Cytoskeletal Protein 4.1G Is Essential for the Primary Ciliogenesis and Osteoblast Differentiation in Bone Formation
Abstract
:1. Introduction
2. Results
2.1. Protein 4.1G Is Essential for Bone Formation in the Newborn Tibia
2.2. Protein 4.1G Is Decreased during the Differentiation of MC3T3-E1 Cells
2.3. Primary Cilium Is Elongated during the Early Stage of Differentiation in MC3T3-E1 Cells
2.4. Protein 4.1G Promotes Primary Ciliogenesis in the Early Stage of Osteoblast Differentiation
2.5. Protein 4.1G Accelerates Osteoblast Differentiation by Regulating Ciliary Signaling in Its Early Stage
3. Discussion
4. Methods
4.1. Materials
4.2. Plasmid Preparation
4.3. Cell Culture
4.4. Mice
4.5. Alkaline Phosphatase (ALP) Activity Assay
4.6. Mineralization
4.7. Histology
4.8. Micro-Computed Tomography
4.9. Protein Extraction and Western Blotting
4.10. Immunofluorescence
4.11. RNA Isolation and RT-qPCR
4.12. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | ascorbic acid |
ALP | alkaline phosphatase |
βGP | β-glycerol phosphate |
CT | computed tomography |
FBS | fetal bovine serum |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
GPCRs | G protein-coupled receptors |
Hh | hedgehog |
KO | knockout |
MEMα | minimum essential medium, alpha modification |
MSC | mesenchymal stem cell |
OC | osteocalcin |
Ptch1 | patched 1 |
PTHR | parathyroid hormone receptor |
Runx2 | Runt-related transcription factor 2 |
References
- Ducy, P.; Zhang, R.; Geoffroy, V.; Ridall, A.L.; Karsenty, G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 1997, 89, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Bruderer, M.; Richards, R.G.; Alini, M.; Stoddart, M.J. Role and regulation of RUNX2 in osteogenesis. Eur. Cell Mater 2014, 28, 269–286. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.H.; Leroux, M.R. The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nat. Cell Biol. 2013, 15, 1387–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Saito, M.; Miyamoto, T.; Novak, P.; Shevchuk, A.I.; Korchev, Y.E.; Fukuma, T.; Takahashi, Y. Nanoscale Imaging of Primary Cilia with Scanning Ion Conductance Microscopy. Anal. Chem. 2018, 90, 2891–2895. [Google Scholar] [CrossRef] [Green Version]
- Pazour, G.J.; San Agustin, J.T.; Follit, J.A.; Rosenbaum, J.L.; Witman, G.B. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 2002, 12, R378–R380. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.; Li, A.; Chuang, J.Z.; Saito, M.; Caceres, A.; Sung, C.H. IGF-1 activates a cilium-localized noncanonical Gβγ signaling pathway that regulates cell-cycle progression. Dev. Cell 2013, 26, 358–368. [Google Scholar] [CrossRef] [Green Version]
- Schou, K.B.; Pedersen, L.B.; Christensen, S.T. Ins and outs of GPCR signaling in primary cilia. EMBO Rep. 2015, 16, 1099–1113. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wang, C. The intraflagellar transport protein IFT80 is required for cilia formation and osteogenesis. Bone 2012, 51, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Cao, J.; He, X.; Serra, R.; Qu, J.; Cao, X.; Yang, S. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat. Commun. 2016, 7, 11024. [Google Scholar] [CrossRef] [Green Version]
- Beales, P.L.; Bland, E.; Tobin, J.L.; Bacchelli, C.; Tuysuz, B.; Hill, J.; Rix, S.; Pearson, C.G.; Kai, M.; Hartley, J.; et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat. Genet. 2007, 39, 727–729. [Google Scholar] [CrossRef]
- Qiu, N.; Xiao, Z.; Cao, L.; Buechel, M.M.; David, V.; Roan, E.; Quarles, L.D. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J. Cell Sci. 2012, 125, 1945–1957. [Google Scholar] [PubMed] [Green Version]
- Chen, Y.; Fan, Q.; Zhang, H.; Tao, D.; Wang, Y.; Yue, R.; Sun, Y. Lineage tracing of cells expressing the ciliary gene IFT140 during bone development. Dev. Dyn. 2021, 250, 574–583. [Google Scholar] [CrossRef]
- Noda, K.; Kitami, M.; Kitami, K.; Kaku, M.; Komatsu, Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc. Natl. Acad. Sci. USA 2016, 113, E2589–E2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor-Harris, P.M.; Felkin, L.E.; Birks, E.J.; Franklin, R.C.; Yacoub, M.H.; Baines, A.J.; Barton, P.J.; Pinder, J.C. Expression of human membrane skeleton protein genes for protein 4.1 and βIIΣ2-spectrin assayed by real-time RT-PCR. Cell Mol. Biol. Lett. 2005, 10, 135–149. [Google Scholar] [PubMed]
- Saitoh, Y.; Ohno, N.; Yamauchi, J.; Sakamoto, T.; Terada, N. Deficiency of a membrane skeletal protein, 4.1G, results in myelin abnormalities in the peripheral nervous system. Histochem. Cell Biol. 2017, 148, 597–606. [Google Scholar] [CrossRef]
- Saitoh, Y.; Kamijo, A.; Yamauchi, J.; Sakamoto, T.; Terada, N. The membrane palmitoylated protein, MPP6, is involved in myelin formation in the mouse peripheral nervous system. Histochem. Cell Biol. 2019, 151, 385–394. [Google Scholar] [CrossRef]
- Yang, S.; Weng, H.; Chen, L.; Guo, X.; Parra, M.; Conboy, J.; Debnath, G.; Lambert, A.J.; Peters, L.L.; Baines, A.J.; et al. Lack of protein 4.1G causes altered expression and localization of the cell adhesion molecule nectin-like 4 in testis and can cause male infertility. Mol. Cell Biol. 2011, 31, 2276–2286. [Google Scholar] [CrossRef] [Green Version]
- Sanuki, R.; Watanabe, S.; Sugita, Y.; Irie, S.; Kozuka, T.; Shimada, M.; Ueno, S.; Usukura, J.; Furukawa, T. Protein-4.1G-Mediated Membrane Trafficking Is Essential for Correct Rod Synaptic Location in the Retina and for Normal Visual Function. Cell Rep. 2015, 10, 796–808. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, T.; Wang, Y.; Zhang, J.; Qi, Y.; Weng, H.; Kang, Q.; Guo, X.; Baines, A.J.; Mohandas, N.; et al. Protein 4.1G Regulates Cell Adhesion, Spreading, and Migration of Mouse Embryonic Fibroblasts through the β1 Integrin Pathway. J. Biol. Chem. 2016, 291, 2170–2180. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Sugai, M.; Katsushima, Y.; Yanagisawa, T.; Sukegawa, J.; Nakahata, N. Increase in cell-surface localization of parathyroid hormone receptor by cytoskeletal protein 4.1G. Biochem. J. 2005, 392, 75–81. [Google Scholar] [CrossRef]
- Goto, T.; Chiba, A.; Sukegawa, J.; Yanagisawa, T.; Saito, M.; Nakahata, N. Suppression of adenylyl cyclase-mediated cAMP production by plasma membrane associated cytoskeletal protein 4.1G. Cell Signal 2013, 25, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Cui, L.; Hirano, M.; Li, G.; Yanagisawa, T.; Sato, T.; Sukegawa, J. Activity of Adenylyl Cyclase Type 6 Is Suppressed by Direct Binding of the Cytoskeletal Protein 4.1G. Mol. Pharmacol. 2019, 96, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Miao, D.; He, B.; Karaplis, A.C.; Goltzman, D. Parathyroid hormone is essential for normal fetal bone formation. J. Clin. Investig. 2002, 109, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Toftgard, R. Two sides to cilia in cancer. Nat. Med. 2009, 15, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Reiter, J.F.; Leroux, M.R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 2017, 18, 533–547. [Google Scholar] [CrossRef]
- Akhshi, T.; Trimble, W.S. A non-canonical Hedgehog pathway initiates ciliogenesis and autophagy. J. Cell Biol. 2021, 220, e202004179. [Google Scholar] [CrossRef]
- Aghajanian, P.; Hall, S.; Wongworawat, M.D.; Mohan, S. The Roles and Mechanisms of Actions of Vitamin C in Bone: New Developments. J. Bone Miner Res. 2015, 30, 1945–1955. [Google Scholar] [CrossRef] [Green Version]
- Cimmino, L.; Neel, B.G.; Aifantis, I. Vitamin C in Stem Cell Reprogramming and Cancer. Trends Cell Biol. 2018, 28, 698–708. [Google Scholar] [CrossRef]
- Ramez, M.; Blot-Chabaud, M.; Cluzeaud, F.; Chanan, S.; Patterson, M.; Walensky, L.D.; Marfatia, S.; Baines, A.J.; Chasis, J.A.; Conboy, J.G.; et al. Distinct distribution of specific members of protein 4.1 gene family in the mouse nephron. Kidney Int. 2003, 63, 1321–1337. [Google Scholar] [CrossRef] [Green Version]
- Nunomura, W.; Kinoshita, K.; Parra, M.; Gascard, P.; An, X.; Mohandas, N.; Takakuwa, Y. Similarities and differences in the structure and function of 4.1G and 4.1R135, two protein 4.1 paralogues expressed in erythroid cells. Biochem. J. 2010, 432, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Spasic, M.; Jacobs, C.R. Lengthening primary cilia enhances cellular mechanosensitivity. Eur. Cell Mater. 2017, 33, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Drummond, M.L.; Li, M.; Tarapore, E.; Nguyen, T.T.L.; Barouni, B.J.; Cruz, S.; Tan, K.C.; Oro, A.E.; Atwood, S.X. Actin polymerization controls cilia-mediated signaling. J. Cell Biol. 2018, 217, 3255–3266. [Google Scholar] [CrossRef] [PubMed]
- Geoghegan, I.P.; McNamara, L.M.; Hoey, D.A. Estrogen withdrawal alters cytoskeletal and primary ciliary dynamics resulting in increased Hedgehog and osteoclastogenic paracrine signalling in osteocytes. Sci. Rep. 2021, 11, 9272. [Google Scholar] [CrossRef] [PubMed]
- Canterini, S.; Dragotto, J.; Dardis, A.; Zampieri, S.; De Stefano, M.E.; Mangia, F.; Erickson, R.P.; Fiorenza, M.T. Shortened primary cilium length and dysregulated Sonic hedgehog signaling in Niemann-Pick C1 disease. Hum. Mol. Genet. 2017, 26, 2277–2289. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, S.D.; Gambassi, S.; Thompson, C.L.; Chandrakumar, C.; Santucci, A.; Knight, M.M. Reduced primary cilia length and altered Arl13b expression are associated with deregulated chondrocyte Hedgehog signaling in alkaptonuria. J. Cell Physiol. 2017, 232, 2407–2417. [Google Scholar] [CrossRef]
- Martin-Guerrero, E.; Tirado-Cabrera, I.; Buendia, I.; Alonso, V.; Gortazar, A.R.; Ardura, J.A. Primary cilia mediate parathyroid hormone receptor type 1 osteogenic actions in osteocytes and osteoblasts via Gli activation. J. Cell Physiol. 2020, 235, 7356–7369. [Google Scholar] [CrossRef]
- Xie, Y.F.; Shi, W.G.; Zhou, J.; Gao, Y.H.; Li, S.F.; Fang, Q.Q.; Wang, M.G.; Ma, H.P.; Wang, J.F.; Xian, C.J.; et al. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone 2016, 93, 22–32. [Google Scholar] [CrossRef]
- Lapunzina, P.; Aglan, M.; Temtamy, S.; Caparros-Martin, J.A.; Valencia, M.; Leton, R.; Martinez-Glez, V.; Elhossini, R.; Amr, K.; Vilaboa, N.; et al. Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am. J. Hum. Genet. 2010, 87, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Timpson, N.J.; Tobias, J.H.; Richards, J.B.; Soranzo, N.; Duncan, E.L.; Sims, A.M.; Whittaker, P.; Kumanduri, V.; Zhai, G.; Glaser, B.; et al. Common variants in the region around Osterix are associated with bone mineral density and growth in childhood. Hum. Mol. Genet. 2009, 18, 1510–1517. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.S.; Bellesini, L.S.; Defino, H.L.; da Silva Herrero, C.F.; Beloti, M.M.; Rosa, A.L. Hedgehog signaling and osteoblast gene expression are regulated by purmorphamine in human mesenchymal stem cells. J. Cell Biochem. 2012, 113, 204–208. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.; Fu, Q.; Dong, Y. Osterix is required for Sonic hedgehog-induced osteoblastic MC3T3-E1 cell differentiation. Cell Biochem. Biophys. 2012, 64, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Faghihi, F.; Baghaban Eslaminejad, M.; Nekookar, A.; Najar, M.; Salekdeh, G.H. The effect of purmorphamine and sirolimus on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Biomed Pharmacother. 2013, 67, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Saito, M.; Chuang, J.Z.; Tseng, Y.Y.; Dedesma, C.; Tomizawa, K.; Kaitsuka, T.; Sung, C.H. Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors. Nat. Cell Biol. 2011, 13, 402–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terada, N.; Ohno, N.; Saitoh, S.; Saitoh, Y.; Komada, M.; Kubota, H.; Ohno, S. Involvement of a membrane skeletal protein, 4.1G, for Sertoli/germ cell interaction. Reproduction 2010, 139, 883–892. [Google Scholar] [CrossRef] [Green Version]
- McFarlane, L.; Truong, V.; Palmer, J.S.; Wilhelm, D. Novel PCR assay for determining the genetic sex of mice. Sex Dev. 2013, 7, 207–211. [Google Scholar] [CrossRef]
- Manolagas, S.C.; Burton, D.W.; Deftos, L.J. 1,25-Dihydroxyvitamin D3 stimulates the alkaline phosphatase activity of osteoblast-like cells. J. Biol. Chem. 1981, 256, 7115–7117. [Google Scholar] [CrossRef]
- Schiller, P.C.; D’Ippolito, G.; Roos, B.A.; Howard, G.A. Anabolic or catabolic responses of MC3T3-E1 osteoblastic cells to parathyroid hormone depend on time and duration of treatment. J. Bone Miner. Res. 1999, 14, 1504–1512. [Google Scholar] [CrossRef]
- Kogure, A.; Mori, Y.; Tanaka, H.; Kamimura, M.; Masahashi, N.; Hanada, S.; Itoi, E. Effects of elastic intramedullary nails composed of low Young’s modulus Ti-Nb-Sn alloy on healing of tibial osteotomies in rabbits. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 700–707. [Google Scholar] [CrossRef]
- Saito, M.; Otsu, W.; Hsu, K.S.; Chuang, J.Z.; Yanagisawa, T.; Shieh, V.; Kaitsuka, T.; Wei, F.Y.; Tomizawa, K.; Sung, C.H. Tctex-1 controls ciliary resorption by regulating branched actin polymerization and endocytosis. EMBO Rep. 2017, 18, 1460–1472. [Google Scholar] [CrossRef]
- Saito, M.; Sakaji, K.; Otsu, W.; Sung, C.H. Ciliary Assembly/Disassembly Assay in Non-transformed Cell Lines. Bio. Protoc. 2018, 8, e2773. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saito, M.; Hirano, M.; Izumi, T.; Mori, Y.; Ito, K.; Saitoh, Y.; Terada, N.; Sato, T.; Sukegawa, J. Cytoskeletal Protein 4.1G Is Essential for the Primary Ciliogenesis and Osteoblast Differentiation in Bone Formation. Int. J. Mol. Sci. 2022, 23, 2094. https://doi.org/10.3390/ijms23042094
Saito M, Hirano M, Izumi T, Mori Y, Ito K, Saitoh Y, Terada N, Sato T, Sukegawa J. Cytoskeletal Protein 4.1G Is Essential for the Primary Ciliogenesis and Osteoblast Differentiation in Bone Formation. International Journal of Molecular Sciences. 2022; 23(4):2094. https://doi.org/10.3390/ijms23042094
Chicago/Turabian StyleSaito, Masaki, Marina Hirano, Tomohiro Izumi, Yu Mori, Kentaro Ito, Yurika Saitoh, Nobuo Terada, Takeya Sato, and Jun Sukegawa. 2022. "Cytoskeletal Protein 4.1G Is Essential for the Primary Ciliogenesis and Osteoblast Differentiation in Bone Formation" International Journal of Molecular Sciences 23, no. 4: 2094. https://doi.org/10.3390/ijms23042094
APA StyleSaito, M., Hirano, M., Izumi, T., Mori, Y., Ito, K., Saitoh, Y., Terada, N., Sato, T., & Sukegawa, J. (2022). Cytoskeletal Protein 4.1G Is Essential for the Primary Ciliogenesis and Osteoblast Differentiation in Bone Formation. International Journal of Molecular Sciences, 23(4), 2094. https://doi.org/10.3390/ijms23042094