019 | U.K. | Ashfield-Watt, P | FH with no mutation in LDLR, ApoB, and Pcsk9. | 663 | 0 | 663 | 0 | 3 | Sanger+TaqMan | [23] | |
2016 | Netherlands | Sjouke, B | FH with no mutation in LDLR and ApoB | 276 | 63 | 213 | 0 | 2 | Sanger | [24] | |
2015 | U.S. | Pullinger, CR | Dyslipidemia | 1357 | Combined | 0 | 6 | Sanger | [25] | ||
2013 | Germany | Muntoni, S | Selected cohorts | 2023 | Not described | 0 | 10 | Sanger | [26] | ||
2007 | Germany | Muntoni, S | Selected cohorts | 2023 | Not described | 0 | 10 | Allele-selective PCR | [27] | ||
Confirmed cases | 2017 | Italy | Pisciotta, L | LAL-D-confirmed patients | 16 | 14 | 2 | 4 | 5 | Sanger | [28] |
Category | Genotype | LAL Activity | Phenotype | Year | Ref. |
---|---|---|---|---|---|
Global KO | Lipa(-/-) | Deficient | ↑CE | 1998 | [65] |
Lipa(-/-) | Deficient | ↑CE; →TG | 2001 | [66] | |
Lipa(-/-) | Deficient | →TG | 2016 | [67] | |
Lipa(-/-) | Deficient | T cell defect | 2009 | [68] | |
Lipa(-/-) | Deficient | Anemia; ↑Sca-1(+)c-kit(+); ↑GMP | 2010 | [69] | |
Lipa(-/-) | Deficient | ↑MDSC | 2014 | [70] | |
Lipa(-/-) | Deficient | ↑T- and B-regulatory cell homeostasis | 2021 | [71] | |
Lipa(-/-) | Deficient | ↑MDSC function | 2022 | [72] | |
Lipa(-/-) | Deficient | ↑EC transmigration; ↓Apoptosis; ↑Angiogenesis; ↑Tube formation. | 2014 | [70] | |
Lipa(-/-) | Deficient | ↑Endothelial Rab7 | 2017 | [73] | |
Lipa(-/-) | Deficient | ↓Osteoblastogenesis | 2021 | [74] | |
Conditional KO (cKO) | Alb-Cre; cKO | Liver-specific deficient | ↑Hepatic inflammation; ↓Diet-induced obesity | 2019 | [75] |
Alb-Cre; cKO | Liver-specific deficient | ↑CE; →TG; →RA (normal chow); ↑CE; ↓TG; ↓RA (VitA/HFD) | 2019 | [64] | |
Tg/KO | c-fms-tg/Lipa(-/-) | Myeloid-specific expression | Normalized MDSC function | 2011 | [76] |
Lap-tg/Lipa(-/-) | Liver-specific expression | Normalized melanoma metastasis | 2015 | [77] | |
CCSP-tg/Lipa(-/-) | Lung alveolar type II epithelial cell-specific expression | Normalized tumor metastasis;Normalized Lung inflammation | 2016 | [78] |
Method | Year | Enzyme/Vector | Dose | Route | Ref. |
---|---|---|---|---|---|
ERT | 2005 | phLAL, chLAL | 3.95 mg/kg | Intraperitoneal | [88] |
2008 | hLAL (Nicotiana benthamiana) | 1.65–6.65 mg/kg | Intraperitoneal | [89] | |
2014 | hLAL | 0.8–10 mg/kg | Intravenous | [86] | |
GT | 2003 | Adenovirus | 3 × 108 PFU | Intravenous | [90] |
2021 | AAV8 | 5 × 1011 vc/mouse | Intravenous | [85] | |
2022 | scAAVrh74 | 8.4 × 1013 vg/kg | Intravenous | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashima, R.; Takada, S. Lysosomal Acid Lipase Deficiency: Genetics, Screening, and Preclinical Study. Int. J. Mol. Sci. 2022, 23, 15549. https://doi.org/10.3390/ijms232415549
Mashima R, Takada S. Lysosomal Acid Lipase Deficiency: Genetics, Screening, and Preclinical Study. International Journal of Molecular Sciences. 2022; 23(24):15549. https://doi.org/10.3390/ijms232415549
Chicago/Turabian StyleMashima, Ryuichi, and Shuji Takada. 2022. "Lysosomal Acid Lipase Deficiency: Genetics, Screening, and Preclinical Study" International Journal of Molecular Sciences 23, no. 24: 15549. https://doi.org/10.3390/ijms232415549
APA StyleMashima, R., & Takada, S. (2022). Lysosomal Acid Lipase Deficiency: Genetics, Screening, and Preclinical Study. International Journal of Molecular Sciences, 23(24), 15549. https://doi.org/10.3390/ijms232415549