The Role of Inflammation and Oxidative Stress in Rheumatic Heart Disease
Abstract
:1. Introduction
2. Rheumatic Heart Disease (RHD)
3. Inflammation
4. Oxidative Stress
5. Treatment
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Q.; Sun, Y.; Duan, Y.; Li, B.; Xia, J.; Yu, S.; Zhang, G. Comprehensive microRNA profiling reveals potential augmentation of the IL1 pathway in rheumatic heart valve disease. BMC Cardiovasc. Disord. 2018, 18, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastogi, M.; Sarkar, S.; Makol, A.; Sandip Singh, R.; Saikia, U.N.; Banerjee, D.; Chopra, S.; Chakraborti, A. Anti-endothelial cell antibody rich sera from rheumatic heart disease patients induces proinflammatory phenotype and methylation alteration in endothelial cells. Genes Dis. 2018, 5, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Carapetis, J.R. Rheumatic heart disease in developing countries. N. Engl. J. Med. 2007, 357, 439–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butt, H.I.; Shahbaz, A.; Nawaz, H.; Butt, K. Comparative Clinical Characteristics of Rheumatic Heart Disease Patients Undergoing Surgical Valve Replacement. Cureus 2019, 11, e4889. [Google Scholar] [CrossRef] [Green Version]
- Marijon, E.; Mirabel, M.; Celermajer, D.S.; Jouven, X. Rheumatic heart disease. Lancet 2012, 379, 953–964. [Google Scholar] [CrossRef]
- Passos, L.S.A.; Nunes, M.C.P.; Aikawa, E. Rheumatic Heart Valve Disease Pathophysiology and Underlying Mechanisms. Front. Cardiovasc. Med. 2020, 7, 612716. [Google Scholar] [CrossRef]
- Attar, A.; Marzban, P.; Moaref, A.; Aghasadeghi, K. The association of plasma high-sensitivity C-reactive protein level with rheumatic heart disease: The possible role of inflammation. Indian Heart J. 2018, 70, 346–349. [Google Scholar] [CrossRef]
- Van de Rijn, I.; Zabriskie, J.B.; McCarty, M. Group A streptococcal antigens cross-reactive with myocardium. Purification of heart-reactive antibody and isolation and characterization of the streptococcal antigen. J. Exp. Med. 1977, 146, 579–599. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, E.M.; Taranta, A.; BARTLEY, T.D. Effect of valvular surgery on antibody to the group A streptococcal carbohydrate. Circulation 1974, 50, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Remenyi, B.; Carapetis, J.; Wyber, R.; Taubert, K.; Mayosi, B.M. Position statement of the World Heart Federation on the prevention and control of rheumatic heart disease. Nat. Rev. Cardiol. 2013, 10, 284–292. [Google Scholar] [CrossRef]
- Watkins, D.A.; Johnson, C.O.; Colquhoun, S.M.; Karthikeyan, G.; Beaton, A.; Bukhman, G.; Forouzanfar, M.H.; Longenecker, C.T.; Mayosi, B.M.; Mensah, G.A. Global, regional, and national burden of rheumatic heart disease, 1990–2015. N. Engl. J. Med. 2017, 377, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Gewitz, M.H.; Baltimore, R.S.; Tani, L.Y.; Sable, C.A.; Shulman, S.T.; Carapetis, J.; Remenyi, B.; Taubert, K.A.; Bolger, A.F.; Beerman, L. Revision of the Jones Criteria for the diagnosis of acute rheumatic fever in the era of Doppler echocardiography: A scientific statement from the American Heart Association. Circulation 2015, 131, 1806–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, D.A.; Harel, L.; Karrison, T. The treatment of rheumatic carditis: A review and meta-analysis. Medicine 1995, 74, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buleu, F.; Sirbu, E.; Caraba, A.; Dragan, S. Heart Involvement in Inflammatory Rheumatic Diseases: A Systematic Literature Review. Medicina 2019, 55, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaya-Amaya, J.; Montoya-Sánchez, L.; Rojas-Villarraga, A. Cardiovascular involvement in autoimmune diseases. BioMed Res. Int. 2014, 2014, 367359. [Google Scholar] [CrossRef] [Green Version]
- Rajamannan, N.M.; Nealis, T.B.; Subramaniam, M.; Pandya, S.; Stock, S.R.; Ignatiev, C.I.; Sebo, T.J.; Rosengart, T.K.; Edwards, W.D.; McCarthy, P.M.; et al. Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Circulation 2005, 111, 3296–3301. [Google Scholar] [CrossRef] [Green Version]
- Hutcheson, J.D.; Goettsch, C.; Bertazzo, S.; Maldonado, N.; Ruiz, J.L.; Goh, W.; Yabusaki, K.; Faits, T.; Bouten, C.; Franck, G.; et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat. Mater. 2016, 15, 335–343. [Google Scholar] [CrossRef] [Green Version]
- New, S.E.; Goettsch, C.; Aikawa, M.; Marchini, J.F.; Shibasaki, M.; Yabusaki, K.; Libby, P.; Shanahan, C.M.; Croce, K.; Aikawa, E. Macrophage-derived matrix vesicles: An alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ. Res. 2013, 113, 72–77. [Google Scholar] [CrossRef]
- Krohn, J.B.; Hutcheson, J.D.; Martínez-Martínez, E.; Aikawa, E. Extracellular vesicles in cardiovascular calcification: Expanding current paradigms. J. Physiol. 2016, 594, 2895–2903. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, M.W. Rheumatic fever, autoimmunity, and molecular mimicry: The streptococcal connection. Int. Rev. Immunol. 2014, 33, 314–329. [Google Scholar] [CrossRef]
- Martin, W.J.; Steer, A.C.; Smeesters, P.R.; Keeble, J.; Inouye, M.; Carapetis, J.; Wicks, I.P. Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmun. Rev. 2015, 14, 710–725. [Google Scholar] [CrossRef] [PubMed]
- Kirvan, C.A.; Galvin, J.E.; Hilt, S.; Kosanke, S.; Cunningham, M.W. Identification of streptococcal m-protein cardiopathogenic epitopes in experimental autoimmune valvulitis. J. Cardiovasc. Transl. Res. 2014, 7, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Kanagasingam, A.; Francis, G.R.; Komagarajah, B.; Ladchumanan, D.; Sivapramyan, A.; Packiyarajah, P.; Megatheepan, R.; Madura, J. Pattern of Rheumatic valvular involvement and its contribution towards valvular malfunction in young adults. Ceylon Med. J. 2019, 64, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Guedes, C.; Bianchi-Fior, P.; Cormier, B.; Barthelemy, B.; Rat, A.C.; Boissier, M.C. Cardiac manifestations of rheumatoid arthritis: A case-control transesophageal echocardiography study in 30 patients. Arthritis Rheum. 2001, 45, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R.H.; Sareli, P.; Pocock, W.A.; Barlow, J.B. The spectrum of severe rheumatic mitral valve disease in a developing country. Correlations among clinical presentation, surgical pathologic findings, and hemodynamic sequelae. Ann. Intern. Med. 1994, 120, 177–183. [Google Scholar] [CrossRef]
- Lambova, S. Cardiac manifestations in systemic sclerosis. World J. Cardiol. 2014, 6, 993. [Google Scholar] [CrossRef]
- Luo, T.; Han, J.; Meng, X. Features of rheumatic mitral valves and a grading system to identify suitable repair cases in China. J. Thorac. Dis. 2017, 9, 3138. [Google Scholar] [CrossRef] [Green Version]
- Veinot, J.P. Pathology of inflammatory native valvular heart disease. Cardiovascular Pathology 2006, 15, 243–251. [Google Scholar] [CrossRef]
- Shiba, M.; Sugano, Y.; Ikeda, Y.; Okada, H.; Nagai, T.; Ishibashi-Ueda, H.; Yasuda, S.; Ogawa, H.; Anzai, T. Presence of increased inflammatory infiltrates accompanied by activated dendritic cells in the left atrium in rheumatic heart disease. PLoS ONE 2018, 13, e0203756. [Google Scholar] [CrossRef]
- Marcus, G.M.; Smith, L.M.; Ordovas, K.; Scheinman, M.M.; Kim, A.M.; Badhwar, N.; Lee, R.J.; Tseng, Z.H.; Lee, B.K.; Olgin, J.E. Intracardiac and extracardiac markers of inflammation during atrial fibrillation. Heart Rhythm. 2010, 7, 149–154. [Google Scholar] [CrossRef]
- Pandit, B.N.; Aggarwal, P.; Subramaniyan, S.; Gujral, J.S.; Nath, R.K. Largest giant left atrium in rheumatic heart disease. J. Cardiol. Cases 2021, 24, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.L.; Martin, W.J.; Minigo, G.; Keeble, J.L.; Garnham, A.L.; Pacini, G.; Smyth, G.K.; Speed, T.P.; Carapetis, J.; Wicks, I.P. Dysregulated IL-1β-GM-CSF Axis in Acute Rheumatic Fever That Is Limited by Hydroxychloroquine. Circulation 2018, 138, 2648–2661. [Google Scholar] [CrossRef] [PubMed]
- Ralston, S.H.; Penman, I.D.; Strachan, M.W.; Hobson, R. Davidson’s Principles and Practice of Medicine E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Ambari, A.M.; Setianto, B.; Santoso, A.; Radi, B.; Dwiputra, B.; Susilowati, E.; Tulrahmi, F.; Doevendans, P.A.; Cramer, M.J. Angiotensin Converting Enzyme Inhibitors (ACEIs) Decrease the Progression of Cardiac Fibrosis in Rheumatic Heart Disease Through the Inhibition of IL-33/sST2. Front. Cardiovasc. Med. 2020, 7, 115. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Ghati, N.; Sharique, M.; Sharma, S.; Shetkar, S.; Karmakar, S.; Naik, N.; Lakshmy, R.; Thakur, B.; Agarwal, A.; et al. Role of inflammation in initiation and maintenance of atrial fibrillation in rheumatic mitral stenosis-An analytical cross-sectional study. J. Arrhythm. 2020, 36, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Rifaie, O.; Badr, M.; Salam, A.A.; Galal, H. Colchicine ameliorates the chronic inflammatory state in patients with chronic rheumatic valvular heart disease: A pilot study. Egypt Heart J. 2020, 72, 42. [Google Scholar] [CrossRef]
- Guilherme, L.; Ramasawmy, R.; Kalil, J. Rheumatic fever and rheumatic heart disease: Genetics and pathogenesis. Scand. J. Immunol. 2007, 66, 199–207. [Google Scholar] [CrossRef]
- Beltrame, M.H.; Catarino, S.J.; Goeldner, I.; Boldt, A.B.; de Messias-Reason, I.J. The lectin pathway of complement and rheumatic heart disease. Front. Pediatr. 2014, 2, 148. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, M.H.; Ali, S.S.; Fattouh, A.M.; Hamza, H.S.; Badr, M.M. MBL2 gene polymorphism rs1800450 and rheumatic fever with and without rheumatic heart disease: An Egyptian pilot study. Pediatr. Rheumatol. Online J. 2018, 16, 24. [Google Scholar] [CrossRef]
- Gui, T.; Sun, Y.; Shimokado, A.; Muragaki, Y. The Roles of Mitogen-Activated Protein Kinase Pathways in TGF-β-Induced Epithelial-Mesenchymal Transition. J. Signal Transduct. 2012, 2012, 289243. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The master regulator of fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef]
- Mavrogeni, S.I.; Markousis-Mavrogenis, G.; Koutsogeorgopoulou, L.; Dimitroulas, T.; Vartela, V.; Rigopoulos, A.; Noutsias, M.; Kolovou, G. Pathophysiology and imaging of heart failure in women with autoimmune rheumatic diseases. Heart Fail Rev. 2019, 24, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Tormin, J.; Nascimento, B.R.; Sable, C.A.; da Silva, J.L.P.; Brandao-de-Resende, C.; Rocha, L.P.C.; Pinto, C.H.R.; Neves, E.G.A.; Macedo, F.V.B.; Fraga, C.L.; et al. Cytokine gene functional polymorphisms and phenotypic expression as predictors of evolution from latent to clinical rheumatic heart disease. Cytokine 2021, 138, 155370. [Google Scholar] [CrossRef]
- Chopra, P.; Gulwani, H. Pathology and pathogenesis of rheumatic heart disease. Indian J. Pathol. Microbiol. 2007, 50, 685–697. [Google Scholar] [PubMed]
- Korkmaz, A.; Doğanay, B.; Basyigit, F.; Çöteli, C.; Yildiz, A.; Gursoy, T.; Guray, U.; Elalmis, O.U. Serum Thiol Levels and Thiol/Disulfide Homeostasis in Patients with Rheumatic Mitral Valve Disease and Healthy Subjects. Arq. Bras. Cardiol. 2021, 117, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Carapetis, J.R.; McDonald, M.; Wilson, N.J. Acute rheumatic fever. Lancet 2005, 366, 155–168. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, G.; Hote, M.; Devagourou, V.; Kesari, V.; Arava, S.; Airan, B.; Ray, R. Light and electron microscopic features of surgically excised left atrial appendage in rheumatic heart disease patients with atrial fibrillation and sinus rhythm. Cardiovasc. Pathol. 2014, 23, 319–326. [Google Scholar] [CrossRef]
- Eigenbrod, T.; Pelka, K.; Latz, E.; Kreikemeyer, B.; Dalpke, A.H. TLR8 senses bacterial RNA in human monocytes and plays a nonredundant role for recognition of Streptococcus pyogenes. J. Immunol. 2015, 195, 1092–1099. [Google Scholar] [CrossRef] [Green Version]
- Valderrama, J.A.; Riestra, A.M.; Gao, N.J.; LaRock, C.N.; Gupta, N.; Ali, S.R.; Hoffman, H.M.; Ghosh, P.; Nizet, V. Group A streptococcal M protein activates the NLRP3 inflammasome. Nat. Microbiol. 2017, 2, 1425–1434. [Google Scholar] [CrossRef] [Green Version]
- Movert, E.; Lienard, J.; Valfridsson, C.; Nordström, T.; Johansson-Lindbom, B.; Carlsson, F. Streptococcal M protein promotes IL-10 production by cGAS-independent activation of the STING signaling pathway. PLoS Pathog. 2018, 14, e1006969. [Google Scholar] [CrossRef] [Green Version]
- DuPage, M.; Bluestone, J.A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 2016, 16, 149–163. [Google Scholar] [CrossRef]
- Soderholm, A.T.; Barnett, T.C.; Sweet, M.J.; Walker, M.J. Group A streptococcal pharyngitis: Immune responses involved in bacterial clearance and GAS-associated immunopathologies. J. Leukoc. Biol. 2018, 103, 193–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fieber, C.; Kovarik, P. Responses of innate immune cells to group A Streptococcus. Front. Cell. Infect. Microbiol. 2014, 4, 140. [Google Scholar] [CrossRef] [PubMed]
- Döhrmann, S.; Cole, J.N.; Nizet, V. Conquering neutrophils. PLoS Pathog. 2016, 12, e1005682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Li, N.; Bi, S.; Wang, X.; Wang, B. Co-activation of Th17 and antibody responses provides efficient protection against mucosal infection by group A Streptococcus. PLoS ONE 2016, 11, e0168861. [Google Scholar] [CrossRef] [Green Version]
- Bozinovski, S.; Seow, H.J.; Chan, S.P.J.; Anthony, D.; McQualter, J.; Hansen, M.; Jenkins, B.J.; Anderson, G.P.; Vlahos, R. Innate cellular sources of interleukin-17A regulate macrophage accumulation in cigarette-smoke-induced lung inflammation in mice. Clin. Sci. 2015, 129, 785–796. [Google Scholar] [CrossRef] [Green Version]
- Moser, M.; Leo, O. Key concepts in immunology. Vaccine 2010, 28, C2–C13. [Google Scholar] [CrossRef]
- Guilherme, L.; Kalil, J. Rheumatic fever and rheumatic heart disease: Cellular mechanisms leading autoimmune reactivity and disease. J. Clin. Immunol. 2010, 30, 17–23. [Google Scholar] [CrossRef]
- Becher, B.; Tugues, S.; Greter, M. GM-CSF: From growth factor to central mediator of tissue inflammation. Immunity 2016, 45, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Cooper, K.A.; Donovan, J.L.; Waterhouse, A.L.; Williamson, G. Cocoa and health: A decade of research. Br. J. Nutr. 2008, 99, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sonderegger, I.; Iezzi, G.; Maier, R.; Schmitz, N.; Kurrer, M.; Kopf, M. GM-CSF mediates autoimmunity by enhancing IL-6–dependent Th17 cell development and survival. J. Exp. Med. 2008, 205, 2281–2294. [Google Scholar] [CrossRef] [Green Version]
- Kemeny, E.; Grieve, T.; Marcus, R.; Sareli, P.; Zabriskie, J.B. Identification of mononuclear cells and T cell subsets in rheumatic valvulitis. Clin. Immunol. Immunopathol. 1989, 52, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, L.; Cury, P.; Demarchi, L.M.; Coelho, V.; Abel, L.; Lopez, A.P.; Oshiro, S.E.; Aliotti, S.; Cunha-Neto, E.; Pomerantzeff, P.M. Rheumatic heart disease: Proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am. J. Pathol. 2004, 165, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.A.; Masters, K.S.; Shah, D.N.; Anseth, K.S.; Leinwand, L.A. Valvular myofibroblast activation by transforming growth factor-β: Implications for pathological extracellular matrix remodeling in heart valve disease. Circ. Res. 2004, 95, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Morris, K.; Mohan, C.; Wahi, P.; Anand, I.; Ganguly, N. Increase in activated T cells and reduction in suppressor/cytotoxic T cells in acute rheumatic fever and active rheumatic heart disease: A longitudinal study. J. Infect. Dis. 1993, 167, 979–983. [Google Scholar] [CrossRef] [PubMed]
- Faé, K.C.; da Silva, D.D.; Oshiro, S.E.; Tanaka, A.C.; Pomerantzeff, P.M.; Douay, C.; Charron, D.; Toubert, A.; Cunningham, M.W.; Kalil, J. Mimicry in recognition of cardiac myosin peptides by heart-intralesional T cell clones from rheumatic heart disease. J. Immunol. 2006, 176, 5662–5670. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, R.; Narula, J.; Reddy, K.; Koicha, M.; Malaviya, A.; Pothineni, R.; Tandon, R.; Bhatia, M. Lymphocyte subsets in acute rheumatic fever and rheumatic heart disease. Clin. Cardiol. 1989, 12, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Grover, A.; Ganguly, N. Superantigen-induced T cell responses in acute rheumatic fever and chronic rheumatic heart disease patients. Clin. Exp. Immunol. 1999, 116, 100–106. [Google Scholar] [CrossRef]
- Yi, Y.-S. Role of inflammasomes in inflammatory autoimmune rheumatic diseases. Korean J. Physiol. Pharmacol. 2018, 22, 1–15. [Google Scholar] [CrossRef] [Green Version]
- LaRock, C.N.; Nizet, V. Inflammasome/IL-1β responses to streptococcal pathogens. Front. Immunol. 2015, 6, 518. [Google Scholar] [CrossRef] [Green Version]
- Gasse, P.; Riteau, N.; Vacher, R.; Michel, M.-L.; Fautrel, A.; Di Padova, F.; Fick, L.; Charron, S.; Lagente, V.; Eberl, G. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. PLoS ONE 2011, 6, e23185. [Google Scholar] [CrossRef]
- Kim, L.; Yang, W.I.; Shin, D.H.; Jung, I.M.; Park, H.K.; Chang, B.C. Overexpression of transforming growth factor-β1 in the valvular fibrosis of chronic rheumatic heart disease. J. Korean Med. Sci. 2008, 23, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, T.; Mukherjee, S.; Ghosh, S.; Biswas, M.; Dutta, S.; Pattari, S.; Chatterjee, S.; Bandyopadhyay, A. Clinical significance of markers of collagen metabolism in rheumatic mitral valve disease. PLoS ONE 2014, 9, e90527. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Ye, Y.; Yin, Y.; Sang, P.; Li, L.; Wang, J.; Wan, W.; Li, R.; Bai, X.; Xie, Y.; et al. Association of matrix metalloprotease 1, 3, and 12 polymorphisms with rheumatic heart disease in a Chinese Han population. BMC Med. Genet. 2018, 19, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, A.C.D.; Passos, L.S.A.; Sable, C.; Beaton, A.; Ribeiro, V.T.; Gollob, K.J.; Dutra, W.O.; Nunes, M.C.P. Circulating cytokines predict severity of rheumatic heart disease. Int. J. Cardiol. 2019, 289, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Faé, K.C.; Palacios, S.A.; Nogueira, L.G.; Oshiro, S.E.; Demarchi, L.M.; Bilate, A.M.; Pomerantzeff, P.M.; Brandão, C.; Thomaz, P.G.; dos Reis, M. CXCL9/Mig mediates T cells recruitment to valvular tissue lesions of chronic rheumatic heart disease patients. Inflammation 2013, 36, 800–811. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Toor, D. Interleukin-10: Role in increasing susceptibility and pathogenesis of rheumatic fever/rheumatic heart disease. Cytokine 2017, 90, 169–176. [Google Scholar] [CrossRef]
- Toor, D.; Vohra, H. Immune responsiveness during disease progression from acute rheumatic fever to chronic rheumatic heart disease. Microbes Infect. 2012, 14, 1111–1117. [Google Scholar] [CrossRef]
- Yeğin, O.; Coşkun, M.; Ertuğ, H. Cytokines in acute rheumatic fever. Eur. J. Pediatr. 1997, 156, 25–29. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood J. Am. Soc. Hematol. 2011, 117, 3720–3732. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, P.M.; Bauer, R.; de Falco Caparbo, V.; Silva, C.A.A.; Bonfá, E.; Pereira, R.M.R. Interleukin-1 receptor antagonist gene (IL1RN) polymorphism possibly associated to severity of rheumatic carditis in a Brazilian cohort. Cytokine 2010, 49, 109–113. [Google Scholar] [CrossRef]
- Dienz, O.; Eaton, S.M.; Bond, J.P.; Neveu, W.; Moquin, D.; Noubade, R.; Briso, E.M.; Charland, C.; Leonard, W.J.; Ciliberto, G. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J. Exp. Med. 2009, 206, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, B.-I.; Kim, T.H.; Seoh, J.-Y. Functional modulation of regulatory T cells by IL-2. PLoS ONE 2015, 10, e0141864. [Google Scholar] [CrossRef] [PubMed]
- Bas, H.D.; Baser, K.; Yavuz, E.; Bolayir, H.A.; Yaman, B.; Unlu, S.; Cengel, A.; Bagriacik, E.U.; Yalcin, R. A shift in the balance of regulatory T and T helper 17 cells in rheumatic heart disease. J. Investig. Med. 2014, 62, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Varma, S.; Kumar, H.M.; Yusaf, J.; Goyal, M.; Mehta, V.; Tyagi, S. Circulating level of regulatory T cells in rheumatic heart disease: An observational study. Indian Heart J. 2016, 68, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Wen, J.; Lu, C.; Lin, B.; Xian, S.; Huang, F.; Wu, Y.; Zeng, Z. Inhibition of miR-155-5p attenuates the valvular damage induced by rheumatic heart disease. Int. J. Mol. Med. 2020, 45, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Sun, Y.; Shan, F.; Sun, Q.; Yang, B. Down-regulation of miR-101 contributes to rheumatic heart disease through up-regulating TLR2. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2015, 21, 1500. [Google Scholar]
- Li, N.; Lian, J.; Zhao, S.; Zheng, D.; Yang, X.; Huang, X.; Shi, X.; Sun, L.; Zhou, Q.; Shi, H. Detection of differentially expressed MicroRNAs in rheumatic heart disease: miR-1183 and miR-1299 as potential diagnostic biomarkers. BioMed Res. Int. 2015, 2015, 524519. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, C.; Liu, L.; Xi, A.; Chen, B.; Li, Y.; Du, J. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol. Ther. 2017, 25, 192–204. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, R.M.; Kahn, D.; Gibson, W.S.; Round, J.L.; Scholz, R.L.; Chaudhuri, A.A.; Kahn, M.E.; Rao, D.S.; Baltimore, D. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010, 33, 607–619. [Google Scholar] [CrossRef] [Green Version]
- Thai, T.-H.; Calado, D.P.; Casola, S.; Ansel, K.M.; Xiao, C.; Xue, Y.; Murphy, A.; Frendewey, D.; Valenzuela, D.; Kutok, J.L. Regulation of the germinal center response by microRNA-155. Science 2007, 316, 604–608. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, K.; Zou, G.; Chen, X.; Shi, S.; Wang, G.; Zhang, K.; Li, K.; Zhai, S. Inhibition of miR-155 attenuates abdominal aortic aneurysm in mice by regulating macrophage-mediated inflammation. Biosci. Rep. 2018, 38, BSR20171432. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Huang, C.-X.; Rao, P.-P.; Cao, G.-Q.; Zhang, Y.; Zhou, J.-P.; Zhu, L.-Y.; Liu, M.-X.; Zhang, G.-G. MicroRNA-155 inhibition attenuates endoplasmic reticulum stress-induced cardiomyocyte apoptosis following myocardial infarction via reducing macrophage inflammation. Eur. J. Pharmacol. 2019, 857, 172449. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Huang, H.; Xie, Q.; Wang, Z.; Fan, Y.; Kong, B.; Huang, D.; Xiao, Y. MiR-155 knockout in fibroblasts improves cardiac remodeling by targeting tumor protein p53-inducible nuclear protein 1. J. Cardiovasc. Pharmacol. Ther. 2016, 21, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Dayer, J.M.; Manger, B. Interleukin-1 function and role in rheumatic disease. Nat. Rev. Rheumatol. 2016, 12, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Borthwick, L. The IL-1 Cytokine Family and its Role in Inflammation and Fibrosis in the Lung. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2016; pp. 517–534. [Google Scholar]
- Garlanda, C.; Dinarello, C.A.; Mantovani, A. The interleukin-1 family: Back to the future. Immunity 2013, 39, 1003–1018. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.K.; Lichtman, A.; Pillai, S. Basic Immunology: Functions and Disorders of the Immune System, 6e: Sae-E-Book; Elsevier: Chennai, India, 2019. [Google Scholar]
- Bilik, M.Z.; Kaplan, İ.; Polat, N.; Akil, M.A.; Akyüz, A.; Acet, H.; Yüksel, M.; İnci, Ü.; Kayan, F.; Toprak, N. Serum Levels of IL-17 and IL-23 in Patients With Rheumatic Mitral Stenosis. Medicine 2016, 95, e3562. [Google Scholar] [CrossRef]
- Wen, Y.; Zeng, Z.; Gui, C.; Li, L.; Li, W. Changes in the expression of Th17 cell-associated cytokines in the development of rheumatic heart disease. Cardiovasc. Pathol. 2015, 24, 382–387. [Google Scholar] [CrossRef]
- Ali, S.K.; Eldaim, I.N.; Osman, S.H.; Bakhite, S.M. Clinical and echocardiographic features of children with rheumatic heart disease and their serum cytokine profile. Pan Afr. Med. J. 2012, 13, 36. [Google Scholar]
- Nakashima, H.; Miyake, K.; Inoue, Y.; Shimizu, S.; Akahoshi, M.; Tanaka, Y.; Otsuka, T.; Harada, M. Association between IL-4 genotype and IL-4 production in the Japanese population. Genes Immun. 2002, 3, 107–109. [Google Scholar] [CrossRef] [Green Version]
- Gölbasi, Z.; Uçar, O.; Keles, T.; Sahin, A.; Cagli, K.; Camsari, A.; Diker, E.; Aydogdu, S. Increased levels of high sensitive C-reactive protein in patients with chronic rheumatic valve disease: Evidence of ongoing inflammation. Eur. J. Heart Fail 2002, 4, 593–595. [Google Scholar] [CrossRef] [Green Version]
- Güngör, N.K. Overweight and obesity in children and adolescents. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 129. [Google Scholar] [CrossRef]
- Pulimamidi, V.K.; Murugesan, V.; Rajappa, M.; Satheesh, S.; Harichandrakumar, K.T. Increased levels of markers of oxidative stress and inflammation in patients with rheumatic mitral stenosis predispose to left atrial thrombus formation. J. Clin. Diagn. Res. 2013, 7, 2445. [Google Scholar] [PubMed]
- Hadi, H.A.; Alsheikh-Ali, A.A.; Mahmeed, W.A.; Al Suwaidi, J.M. Inflammatory cytokines and atrial fibrillation: Current and prospective views. J. Inflamm. Res. 2010, 3, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polat, N.; Yildiz, A.; Yuksel, M.; Bilik, M.Z.; Aydin, M.; Acet, H.; Akil, M.A.; Oylumlu, M.; Kaya, H.; Ertas, F. Association of neutrophil–lymphocyte ratio with the presence and severity of rheumatic mitral valve stenosis. Clin. Appl. Thromb. Hemost. 2014, 20, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Akboğa, M.K.; Akyel, A.; Şahinarslan, A.; Yayla, Ç.; Alsancak, Y.; Gökalp, G.; Nurkoç, S.; Abacı, A. Neutrophil-to-lymphocyte ratio is increased in patients with rheumatic mitral valve stenosis? Anatol. J. Cardiol. 2015, 15, 380. [Google Scholar] [CrossRef] [PubMed]
- Elemary, M.; Elmeligy, N.; Tabl, M.; Abd Elhaleem, A.E. Usefulness of novel hematologic inflammatory parameter: Neutrophil to lymphocyte ratio in patients with rheumatic valve diseases. Am. J. Res. Commun. 2016, 4, 43–62. [Google Scholar]
- Singal, A.K.; Devagourou, V.; Hote, M.P.; Choudhary, S.K.; Parakh, N.; Ray, R.; Lakshmy, R.; Karthikeyan, G. Detecting sub-clinical disease activity in patients with chronic rheumatic valvular heart disease. Indian Heart J. 2021, 73, 313–318. [Google Scholar] [CrossRef]
- Habeeb, N.M.; Al Hadidi, I.S. Ongoing inflammation in children with rheumatic heart disease. Cardiol. Young 2011, 21, 334–339. [Google Scholar] [CrossRef]
- Polat, N.; Yildiz, A.; Alan, S.; Toprak, N. Association of pentraxin-3 with the severity of rheumatic mitral valve stenosis. Acta Cardiol. 2015, 70, 409–413. [Google Scholar] [CrossRef]
- Hafez, M.; Yahia, S.; Eldars, W.; Eldegla, H.; Matter, M.; Attia, G.; Hawas, S. Prediction of residual valvular lesions in rheumatic heart disease: Role of adhesion molecules. Pediatr. Cardiol. 2013, 34, 583–590. [Google Scholar] [CrossRef]
- Galvin, J.E.; Hemric, M.E.; Ward, K.; Cunningham, M.W. Cytotoxic mAb from rheumatic carditis recognizes heart valves and laminin. J. Clin. Invest. 2000, 106, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Januska, R.; Meyer, A.; Fleck, M.; Luchner, A. Soluble ST2-A Potential Biomarker of Rheu-matic Heart Disease. Clin. Med. Rev. Case Rep. 2019, 6, 255. [Google Scholar]
- Howell, E.J.; Butcher, J.T. Valvular heart diseases in the developing world: Developmental biology takes center stage. J. Heart Valve Dis. 2012, 21, 234. [Google Scholar]
- Hudson, B.G.; Tryggvason, K.; Sundaramoorthy, M.; Neilson, E.G. Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N. Engl. J. Med. 2003, 348, 2543–2556. [Google Scholar] [CrossRef]
- Dinkla, K.; Rohde, M.; Jansen, W.T.; Kaplan, E.L.; Chhatwal, G.S.; Talay, S.R. Rheumatic fever–associated Streptococcus pyogenes isolates aggregate collagen. J. Clin. Investig. 2003, 111, 1905–1912. [Google Scholar] [CrossRef] [PubMed]
- Dinkla, K.; Talay, S.R.; Mörgelin, M.; Graham, R.M.; Rohde, M.; Nitsche-Schmitz, D.P.; Chhatwal, G.S. Crucial role of the CB3-region of collagen IV in PARF-induced acute rheumatic fever. PLoS ONE 2009, 4, e4666. [Google Scholar] [CrossRef]
- Sari, A.; Davutoglu, V.; Bozkurt, E.; Tarakcioglu, M.; Erciyas, K. Effect of periodontitis on oxidative stress parameters in patients with rheumatic heart valve disease. Arch. Oral Biol. 2021, 121, 104961. [Google Scholar] [CrossRef]
- Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci. 2014, 16, 193–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabus, M.; Demirbağ, R.; Sezen, Y.; Konukoğlu, O.; Yildiz, A.; Erel, O.; Zeybek, R.; Yakut, C. Plasma and tissue oxidative stress index in patients with rheumatic and degenerative heart valve disease. Turk. Kardiyol. Dern. Ars. 2008, 36, 536–540. [Google Scholar]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniyama, Y.; Griendling, K.K. Reactive oxygen species in the vasculature: Molecular and cellular mechanisms. Hypertension 2003, 42, 1075–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumagai, S.; Jikimoto, T.; Saegusa, J. [Pathological roles of oxidative stress in autoimmune diseases]. Rinsho Byori 2003, 51, 126–132. [Google Scholar]
- Karataş, Z.; Baysal, T.; Sap, F.; Altın, H.; Çiçekler, H. The role of tenascin-C and oxidative stress in rheumatic and congenital heart valve diseases: An observational study. Anadolu Kardiyol. Derg. 2013, 13, 350–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu-Braga, Y.Y.; Hayashi, S.Y.; Schafranski, M.; Messias-Reason, I.J. Further evidence of inflammation in chronic rheumatic valve disease (CRVD): High levels of advanced oxidation protein products (AOPP) and high sensitive C-reactive protein (hs-CRP). Int. J. Cardiol. 2006, 109, 275–276. [Google Scholar] [CrossRef]
- Łuczak, A.; Madej, M.; Kasprzyk, A.; Doroszko, A. Role of the eNOS Uncoupling and the Nitric Oxide Metabolic Pathway in the Pathogenesis of Autoimmune Rheumatic Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 1417981. [Google Scholar] [CrossRef]
- Buie, J.J.; Renaud, L.L.; Muise-Helmericks, R.; Oates, J.C. IFN-α Negatively Regulates the Expression of Endothelial Nitric Oxide Synthase and Nitric Oxide Production: Implications for Systemic Lupus Erythematosus. J. Immunol. 2017, 199, 1979–1988. [Google Scholar] [CrossRef]
- Felger, J.C.; Li, L.; Marvar, P.J.; Woolwine, B.J.; Harrison, D.G.; Raison, C.L.; Miller, A.H. Tyrosine metabolism during interferon-alpha administration: Association with fatigue and CSF dopamine concentrations. Brain Behav. Immun. 2013, 31, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Kitagami, T.; Yamada, K.; Miura, H.; Hashimoto, R.; Nabeshima, T.; Ohta, T. Mechanism of systemically injected interferon-alpha impeding monoamine biosynthesis in rats: Role of nitric oxide as a signal crossing the blood-brain barrier. Brain Res. 2003, 978, 104–114. [Google Scholar] [CrossRef]
- Ursini, F.; Leporini, C.; Bene, F.; D’Angelo, S.; Mauro, D.; Russo, E.; de Sarro, G.; Olivieri, I.; Pitzalis, C.; Lewis, M.; et al. Anti-TNF-alpha agents and endothelial function in rheumatoid arthritis: A systematic review and meta-analysis. Sci. Rep. 2017, 7, 5346. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Ganguly, N.K.; Anand, I.S.; Wahi, P.L. Release of oxygen free radicals by macrophages and neutrophils in patients with rheumatic fever. Eur. Heart J. 1991, 12 (Suppl. D), 163–165. [Google Scholar] [CrossRef] [PubMed]
- RHDAustralia (ARF/RHD Writing Group). The 2020 Australian Guideline for Prevention, Diagnosis and Management of Acute Rheumatic Fever and Rheumatic Heart Disease. Version 3.2. Available online: https://www.rhdaustralia.org.au/system/files/fileuploads/arf_rhd_guidelines_3.2_edition_march_2022.pdf (accessed on 30 November 2022).
- Ralph, A.P.; Currie, B.J. Therapeutics for rheumatic fever and rheumatic heart disease. Aust. Prescr. 2022, 45, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Cilliers, A.; Adler, A.J.; Saloojee, H. Anti-inflammatory treatment for carditis in acute rheumatic fever. Cochrane Database Syst. Rev. 2015, 5, Cd003176. [Google Scholar] [CrossRef] [PubMed]
- Beaton, A.; Okello, E.; Rwebembera, J.; Grobler, A.; Engelman, D.; Alepere, J.; Canales, L.; Carapetis, J.; DeWyer, A.; Lwabi, P.; et al. Secondary Antibiotic Prophylaxis for Latent Rheumatic Heart Disease. N. Engl. J. Med. 2022, 386, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.J.; Concannon, A.; Malcolm, J.; Davidakova, S.; Martin, W.J.; Webb, R.; Moreland, N.J. The Treatment of Acute Rheumatic Fever: Novel Use of Hydroxychloroquine. Pediatr. Infect. Dis. J. 2020, 39, e120–e122. [Google Scholar] [CrossRef]
- WHO. Rheumatic Fever and Rheumatic Heart Disease; Technical Report Series; No. 923; World Health Organization: Geneva, Switzerland, 2004; pp. 1–122. [Google Scholar]
- Li, M.; Xu, S.; Geng, Y.; Sun, L.; Wang, R.; Yan, Y.; Wang, H.; Li, Y.; Yi, Q.; Zhang, Y.; et al. The protective effects of L-carnitine on myocardial ischaemia-reperfusion injury in patients with rheumatic valvular heart disease undergoing CPB surgery are associated with the suppression of NF-κB pathway and the activation of Nrf2 pathway. Clin. Exp. Pharmacol. Physiol. 2019, 46, 1001–1012. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, M.; Tai, Y.; Tao, J.; Zhou, W.; Han, Y.; Wei, W.; Wang, Q. Triggers of Cardiovascular Diseases in Rheumatoid Arthritis. Curr. Probl. Cardiol. 2022, 47, 100853. [Google Scholar] [CrossRef]
Population/Type of Material | Main Results | Ref. |
---|---|---|
Inflammation | ||
Mitral valve tissue (n = 28) from chronic RHD patients undergoing valve replacement surgery |
| [2] |
Peripheral blood mononuclear cells from an Australian Aboriginal ARF |
| [32] |
Formalin-fixed autopsy specimens from consecutive RHD patients |
| [29] |
30 patients with rheumatic heart disease undergoing mitral valve replacement |
| [47] |
Human PBMCs isolated from heparinized blood of healthy donors |
| [48] |
Model of autoimmune heart inflammatory disease (myocarditis) |
| [61] |
13 valve specimens from nine patients with rheumatic carditis |
| [62] |
20 heart tissue infiltrates from 14 RHD patients |
| [63] |
Patients with ARF and ARHD |
| [65] |
Surgical fragments obtained during valve correction surgery from 6 severe RHD patients |
| [66] |
53 patients with ARF, 78 patients with chronic RHD vs. 20 normal control subjects and 39 patients with USP |
| [67] |
30 rheumatic mitral valves and in 15 control valves. |
| [72] |
89 with RHD |
| [75] |
Cardiac tissue biopsies obtained from chronic RHD patients |
| [76] |
27 patients with acute rheumatic fever (RF), 12 with only arthritis (RFA) and 15 with rheumatic heart disease (RHD) |
| [79] |
Forty patients with rheumatic MVD and 23 controls |
| [84] |
70 adults of RHD and 35 controls |
| [85] |
Cardiac tissues of 11 RHD patients and 11 controls |
| [87] |
Rheumatic heart disease (RHD) patients and healthy controls |
| [88] |
80 patients with rheumatic MS: group 1—35 patients with rheumatic mitral stenosis and left atrium; group 2—45 patients with rheumatic mitral stenosis without left atrium |
| [105] |
314 patients with RMVS, 57 healthy persons in control group |
| [108] |
Oxidative stress | ||
56 patients who underwent valve replacement due to rheumatic (n = 32) and degenerative (n = 24) heart valve disease. |
| [122] |
25 rheumatic HVD paediatric patients and 25 paediatric congenital HVD patients and 20 healthy age-matched control subjects |
| [127] |
90 patients with CRVD |
| [128] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franczyk, B.; Gluba-Brzózka, A.; Rysz-Górzyńska, M.; Rysz, J. The Role of Inflammation and Oxidative Stress in Rheumatic Heart Disease. Int. J. Mol. Sci. 2022, 23, 15812. https://doi.org/10.3390/ijms232415812
Franczyk B, Gluba-Brzózka A, Rysz-Górzyńska M, Rysz J. The Role of Inflammation and Oxidative Stress in Rheumatic Heart Disease. International Journal of Molecular Sciences. 2022; 23(24):15812. https://doi.org/10.3390/ijms232415812
Chicago/Turabian StyleFranczyk, Beata, Anna Gluba-Brzózka, Magdalena Rysz-Górzyńska, and Jacek Rysz. 2022. "The Role of Inflammation and Oxidative Stress in Rheumatic Heart Disease" International Journal of Molecular Sciences 23, no. 24: 15812. https://doi.org/10.3390/ijms232415812