Photoluminescent Polymer Aerogels with R, G and B Emission
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Stability Investigation
2.2. FT-IR Analysis
2.3. XPS Investigation
2.4. SEM Investigation
2.5. Fluorescence Investigation
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Synthesis of p-(HEMA-M(III)) Aerogels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bereli, N.; Andac, M.; Baydemir, G.; Say, R.; Galaev, I. Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels. J. Chromatogr. A 2008, 1–2, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Ozgür, E.; Bereli, N.; Türkmen, D.; Ünal, S.; Denizli, A. PHEMA cryogel for in-vitro removal of anti-dsDNA antibodies from SLE plasma. Mater. Sci. Eng. C 2011, 31, 915–920. [Google Scholar] [CrossRef]
- Sikda, P.; Uddin, M.M.; Dip, T.M.; Islam, S.; Hoque, M.S.; Dhar, A.K.; Wu, S. Recent advances in the synthesis of smart hydrogels. Mater. Adv. 2021, 2, 4532–4573. [Google Scholar] [CrossRef]
- Bereli, N.; Şener, G.; Yavuz, H.; Denizli, A. Oriented immobilized anti-LDL antibody carrying poly(hydroxyethyl methacrylate) cryogel for cholesterol removal from human plasma. Mater. Sci. Eng. C 2011, 31, 1078–1083. [Google Scholar] [CrossRef]
- Sahiner, N.; Sagbas, S.; Sahiner, M.; Silan, C. P(TA) macro-, micro-, nanoparticle-embedded super porous p(HEMA) cryogels as wound dressing material. Mater. Sci. Eng. C 2017, 70, 317–326. [Google Scholar] [CrossRef]
- Bölgen, N.; Aguilar, M.R.; del Mar Fernández, M.; Gonzalo-Flores, S.; Villar-Rodil, S.; San Román, J.; Pişkin, E. Thermoresponsive biodegradable HEMA-lactate-Dextran-co-NIPA cryogels for controlled release of simvastatin. Artif. Cells Nanomed. Biotechnol. 2015, 43, 40–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.; Bajpai, J.; Bajpai, A.K.; Mishra, A. Thermoresponsive cryogels of poly(2-hydroxyethyl methacrylate-co-N-isopropyl acrylamide) (P(HEMA-co-NIPAM)): Fabrication, characterization and water sorption study. Polym. Bull. 2020, 77, 4417–4443. [Google Scholar] [CrossRef]
- Akande, W.; Mikhalovska, L.; James, S.; Mikhalovsky, S. Poly (2-Hydroxyethyl Methacrylate) Macroporous Cryogel for Extracorporeal Medical Devices. J. Biomed. Mater. Res. 2015, 3, 46–55. [Google Scholar] [CrossRef]
- Köse, K.; Arslan Akveran, G.; Erol, K.; Köse, D. Nicotinamide-Modified poly(HEMA-GMA)-Nic Cryogels for Removal of Pesticides. J. Turk. Chem. Soc. Sect. A Chem. 2018, 5, 941–952. [Google Scholar] [CrossRef] [Green Version]
- Keleş, B.; Inanan, T.; Tüzmen, N.; Denizli, A. Cadmium Removal Performances of Different Dye Ligands Attached Cryogel Disks. Croat. Chem. Acta 2015, 88, 139–149. [Google Scholar] [CrossRef]
- İbrahim, D. Ion Imprinted Affinity Cryogels for the Selective Adsorption Uranium in Real Samples. Iran. J. Chem. Chem. Eng. 2019, 38, 115–125. [Google Scholar]
- Kadir, E.; Melda, B.; Demet, T.; Cengiz, N.; Dursun Ali, K. Synthesis, characterization and antibacterial application of silver nanoparticle embedded composite cryogels. J. Mol. Struct. 2020, 1200, 127060. [Google Scholar]
- Ussia, M.; Di Mauro, A.; Mecca, T.; Cunsolo, F.; Nicotra, G.; Spinella, C.; Cerruti, P.; Impellizzeri, G.; Privitera, V.; Carroccio, S.C. ZnO-pHEMA Nanocomposites: An Ecofriendly and Reusable Material for Water Remediation. ACS Appl. Mater. Interfaces 2018, 10, 40100–40110. [Google Scholar] [CrossRef] [PubMed]
- Stan, C.S.; Soreanu, G.; Popa, M.; Horlescu, P.; Lupascu, T.; Cretescu, I. A new approach to obtain aerogels for gas safety applications. Environ. Eng. Manag. J. 2019, 18, 1815–1820. [Google Scholar]
- Cimpean, M.A.; Craciunescu, I.; Gligor, D. Amperometric sensor based on HEMA hydrogels modified with Toluidine Blue for nitrite detection in water samples. Mater. Chem. Phys. 2017, 200, 233–240. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H. Special Issue: Rare earth luminescent materials. Light Sci. Appl. 2022, 11, 260. [Google Scholar] [CrossRef]
- Bünzli, J.C.G.; Eliseeva, S.V. Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths 2010, 28, 824–842. [Google Scholar] [CrossRef]
- Singh, A.K. Multifunctionality of lanthanide-based luminescent hybrid materials. Coord. Chem. Rev. 2022, 455, 214365. [Google Scholar] [CrossRef]
- Correia, S.F.; Bastos, A.R.; Fu, L.; Carlos, L.D.; André, P.S.; Ferreira, R.A. Lanthanide-based downshifting layers tested in a solar car race. Opto-Electron. Adv. 2019, 2, 190006. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, Y.; Zhang, J.; Gaponik, N.; Rogach, A.L. Europium fluoride based luminescent materials: From hydrogels to porous cryogels, and crystalline NaEuF4 and EuF3 micro/nanostructures. Mater. Sci. Eng. B 2014, 179, 48–51. [Google Scholar] [CrossRef]
- Bashaa, S.S.; Sunita Sundari, G.; Vijay Kumarb, K.; Ramachandra Raoc, K.; Raod, M.C. Preparation and characterization of ruthenium based organic composites for optoelectronic device application. Optik 2018, 164, 596–605. [Google Scholar] [CrossRef]
- Ikeda, H.; Murata, T.; Fujino, S. Preparation and photoluminescence of monolithic silica glass doped with Tb3+ ions using SiO2–PVA nanocomposite. Opt. Mater. 2014, 36, 1119–1122. [Google Scholar] [CrossRef]
- Bekiari, V.; Lianos, P. Multicolor emission from terpyridine–lanthanide ion complexes encapsulated in nanocomposite silica/poly(ethylene glycol) sol–gel matrices. J. Lumin. 2003, 101, 135–140. [Google Scholar] [CrossRef]
- Chen, B.; Feng, J. White-Light-Emitting Polymer Composite Film Based on Carbon Dots and Lanthanide Complexes. J. Phys. Chem. C 2015, 119, 7865–7872. [Google Scholar] [CrossRef]
- Savina, I.N.; Cnudde, V.; D’Hollander, S.; Van Hoorebeke, L.; Mattiasson, B.; Galaev, I.Y.; Du Prez, F. Cryogels from poly(2-hydroxyethyl methacrylate): Macroporous, interconnected materials with potential as cell scaffolds. Soft Matter 2007, 3, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Bat, E. Hydroxyethyl methacrylate based nanocomposite hydrogels with tunable pore architecture. J. Turk. Chem. Soc. A Chem. 2017, 3, 607–622. [Google Scholar] [CrossRef] [Green Version]
- Biradha, K.; Goswami, A.; Moi, R. Coordination polymers as heterogeneous catalysts in hydrogen evolution and oxygen evotion reactions. Chem. Commun. 2020, 56, 10824–10842. [Google Scholar] [CrossRef]
- Thi Le, V.C.; Sheraz, M.; Kang, E.; Ly, N.H.; Mai, H.D.; Lee, W.R.; Kim, C.-G.; Kim, S. Four-in-one multifunctional air filter using copper coordination polymer particle decorated fibre for efficient pathogen removal and indoor air treatment. Process Saf. Environ. Prot. 2022, 166, 177–188. [Google Scholar] [CrossRef]
- Blom, R.; Heyn, R.H.; Swang, O. Hydrogen storage in porous coordination polymers. Chem. Eng. Trans. 2004, 4, 325–330. [Google Scholar]
- Oggianu, M.; Manna, F.; Ashoka Sahadevan, S.; Avarvari, N.; Abhervé, A.; Mercuri, M.L. Metal-Organic Framework vs. Coordination Polymer—Influence of the Lanthanide on the Nature of the Heteroleptic Anilate/Terephtalate 3D Network. Crystals 2022, 12, 763. [Google Scholar] [CrossRef]
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Coordination Polymers, Metal-Organic Frameworks and the Need for Terminology Guidelines. CrystEngComm 2012, 14, 3001–3004. [Google Scholar] [CrossRef] [Green Version]
- Nengwu, Z.; Long, P.; Maiming, L.; Robinson, R.W. Some Characteristics of Infrared and Raman Spectra and Bonding of a Series of Lanthanide Complexes with L-Proline. Spectrosc. Lett. 2009, 30, 61–70. [Google Scholar] [CrossRef]
- Binnemans, K. Lanthanide-Based Luminescent Hybrid Materials. Chem. Rev. 2009, 109, 4283–4374. [Google Scholar]
- Vogler, A.; Kunkely, H. Excited state properties of lanthanide complexes: Beyond ff states. Inorg. Chim. Acta 2006, 359, 4130–4138. [Google Scholar] [CrossRef]
- Harada, N.; Tallaire, A.; Serrano, D.; Seyeux, A.; Marcus, P.; Portier, X.; Labbé, C.; Goldner, P.; Ferrier, A. Controlling the interfacial reactions and environment of rare-earth ions in thin oxide films towards wafer-scalable quantum technologies. Mater. Adv. 2022, 3, 300–311. [Google Scholar] [CrossRef]
- Henrie, D.E.; Fellows, R.L.; Choppin, G.R. Hypersensitivity in electronic-transitions of lanthanide and actinide complexes. Coord. Chem. Rev. 1976, 18, 199. [Google Scholar] [CrossRef]
- Gusev, A.N.; Hasegawa, M.; Shimizu, T.; Fukawa, T.; Sakurai, S.; Nishchymenko, G.A.; Shul’gin, V.F.; Meshkova, S.B.; Linert, W. Synthesis, structure and luminescence studies of Eu(III), Tb(III), Sm(III), Dy(III) cationic complexes with acetylacetone and bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane. Inorg. Chim. Acta 2013, 406, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Stan, C.S.; Coroaba, A.; Popa, M.; Ursu, L.E. Highly photoemissive polymer-transition metal complexes based on Poly(2-hydroxy ethyl) methacrylate. Polym. Int. 2020, 69, 1081–1088. [Google Scholar] [CrossRef]
- Bunzli, J.C.G.; Eliseeva, S.V. Basics of Lanthanide Photophysics. Series on Fluorescence. In Photophysical, Analytical and Biological Aspects; Hänninen, P., Härmä, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 7, pp. 1–45. [Google Scholar]
- Lu, Y.; Lu, J.; Zhao, J.; Cusido, J.; Raymo, F.M.; Yuan, J.; Yang, S.; Leif, R.C.; Huo, Y.; Piper, J.A.; et al. On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays. Nat. Commun. 2014, 6, 3741. [Google Scholar] [CrossRef] [Green Version]
Polymer Complex | Eu(III) Aerogel | Tb(III) Aerogel | La(III) Aerogel | ||||||
---|---|---|---|---|---|---|---|---|---|
Element | C | O | Eu(III) | C | O | Tb(III) | C | O | La(III) |
Atomic concentration (%) | 80.8 | 18 | 1.2 | 80.5 | 18.2 | 1.3 | 79.5 | 19 | 1.5 |
Mass concentration (%) | 59 | 18 | 23 | 67 | 19 | 14 | 67 | 21 | 12 |
Polymer Complex | Eu(III) Aerogel | Tb(III) Aerogel | La(III) Aerogel | ||||||
---|---|---|---|---|---|---|---|---|---|
C1s high-resolution spectra | |||||||||
Group/Bonding type | O-C | O=C | C-C/C-H | O-C | O=C | C-C/C-H | O-C | O=C | C-C/C-H |
Mass concentration (%) | 12.4 | 6.9 | 80.7 | 11.8 | 7 | 81.2 | 19 | 10 | 71 |
O1s high-resolution spectra | |||||||||
Group/Bonding type | O-C | O=C | O-Eu | O-C | O=C | O-Tb | O-C | O=C | O-La |
Mass concentration (%) | 30.4 | 65.7 | 3.9 | 28.5 | 67.5 | 4 | 38.6 | 49.3 | 12.1 |
Aerogel | Absolute PLQY (%)/Excitation WAVELENGTH (Nm) | Relative Error (+/−) |
---|---|---|
Eu(III) aerogel | 42/395 | 0.022 |
Tb(III) aerogel | 36/315 | 0.020 |
La(III) aerogel | 26/380 | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stan, L.; Malutan, T.; Volf, I.; Popa, M.; Tincu, C.E.; Stan, C.S. Photoluminescent Polymer Aerogels with R, G and B Emission. Int. J. Mol. Sci. 2022, 23, 16004. https://doi.org/10.3390/ijms232416004
Stan L, Malutan T, Volf I, Popa M, Tincu CE, Stan CS. Photoluminescent Polymer Aerogels with R, G and B Emission. International Journal of Molecular Sciences. 2022; 23(24):16004. https://doi.org/10.3390/ijms232416004
Chicago/Turabian StyleStan, Loredana, Teodor Malutan, Irina Volf, Marcel Popa, Camelia E. Tincu, and Corneliu S. Stan. 2022. "Photoluminescent Polymer Aerogels with R, G and B Emission" International Journal of Molecular Sciences 23, no. 24: 16004. https://doi.org/10.3390/ijms232416004
APA StyleStan, L., Malutan, T., Volf, I., Popa, M., Tincu, C. E., & Stan, C. S. (2022). Photoluminescent Polymer Aerogels with R, G and B Emission. International Journal of Molecular Sciences, 23(24), 16004. https://doi.org/10.3390/ijms232416004