Biochemical and Structural Insights into the Winged Helix Domain of P150, the Largest Subunit of the Chromatin Assembly Factor 1
Abstract
:1. Introduction
2. Results
2.1. Design and Chemico-Physical Characterization of P150 WHD Domain
2.2. P150721–860 Binds dsDNA
2.3. ED Domain Modulates DNA Binding to P150721–860
3. Discussion
4. Materials and Methods
4.1. P150721–860 and P150575–860 Design, Cloning, Expression, and Purification
4.2. ESI–TOF-MS Analyses
4.3. Circular Dichroism
4.4. Light Scattering
4.5. Electrophoretic Mobility Shift Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Luger, K.; Dechassa, M.L.; Tremethick, D.J. New insights into nucleosome and chromatin structure: An ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol. 2012, 13, 436–447. [Google Scholar] [CrossRef] [Green Version]
- Annunziato, A. DNA packaging: Nucleosomes and Chromatin. Nat. Educ. 2008, 1, 26. [Google Scholar]
- Luger, K.; Mäder, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997, 389, 251–260. [Google Scholar] [CrossRef] [PubMed]
- McGinty, R.K.; Tan, S. Histone, Nucleosome, and Chromatin Structure. In Fundamentals of Chromatin; Workman, J.L., Abmayr, S.M., Eds.; Springer: New York, NY, USA, 2014; pp. 1–28. ISBN 978-1-4614-8624-4. [Google Scholar]
- McGinty, R.K.; Tan, S. Nucleosome Structure and Function. Chem. Rev. 2015, 115, 2255–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widom, J. Structure, dynamics, and function of chromatin in vitro. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 285–327. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Levitus, M.; Bustamante, C.; Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 2005, 12, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Luger, K. Dynamic nucleosomes. Chromosom. Res. 2006, 14, 5–16. [Google Scholar] [CrossRef]
- Loyola, A.; Almouzni, G. Histone chaperones, a supporting role in the limelight. Biochim. Biophys. Acta-Gene Struct. Expr. 2004, 1677, 3–11. [Google Scholar] [CrossRef]
- Das, C.; Tyler, J.K.; Churchill, M.E.A. The histone shuffle: Histone chaperones in an energetic dance. Trends Biochem. Sci. 2010, 35, 476–489. [Google Scholar] [CrossRef] [Green Version]
- Avvakumov, N.; Nourani, A.; Côté, J. Histone Chaperones: Modulators of Chromatin Marks. Mol. Cell 2011, 41, 502–514. [Google Scholar] [CrossRef]
- Elsässer, S.J.; D’Arcy, S. Towards a mechanism for histone chaperones. Biochim. Biophys. Acta 2013, 1819, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Laskey, R.A.; Honda, B.M.; Mills, A.D.; Finch, J.T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 1978, 275, 416–420. [Google Scholar] [CrossRef]
- Laskey, R.A.; Earnshaw, W.C. Nucleosome assembly. Nature 1980, 286, 763–767. [Google Scholar] [CrossRef]
- Smith, S.; Stillman, B. Stepwise assembly of chromatin during DNA replication in vitro. EMBO J. 1991, 10, 971–980. [Google Scholar] [CrossRef]
- Krude, T. Chromatin: Nucleosome assembly during DNA replication. Curr. Biol. 1995, 5, 1232–1234. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.; Stillman, B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 1989, 58, 15–25. [Google Scholar] [CrossRef]
- Kadyrova, L.Y.; Rodriges Blanko, E.; Kadyrov, F.A. Human CAF-1-dependent nucleosome assembly in a defined system. Cell Cycle 2013, 12, 3286–3297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Carrillo, A.; Wangh, L.J.; Allfrey, V.G. Processing of newly synthesized histone molecules. Science 1975, 190, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Stillman, B. Chromatin assembly during SV40 DNA replication in vitro. Cell 1986, 45, 555–565. [Google Scholar] [CrossRef]
- Kamakaka, R.T.; Bulger, M.; Kaufman, P.D.; Stillman, B.; Kadonaga, J.T. Postreplicative chromatin assembly by Drosophila and human chromatin assembly factor 1. Mol. Cell. Biol. 1996, 16, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Quivy, J.P.; Grandi, P.; Almouzni, G. Dimerization of the largest subunit of chromatin assembly factor 1: Importance in vitro and during Xenopus early development. EMBO J. 2001, 20, 2015–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takami, Y.; Ono, T.; Fukagawa, T.; Shibahara, K.; Nakayama, T. Essential role of chromatin assembly factor-1-mediated rapid nucleosome assembly for DNA replication and cell division in vertebrate cells. Mol. Biol. Cell 2007, 18, 129–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quivy, J.P.; Gérard, A.; Cook, A.J.L.; Roche, D.; Almouzni, G. The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat. Struct. Mol. Biol. 2008, 15, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Quivy, J.P.; Roche, D.; Kirschner, D.; Tagami, H.; Nakatani, Y.; Almouzni, G. A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J. 2004, 23, 3516–3526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchénio, T.; Casella, J.-F.; Heidmann, T. A Truncated Form of the Human CAF-1 p150 Subunit Impairs the Maintenance of Transcriptional Gene Silencing in Mammalian Cells. Mol. Cell. Biol. 2001, 21, 1953–1961. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.L.; Matheson, T.D.; Trombly, D.J.; Sun, X.; Campeau, E.; Han, X.; Yates, J.R.; Kaufman, P.D. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli. Mol. Biol. Cell 2014, 25, 2866–2881. [Google Scholar] [CrossRef]
- Polo, S.E.; Theocharis, S.E.; Grandin, L.; Gambotti, L.; Antoni, G.; Savignoni, A.; Asselain, B.; Patsouris, E.; Almouzni, G. Clinical significance and prognostic value of chromatin assembly factor-1 overexpression in human solid tumours. Histopathology 2010, 57, 716–724. [Google Scholar] [CrossRef] [Green Version]
- Staibano, S.; Mascolo, M.; Mancini, F.P.; Kisslinger, A.; Salvatore, G.; Di Benedetto, M.; Chieffi, P.; Altieri, V.; Prezioso, D.; Ilardi, G.; et al. Overexpression of chromatin assembly factor-1 (CAF-1) p60 is predictive of adverse behaviour of prostatic cancer. Histopathology 2009, 54, 580–589. [Google Scholar] [CrossRef]
- Mascolo, M.; Vecchione, M.L.; Ilardi, G.; Scalvenzi, M.; Molea, G.; Di Benedetto, M.; Nugnes, L.; Siano, M.; De Rosa, G.; Staibano, S. Overexpression of Chromatin Assembly Factor-1/p60 helps to predict the prognosis of melanoma patients. BMC Cancer 2010, 10, 63. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, E.; De Preter, K.; Capasso, M.; Chen, Z.; Hsu, D.M.; Tonini, G.P.; Lefever, S.; Hicks, J.; Versteeg, R.; Pession, A.; et al. Histone chaperone CHAF1A inhibits differentiation and promotes aggressive neuroblastoma. Cancer Res. 2014, 74, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Burgess, R.J.; Zhang, Z. Histone chaperones in nucleosome assembly and human disease. Nat. Struct. Mol. Biol. 2013, 20, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Tyler, J.K.; Collins, K.A.; Prasad-Sinha, J.; Amiott, E.; Bulger, M.; Harte, P.J.; Kobayashi, R.; Kadonaga, J.T. Interaction between the Drosophila CAF-1 and ASF1 Chromatin Assembly Factors. Mol. Cell. Biol. 2001, 21, 6574–6584. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; He, F.; Xie, G.; Guo, X.; Xu, Y.; Chen, Y.; Liang, X.; Stagljar, I.; Egli, D.; Ma, J.; et al. CAF-1 is essential for Drosophila development and involved in the maintenance of epigenetic memory. Dev. Biol. 2007, 311, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, P.D.; Kobayashi, R.; Stillman, B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 1997, 1, 345–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauer, P.V.; Timm, J.; Liu, D.; Sitbon, D.; Boeri-Erba, E.; Velours, C.; Mücke, N.; Langowski, J.; Ochsenbein, F.; Almouzni, G.; et al. Insights into the molecular architecture and histone H3-H4 deposition mechanism of yeast Chromatin assembly factor 1. eLife 2017, 6, e23474. [Google Scholar] [CrossRef]
- Mattiroli, F.; Gu, Y.; Balsbaugh, J.L.; Ahn, N.G.; Luger, K. The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1. Sci. Rep. 2017, 7, 46274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattiroli, F.; Gu, Y.; Yadav, T.; Balsbaugh, J.L.; Harris, M.R.; Findlay, E.S.; Liu, Y.; Radebaugh, C.A.; Stargell, L.A.; Ahn, N.G.; et al. DNA-mediated association of two histone-bound complexes of yeast Chromatin Assembly Factor-1 (CAF-1) drives tetrasome assembly in the wake of DNA replication. eLife 2017, 6, e22799. [Google Scholar] [CrossRef] [PubMed]
- Krawitz, D.C.; Kama, T.; Kaufman, P.D. Chromatin assembly factor I mutants defective for PCNA binding require Asf1/Hir proteins for silencing. Mol. Cell. Biol. 2002, 22, 614–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Shahar, T.R.; Castillo, A.G.; Osborne, M.J.; Borden, K.L.B.; Kornblatt, J.; Verreault, A. Two Fundamentally Distinct PCNA Interaction Peptides Contribute to Chromatin Assembly Factor 1 Function. Mol. Cell. Biol. 2009, 9, 6353–6365. [Google Scholar] [CrossRef] [Green Version]
- Moggs, J.G.; Grandi, P.; Quivy, J.-P.; Jónsson, Z.O.; Hübscher, U.; Becker, P.B.; Almouzni, G. A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage. Mol. Cell. Biol. 2000, 20, 1206–1218. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Gao, Y.; Li, J.; Burgess, R.; Han, J.; Liang, H.; Zhang, Z.; Liu, Y. A DNA binding winged helix domain in CAF-1 functions with PCNA to stabilize CAF-1 at replication forks. Nucleic Acids Res. 2016, 44, 5083–5094. [Google Scholar] [CrossRef] [Green Version]
- Panne, D.; Sauer, P.V.; Gu, Y.; Liu, W.H.; Mattiroli, F.; Luger, K.; Churchill, M.E.A. Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Res. 2018, 46, 9907–9917. [Google Scholar] [CrossRef] [Green Version]
- Pike, A.C.W.; Shrestha, B.; Popuri, V.; Burgess-Brown, N.; Muzzolini, L.; Costantini, S.; Vindigni, A.; Gileadi, O. Structure of the human RECQ1 helicase reveals a putative strand-separation pin. Proc. Natl. Acad. Sci. USA 2009, 106, 1039–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajiwala, K.S.; Chen, H.; Cornille, F.; Roques, B.P.; Reith, W.; Mach, B.; Burley, S.K. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 2000, 403, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Fraenkel, E.; Pabo, C.O.; Pavletich, N.P. Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev. 1999, 13, 666–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitano, K.; Kim, S.Y.; Hakoshima, T. Structural Basis for DNA Strand Separation by the Unconventional Winged-Helix Domain of RecQ Helicase WRN. Structure 2010, 18, 177–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.H.; Roemer, S.C.; Zhou, Y.; Shen, Z.-J.; Dennehey, B.K.; Balsbaugh, J.L.; Liddle, J.C.; Nemkov, T.; Ahn, N.G.; Hansen, K.C.; et al. The Cac1 subunit of histone chaperone CAF-1 organizes CAF-1-H3/H4 architecture and tetramerizes histones. eLife 2016, 5, 18023. [Google Scholar] [CrossRef]
- Chu, X.; Wang, Y.; Gan, L.; Bai, Y.; Han, W.; Wang, E.; Wang, J. Importance of electrostatic interactions in the association of intrinsically disordered histone chaperone Chz1 and histone H2A.Z-H2B. PLoS Comput. Biol. 2012, 8, e1002608. [Google Scholar] [CrossRef] [Green Version]
- Ramos, I.; Fernández-Rivero, N.; Arranz, R.; Aloria, K.; Finn, R.; Arizmendi, J.M.; Ausió, J.; Valpuesta, J.M.; Muga, A.; Prado, A. The intrinsically disordered distal face of nucleoplasmin recognizes distinct oligomerization states of histones. Nucleic Acids Res. 2014, 42, 1311–1325. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, P.D.; Kobayashi, R.; Kessler, N.; Stillman, B. The p150 and p60 subunits of chromatin assemblyfactor I: A molecular link between newly synthesized histories and DNA replication. Cell 1995, 81, 1105–1114. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Lin, W.; Zhang, C.K.; Xiong, H.; Fu, G.; Jin, W.R.; Chen, R.; Chen, Z.; Qi, Z.T.; Huang, G.M. Genomic sequence and expression analyses of human chromatin assembly factor 1 p150 gene. Gene 2001, 264, 187–196. [Google Scholar] [CrossRef]
- Keller, C.; Krude, T. Requirement of cyclin/Cdk2 and protein phosphatase 1 activity for chromatin assembly factor 1-dependent chromatin assembly during DNA synthesis. Biol. Chem. 2000, 275, 35512–35521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volk, A.; Crispino, J.D. The role of the chromatin assembly complex (CAF-1) and its p60 subunit (CHAF1b) in homeostasis and disease. Biochim. Biophys. Acta-Gene Regul. Mech. 2015, 1849, 979–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiru, A.; Nietlispach, D.; Mott, H.R.; Okuwaki, M.; Lyon, D.; Nielsen, P.R.; Hirshberg, M.; Verreault, A.; Murzina, N.V.; Laue, E.D. Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J. 2004, 23, 489–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomberk, G.; Wallrath, L.L.; Urrutia, R. The Heterochromatin Protein 1 family. Genome Biol. 2006, 7, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reese, B.E.; Bachman, K.E.; Baylin, S.B.; Rountree, M.R. The Methyl-CpG Binding Protein MBD1 Interacts with the p150 Subunit of Chromatin Assembly Factor 1. Mol. Cell. Biol. 2003, 23, 3226–3236. [Google Scholar] [CrossRef] [Green Version]
- Geiss-Friedlander, R.; Melchior, F. Concepts in sumoylation: A decade on. Nat. Rev. Mol. Cell Biol. 2007, 8, 947–956. [Google Scholar] [CrossRef]
- Shibahara, K.I.; Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 1999, 96, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, V.; Finch, J.T.; Graziano, V.; Lee, P.L.; Sweet, R.M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 1993, 362, 219–223. [Google Scholar] [CrossRef]
- Clark, K.L.; Halay, E.D.; Lai, E.; Burley, S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 1993, 364, 412–420. [Google Scholar] [CrossRef]
- Over, R.S.; Michaels, S.D. Open and closed: The roles of linker histones in plants and animals. Mol. Plant 2014, 7, 481–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, T.S.; Sato, Y.; Yamagata, A.; Goto-Ito, S.; Saijo, M.; Fukai, S. Structural basis of ubiquitin recognition by the winged-helix domain of Cockayne syndrome group B protein. Nucleic Acids Res. 2019, 47, 3784–3794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.-D.; Jeng, J.-C.; Wang, C.-F.; Wang, S.-C.; Chang, S.-T. Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase. Protein Sci. 2004, 13, 1802–1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirel, P.H.; Schmitter, J.M.; Dessen, P.; Fayat, G.; Blanquet, S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl. Acad. Sci. USA 1989, 86, 8247–8251. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, T.K.; Horii, K.; Yoda, T.; Arai, M.; Nagata, S.; Terada, T.P.; Uchiyama, H.; Ikura, T.; Tsumoto, K.; Kataoka, H.; et al. Effect of the extra N-terminal methionine residue on the stability and folding of recombinant α-lactalbumin expressed in Escherichia coli. J. Mol. Biol. 1999, 285, 1179–1194. [Google Scholar] [CrossRef] [Green Version]
- Janes, R.W. PDB2CD visualises dynamics within protein structures. Eur. Biophys. J. 2017, 46, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Teichmann, M.; Dumay-Odelot, H.; Fribourg, S. Structural and functional aspects of winged-helix domains at the core of transcription initiation complexes. Transcription 2012, 3, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Bulatov, E.; Martin, E.M.; Chatterjee, S.; Knebel, A.; Shimamura, S.; Konijnenberg, A.; Johnson, C.; Zinn, N.; Grandi, P.; Sobott, F.; et al. Biophysical studies on interactions and assembly of full-size E3 ubiquitin ligase: Suppressor of cytokine signaling 2 (SOCS2)-elongin BC-cullin 5-ring box protein 2 (RBX2). J. Biol. Chem. 2015, 290, 4178–4191. [Google Scholar] [CrossRef] [Green Version]
- Ceschini, S.; Lupidi, G.; Coletta, M.; Pon, C.L.; Fioretti, E.; Angeletti, M. Multimeric self-assembly equilibria involving the histone-like protein H-NS. A thermodynamic study. J. Biol. Chem. 2000, 275, 729–734. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela-Soto, E.M.; Velasco-García, R.; Mújica-Jiménez, C.; Gaviria-González, L.L.; Muñoz-Clares, R.A. Monovalent cations requirements for the stability of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa, porcine kidney and amaranth leaves. Chem.-Biol. Interact. 2003, 143–144, 139–148. [Google Scholar] [CrossRef]
- Groth, A.; Rocha, W.; Verreault, A.; Almouzni, G. Chromatin Challenges during DNA Replication and Repair. Cell 2007, 128, 721–733. [Google Scholar] [CrossRef] [Green Version]
- Hoek, M.; Stillman, B. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc. Natl. Acad. Sci. USA 2003, 100, 12183–12188. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wan, B.; Wang, K.C.; Cao, F.; Yang, Y.; Protacio, A.; Dou, Y.; Chang, H.Y.; Lei, M. Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding. EMBO Rep. 2011, 12, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Littler, D.R.; Alvarez-Fernández, M.; Stein, A.; Hibbert, R.G.; Heidebrecht, T.; Aloy, P.; Medema, R.H.; Perrakis, A. Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Res. 2010, 38, 4527–4538. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Huang, H.; Zhou, B.O.; Wang, S.S.; Hu, Y.; Li, X.; Liu, J.; Zang, J.; Niu, L.; Wu, J.; et al. Structural analysis of Rtt106p reveals a DNA binding role required for heterochromatin silencing. J. Biol. Chem. 2010, 285, 4251–4262. [Google Scholar] [CrossRef] [Green Version]
- Hooft, R.W.W.; Vriend, G.; Sander, C.; Abola, E.E. Errors in protein structures. Nature 1996, 381, 272–272. [Google Scholar] [CrossRef] [PubMed]
- Ascione, G.; de Pascale, D.; De Santi, C.; Pedone, C.; Dathan, N.A.; Monti, S.M. Native expression and purification of hormone-sensitive lipase from Psychrobacter sp. TA144 enhances protein stability and activity. Biochem. Biophys. Res. Commun. 2012, 420, 542–546. [Google Scholar] [CrossRef]
- Buonanno, M.; Langella, E.; Zambrano, N.; Succoio, M.; Sasso, E.; Alterio, V.; Di Fiore, A.; Sandomenico, A.; Supuran, C.T.; Scaloni, A.; et al. Disclosing the Interaction of Carbonic Anhydrase IX with Cullin-Associated NEDD8-Dissociated Protein 1 by Molecular Modeling and Integrated Binding Measurements. ACS Chem. Biol. 2017, 12, 1460–1465. [Google Scholar] [CrossRef] [PubMed]
- Langella, E.; Buonanno, M.; Vullo, D.; Dathan, N.; Leone, M.; Supuran, C.T.; De Simone, G.; Monti, S.M. Biochemical, biophysical and molecular dynamics studies on the proteoglycan-like domain of carbonic anhydrase IX. Cell. Mol. Life Sci. 2018, 75, 3283–3296. [Google Scholar] [CrossRef] [PubMed]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef] [PubMed]
Name of the Construct | Primers (F: Forward; R: Reverse) | |
---|---|---|
P150721–860 | F | CGCGCGCCATGGGCCAGACCCCGAAAGCAAGC |
R | CGCGCGCTCGAGACCGGTGCTCGGAACG | |
P150575–860 | F | CGCGCGCCATGGGCAACAAAAAAACCGCACTGATTCGTG |
R | CGCGCGCTCGAGACCGGTGCTCGGAACG |
DNA Length | Sequence (5′-3′) |
---|---|
16 bp | TGCTACCGATCGATAC |
16 bp GC rich | ATCGCCCGCGCACGCA |
16 bp AT rich | ATAATCGATATTCGTT |
58 bp | ATACATTTTATGACTGGAAACTTTTTTGTACAA CACTCCAATAAACATTTTGATTTTA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayoub, J.; Buonanno, M.; Di Fiore, A.; De Simone, G.; Monti, S.M. Biochemical and Structural Insights into the Winged Helix Domain of P150, the Largest Subunit of the Chromatin Assembly Factor 1. Int. J. Mol. Sci. 2022, 23, 2160. https://doi.org/10.3390/ijms23042160
Ayoub J, Buonanno M, Di Fiore A, De Simone G, Monti SM. Biochemical and Structural Insights into the Winged Helix Domain of P150, the Largest Subunit of the Chromatin Assembly Factor 1. International Journal of Molecular Sciences. 2022; 23(4):2160. https://doi.org/10.3390/ijms23042160
Chicago/Turabian StyleAyoub, Joëlle, Martina Buonanno, Anna Di Fiore, Giuseppina De Simone, and Simona Maria Monti. 2022. "Biochemical and Structural Insights into the Winged Helix Domain of P150, the Largest Subunit of the Chromatin Assembly Factor 1" International Journal of Molecular Sciences 23, no. 4: 2160. https://doi.org/10.3390/ijms23042160
APA StyleAyoub, J., Buonanno, M., Di Fiore, A., De Simone, G., & Monti, S. M. (2022). Biochemical and Structural Insights into the Winged Helix Domain of P150, the Largest Subunit of the Chromatin Assembly Factor 1. International Journal of Molecular Sciences, 23(4), 2160. https://doi.org/10.3390/ijms23042160