Physiologic Insulin Resensitization as a Treatment Modality for Insulin Resistance Pathophysiology
Abstract
:1. Introduction
2. The Rise of Type 2 Diabetes
3. Physiologic Hormone Secretion
3.1. Physiologic Insulin Secretion
3.2. Insulin Sensitivity and Physiologic Secretion
4. Mechanisms of Insulin Resistance
4.1. Implications for Treatment
4.2. Diet
4.3. Medication
4.4. Physiologic Insulin Resensitization
5. Studies of Physiologic Insulin Resensitization (PIR) Treatment
5.1. Foot Ulcer and Peripheral Neuropathy
5.2. Diabetic Nephropathy
5.3. HbA1c
5.4. Cost Reduction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Center for Disease Control and Prevention. Long-Term Trends in Diabetes. Available online: https://www.cdc.gov/diabetes/statistics/slides/long_term_trends.pdf (accessed on 21 December 2021).
- Center for Disease Control and Prevention. 2020 National Diabetes Statistics Report; US Department of Health and Human Services: Atlanta, GA, USA, 2020.
- Tabak, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimaki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Economic costs of diabetes in the U.S. 2017. Diabetes Care 2018, 41, 917–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes-2021. Diabetes care 2021, 44, S111–S124. [Google Scholar] [CrossRef] [PubMed]
- Colling, C.; Atlas, S.J.; Wexler, D.J. Application of 2021 american diabetes association glycemic treatment clinical practice recommendations in primary care. Diabetes Care 2021, 44, 1443–1446. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Introduction: Standards of medical care in diabetes-2021. Diabetes Care 2021, 44, S1–S2. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Fda Revises Labels of Sglt2 Inhibitors for Diabetes to Include Warnings about Too Much Acid in the Blood and Serious Urinary Tract Infections. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-revises-labels-sglt2-inhibitors-diabetes-include-warnings-about-too-much-acid-blood-and-serious (accessed on 19 January 2010).
- Adhikari, R.; Blaha, M. New Insights into Prescribing of Sglt2 Inhibitors and Glp-1 Receptor Agonists by Cardiologists in 2020: Major Barriers Limiting Role. Available online: https://www.acc.org/latest-in-cardiology/articles/2021/01/19/14/27/new-insights-into-prescribing-of-sglt2-inhibitors-and-glp-1-receptor-agonists-in-2020 (accessed on 19 January 2021).
- Kahn, S.E.; Montgomery, B.; Howell, W.; Ligueros-Saylan, M.; Hsu, C.H.; Devineni, D.; McLeod, J.F.; Horowitz, A.; Foley, J.E. Importance of early phase insulin secretion to intravenous glucose tolerance in subjects with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2001, 86, 5824–5829. [Google Scholar] [CrossRef] [PubMed]
- Del Prato, S.; Tiengo, A. The importance of first-phase insulin secretion: Implications for the therapy of type 2 diabetes mellitus. Diabetes Metab. Res. Rev. 2001, 17, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Abbvie. Lupron Depot-Ped: Dosing and Administration. Available online: https://www.lupronpedpro.com/dosing-and-administration.html (accessed on 31 August 2021).
- Lang, D.A.; Matthews, D.R.; Peto, J.; Turner, R.C. Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings. N. Engl. J. Med. 1979, 301, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- Kanauchi, M.; Nakajima, M.; Saito, Y.; Kanauchi, K. Pancreatic beta-cell function and insulin sensitivity in japanese subjects with impaired glucose tolerance and newly diagnosed type 2 diabetes mellitus. Metabolism 2003, 52, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Ahren, B. Autonomic regulation of islet hormone secretion--implications for health and disease. Diabetologia 2000, 43, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Hellman, B.; Salehi, A.; Gylfe, E.; Dansk, H.; Grapengiesser, E. Glucose generates coincident insulin and somatostatin pulses and antisynchronous glucagon pulses from human pancreatic islets. Endocrinology 2009, 150, 5334–5340. [Google Scholar] [CrossRef] [Green Version]
- Song, S.H.; McIntyre, S.S.; Shah, H.; Veldhuis, J.D.; Hayes, P.C.; Butler, P.C. Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J. Clin. Endocrinol. Metab. 2000, 85, 4491–4499. [Google Scholar] [CrossRef]
- Laurenti, M.C.; Matveyenko, A.; Vella, A. Measurement of pulsatile insulin secretion: Rationale and methodology. Metabolites 2021, 11, 409. [Google Scholar] [CrossRef]
- Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Ferrannini, E.; Gastaldelli, A.; Miyazaki, Y.; Matsuda, M.; Mari, A.; DeFronzo, R.A. Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: A new analysis. J. Clin. Endocrinol. Metab. 2005, 90, 493–500. [Google Scholar] [CrossRef]
- McGuinness, O.P.; Friedman, A.; Cherrington, A.D. Intraportal hyperinsulinemia decreases insulin-stimulated glucose uptake in the dog. Metabolism 1990, 39, 127–132. [Google Scholar] [CrossRef]
- Bratusch-Marrain, P.R.; Komjati, M.; Waldhausl, W.K. Efficacy of pulsatile versus continuous insulin administration on hepatic glucose production and glucose utilization in type i diabetic humans. Diabetes 1986, 35, 922–926. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, O.; Arnfred, J.; Nielsen, O.H.; Beck-Nielsen, H.; Orskov, H. Glucose uptake and pulsatile insulin infusion: Euglycaemic clamp and [33H] glucose studies in healthy subjects. Acta Endocrinol. (Copenh.) 1986, 113, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Stanley, S.; Moheet, A.; Seaquist, E.R. Central mechanisms of glucose sensing and counterregulation in defense of hypoglycemia. Endocr. Rev. 2019, 40, 768–788. [Google Scholar] [CrossRef]
- Rosario, W.; Singh, I.; Wautlet, A.; Patterson, C.; Flak, J.; Becker, T.C.; Ali, A.; Tamarina, N.; Philipson, L.H.; Enquist, L.W.; et al. The brain-to-pancreatic islet neuronal map reveals differential glucose regulation from distinct hypothalamic regions. Diabetes 2016, 65, 2711–2723. [Google Scholar] [CrossRef] [Green Version]
- Satin, L.S.; Butler, P.C.; Ha, J.; Sherman, A.S. Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes. Mol. Asp. Med. 2015, 42, 61–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadler, M.; Pacini, G.; Petrie, J.; Luger, A.; Anderwald, C.; Investigators, R. Beta cell (dys)function in non-diabetic offspring of diabetic patients. Diabetologia 2009, 52, 2435–2444. [Google Scholar] [CrossRef] [Green Version]
- O’Rahilly, S.; Turner, R.C.; Matthews, D.R. Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N. Engl. J. Med. 1988, 318, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Saltzman, E.; Wilson, P.W.; Jacques, P.F. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the framingham offspring cohort. Diabetes Care 2004, 27, 538–546. [Google Scholar] [CrossRef] [Green Version]
- McAuley, K.A.; Hopkins, C.M.; Smith, K.J.; McLay, R.T.; Williams, S.M.; Taylor, R.W.; Mann, J.I. Comparison of high-fat and high-protein diets with a high-carbohydrate diet in insulin-resistant obese women. Diabetologia 2005, 48, 8–16. [Google Scholar] [CrossRef]
- Ajala, O.; English, P.; Pinkney, J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am. J. Clin. Nutr. 2013, 97, 505–516. [Google Scholar] [CrossRef] [Green Version]
- Feldstein, A.C.; Nichols, G.A.; Smith, D.H.; Stevens, V.J.; Bachman, K.; Rosales, A.G.; Perrin, N. Weight change in diabetes and glycemic and blood pressure control. Diabetes Care 2008, 31, 1960–1965. [Google Scholar] [CrossRef] [Green Version]
- Zarkovic, M.; Ciric, J.; Penezic, Z.; Trbojevic, B.; Drezgic, M. Effect of weight loss on the pulsatile insulin secretion. J. Clin. Endocrinol. Metab. 2000, 85, 3673–3677. [Google Scholar] [CrossRef] [Green Version]
- Lupi, R.; Del Guerra, S.; Marselli, L.; Bugliani, M.; Boggi, U.; Mosca, F.; Marchetti, P.; Del Prato, S. Rosiglitazone prevents the impairment of human islet function induced by fatty acids: Evidence for a role of ppargamma2 in the modulation of insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E560–E567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patane, G.; Piro, S.; Rabuazzo, A.M.; Anello, M.; Vigneri, R.; Purrello, F. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: A direct metformin effect on pancreatic beta-cells. Diabetes 2000, 49, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Ritzel, R.; Schulte, M.; Porksen, N.; Nauck, M.S.; Holst, J.J.; Juhl, C.; Marz, W.; Schmitz, O.; Schmiegel, W.H.; Nauck, M.A. Glucagon-like peptide 1 increases secretory burst mass of pulsatile insulin secretion in patients with type 2 diabetes and impaired glucose tolerance. Diabetes 2001, 50, 776–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of homa modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papazafiropoulou, A.K.; Melidonis, A.; Antonopoulos, S. Effects of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors on cardiorenal and metabolic outcomes in people without diabetes. Curr. Pharm. Des. 2021, 27, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Sathyapalan, T.; Maleki, M.; Jamialahmadi, T.; Sahebkar, A. Molecular mechanisms by which sglt2 inhibitors can induce insulin sensitivity in diabetic milieu: A mechanistic review. Life Sci. 2020, 240, 117090. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Ryden, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (rewind): A double-blind, randomised placebo-controlled trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Qaseem, A.; Wilt, T.J.; Kansagara, D.; Horwitch, C.; Barry, M.J.; Forciea, M.A.; Clinical Guidelines Committee of the American College of Physicians. Hemoglobin a1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: A guidance statement update from the american college of physicians. Ann. Intern. Med. 2018, 168, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Abernethy, A. Insulin Gains New Pathway to Increased Competition. Available online: https://www.fda.gov/news-events/press-announcements/insulin-gains-new-pathway-increased-competition (accessed on 28 April 2021).
- Aoki, T.T.; Grecu, E.O.; Arcangeli, M.A.; Benbarka, M.M.; Prescott, P.; Ahn, J.H. Chronic intermittent intravenous insulin therapy: A new frontier in diabetes therapy. Diabetes Technol. Ther. 2001, 3, 111–123. [Google Scholar] [CrossRef]
- Dong, S.; Lau, H.; Chavarria, C.; Alexander, M.; Cimler, A.; Elliott, J.P.; Escovar, S.; Lewin, J.; Novak, J.; Lakey, J.R.T. Effects of periodic intensive insulin therapy: An updated review. Curr. Ther. Res. Clin. Exp. 2019, 90, 61–67. [Google Scholar] [CrossRef]
- Matveyenko, A.V.; Liuwantara, D.; Gurlo, T.; Kirakossian, D.; Dalla Man, C.; Cobelli, C.; White, M.F.; Copps, K.D.; Volpi, E.; Fujita, S.; et al. Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. Diabetes 2012, 61, 2269–2279. [Google Scholar] [CrossRef] [Green Version]
- Porksen, N.; Hollingdal, M.; Juhl, C.; Butler, P.; Veldhuis, J.D.; Schmitz, O. Pulsatile insulin secretion: Detection, regulation, and role in diabetes. Diabetes 2002, 51 (Suppl. 1), S245–S254. [Google Scholar] [CrossRef] [Green Version]
- Farmer, T.D.; Jenkins, E.C.; O’Brien, T.P.; McCoy, G.A.; Havlik, A.E.; Nass, E.R.; Nicholson, W.E.; Printz, R.L.; Shiota, M. Comparison of the physiological relevance of systemic vs. Portal insulin delivery to evaluate whole body glucose flux during an insulin clamp. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E206–E222. [Google Scholar] [CrossRef] [Green Version]
- Tucker, T.; Hadley, J.; Alexander, M.; Lakey, J.; Loveridge, B. Case series: Reversal of diabetic neuropathy utilizing physiologic insulin resensitization. Int. J. Diab. Metab. Disord. 2021, 6, 163. [Google Scholar]
- Elliott, J.; Elliott, A.; Cimler, A.; Zaias, N.; Escovar, S. Extraordinary rapid would healing time in diabetic patients treated with microburst insulin infusion. Int. Res. J. Publ. Health 2018, 2, 9. [Google Scholar]
- Elliott, J.; Zaias, N.; Escovar, S.; Deguzman, L.; Counce, D.; Dixit, R.; Capper, D.; Novak, J.; Nowins, R.; Holloway, W.; et al. Microburst insulin infusion: Results of observational studies—Carbohydrate metabolism, painful diabetic neuropathy and hospital/emergency department utilization. J. Diab. Metab. Disord. Contr. 2017, 4, 116–121. [Google Scholar]
- Dailey, G.E.; Boden, G.H.; Creech, R.H.; Johnson, D.G.; Gleason, R.E.; Kennedy, F.P.; Weinrauch, L.A.; Weir, M.; D’Elia, J.A. Effects of pulsatile intravenous insulin therapy on the progression of diabetic nephropathy. Metabolism 2000, 49, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Villaverde, Z.; Tucker, T.; Hepford, S.; Lakey, J.; Hinman, R. Improved kidney function following physiologic insulin resensitization treatment modality. J. Endocrinol. Disord. 2021, 5. [Google Scholar] [CrossRef]
- Manessis, A.; Hanna, M.; Sachsenheimer, D.; Do, L.; Lewin, J.; Steiner, S.; McCormack, S.; Demircik, F.; Pfutzner, A. Pulsatile insulin infusion as a treatment option for patients with type 2 diabetes and stage iii kidney failure—Results from a pilot study. Diabetes care 2021, 6, 49–54. [Google Scholar]
- Quach, S.; Manessis, A. 112-lb: Pulsatile insulin treatment as a treatment option for patients with type 2 diabetes and stage 3 kidney failure. Diabetes 2021, 70, 70. [Google Scholar] [CrossRef]
- Aoki, T.T.; Benbarka, M.M.; Okimura, M.C.; Arcangeli, M.A.; Walter, R.M., Jr.; Wilson, L.D.; Truong, M.P.; Barber, A.R.; Kumagai, L.F. Long-term intermittent intravenous insulin therapy and type 1 diabetes mellitus. Lancet 1993, 342, 515–518. [Google Scholar] [CrossRef]
- Skjaervold, N.K.; Lyng, O.; Spigset, O.; Aadahl, P. Pharmacology of intravenous insulin administration: Implications for future closed-loop glycemic control by the intravenous/intravenous route. Diabetes Technol. Ther. 2012, 14, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, T.T.; Grecu, E.O.; Gollapudi, G.M.; Barber, A.R.; Arcangeli, M.A.; Benbarka, M.M.; Prescott, P.; Meisenheimer, R. Effect of intensive insulin therapy on progression of overt nephropathy in patients with type 1 diabetes mellitus. Endocr. Pract. 1999, 5, 174–178. [Google Scholar] [CrossRef] [PubMed]
Improvements in the Progression of Diabetic Nephropathy | |
---|---|
Halting the Progression of CKD: CrCl (18 months) [52] | 348% |
Reversals of CKD: Improved EGFR (3.75 months) [53] | 44% |
Reversals of CKD: Improved EGFR (3 months) [54] | 12% |
Decreases in Hemoglobin A1c [49,58] |
Reversals of Diabetic Neuropathy [49] |
Improvements in Wound Healing [49] |
Decreases in Insulin Requirements [49] |
Improvements in Estimated Glomerular Filtration Rate (eGFR) [53,54] |
Decreases in Systolic Blood Pressure (SBP) [54] |
Reduce/Arrest Progression of Diabetic Nephropathy [49,52,54,58] |
Reference | Finding | Study Design | Results |
---|---|---|---|
Tucker et al. | Neuropathy | Case Series | Improved; discontinued Gabapentin |
Tucker et al. | Foot Ulcer | Case Series | Healed quickly |
Tucker et al. | HbA1c | Case Report | HbA1c decreased 2.8 |
Elliott et al. | Foot Ulcer | Case Series | Healed 1/3 more quickly |
Dailey et al. | Nephropathy | Controlled Trial | Improved (p = 0.0144) |
Elliott et al. | Neuropathy Pain | Case Series | 93% improved, 47.5% resolved |
Villaverde et al. | Nephropathy | Case Series | 41% increase in GFR |
Manessis et al. | Nephropathy | Case Series | 12% increase in GFR |
Quach et al. | Nephropathy | Case Series | 11% increase in GFR |
Dailey et al. | Nephropathy | Controlled Trial | Reduced decline in GFR |
Aoki et al. | HbA1c | Case Series | HbA1c decreased by 1.5 T1D |
Aoki et al. | HbA1c | Case Series | HbA1c decreased by 1; improved glycemic control |
Elliott et al. | Hospitalizations | Case Series | Reduced hospitalizations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greenway, F.; Loveridge, B.; Grimes, R.M.; Tucker, T.R.; Alexander, M.; Hepford, S.A.; Fontenot, J.; Nobles-James, C.; Wilson, C.; Starr, A.M.; et al. Physiologic Insulin Resensitization as a Treatment Modality for Insulin Resistance Pathophysiology. Int. J. Mol. Sci. 2022, 23, 1884. https://doi.org/10.3390/ijms23031884
Greenway F, Loveridge B, Grimes RM, Tucker TR, Alexander M, Hepford SA, Fontenot J, Nobles-James C, Wilson C, Starr AM, et al. Physiologic Insulin Resensitization as a Treatment Modality for Insulin Resistance Pathophysiology. International Journal of Molecular Sciences. 2022; 23(3):1884. https://doi.org/10.3390/ijms23031884
Chicago/Turabian StyleGreenway, Frank, Brian Loveridge, Richard M. Grimes, Tori R. Tucker, Michael Alexander, Scott A. Hepford, Justin Fontenot, Candi Nobles-James, Carol Wilson, Adam M. Starr, and et al. 2022. "Physiologic Insulin Resensitization as a Treatment Modality for Insulin Resistance Pathophysiology" International Journal of Molecular Sciences 23, no. 3: 1884. https://doi.org/10.3390/ijms23031884
APA StyleGreenway, F., Loveridge, B., Grimes, R. M., Tucker, T. R., Alexander, M., Hepford, S. A., Fontenot, J., Nobles-James, C., Wilson, C., Starr, A. M., Abdelsaid, M., Lewis, S. T., & Lakey, J. R. T. (2022). Physiologic Insulin Resensitization as a Treatment Modality for Insulin Resistance Pathophysiology. International Journal of Molecular Sciences, 23(3), 1884. https://doi.org/10.3390/ijms23031884