Surface-Enhanced Raman Scattering from Dye Molecules in Silicon Nanowire Structures Decorated by Gold Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemistry and Materials
3.2. MACE Formation of SiNWs
3.3. Preparation of SiNW:Au-NP Structures
3.4. Adsorption of Dye Molecules on SERS Substrates
3.5. Measurement Techniques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Aroca, R. Surface-Enhanced Vibrational Spectroscopy; John Wiley & Sons, Ltd.: Chicester, UK, 2006. [Google Scholar]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, H.H.; Vaan, S.T.; Wershan, C.; Jiang, Z.; Shuang, L.; Cuong, T.; Xinbo, Z. Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Biores. Technol. 2015, 182, 353–363. [Google Scholar] [CrossRef]
- Park, I.; Li, Z.; Pisano, A.B.; Williams, R.S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 2009, 21, 015501. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Jiang, H.; Zhang, S.; Yang, W.; Zhang, Y.; Wang, Z.; Chen, J. High roughness gold nanoparticles/silver nanowires composites: Fabrication, characterization and ultrasensitive SERS detection towards Rhodamine B. Microchem. J. 2020, 158, 105136. [Google Scholar] [CrossRef]
- Ouhibi, A.; Raouafi, A.; Lorrain, N.; Guendouz, M.; Raouafi, N.; Moadhen, A. Functionalized SERS substrate based on silicon nanowires for rapid detection of prostate specific antigen. Sens. Actuat. B Chem. 2021, 330, 129352. [Google Scholar] [CrossRef]
- Luo, S.C.; Sivashanmugan, K.; Liao, J.D.; Yao, C.K.; Peng, H.C. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosens. Bioelectron 2014, 61, 232–240. [Google Scholar] [CrossRef]
- Sudhir, C. Surface-enhanced Raman spectroscopy for biomedical applications: A review. Sensors & Transduc. 2016, 197, 1–13. [Google Scholar]
- Tahir, A.M.; Dina, N.E.; Cheng, H.; Valev, V.K.; Zhang, L. Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. Nanoscale 2021, 13, 11593–11634. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Shen, Y.; Xie, A. An assembled ordered W18O49 nanowire film with high SERS sensitivity and stability for the detection of RB. Appl. Surf. Sci. 2020, 504, 144073. [Google Scholar] [CrossRef]
- Kamińska, A.; Szymborski, T.; Jaroch, T.; Zmysłowski, A.; Szterk, A. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis. Mat. Sci. Engin. C 2018, 84, 208–217. [Google Scholar] [CrossRef]
- Aitekenov, S.; Abdirova, P.; Yussupova, L.; Sultangaziyev, A.; Gaipov, A.; Utegulov, Z.; Bukasov, R. Raman, Infrared and Brillouin spectroscopies of biofluids for medical diagnostics and for detection of biomarkers. Crit. Rev. Anal. Chem. 2022, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.L.; Kim, S.A.; Utegulov, Z.N.; Shaw, J.M.; Draine, B.T. Optimization of arrays of gold nanodisks for plasmon-mediated Brillouin light scattering. J. Phys. Chem. C 2009, 113, 14651–14657. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Wang, S.; Wang, L.; Yan, Z.; Yi, H.; Zhang, D.; Shen, G.; Ma, Y. Fluorescent aptasensor for carbendazim detection in aqueous samples based on gold nanoparticles quenching Rhodamine B. Spectrochim. Acta Part. A Molec. Biomolec. Spectr. 2020, 225, 117511. [Google Scholar] [CrossRef]
- Roy, A.; Chini, T.K.; Satpati, B.A. A simple method of growing endotaxial silver nanostructures on silicon for applications in surface enhanced Raman scattering (SERS). Appl. Surf. Sci. 2020, 501, 144225. [Google Scholar] [CrossRef]
- Kornilova, A.V.; Novikov, S.M.; Kuralbayeva, G.A.; Jana, S.; Lysenko, I.V.; Shpichka, A.I.; Stavitskaya, A.V.; Gorbachevskii, M.V.; Novikov, A.A.; Ikramova, S.B.; et al. Timoshenko. Halloysite nanotubes with immobilized plasmonic nanoparticles for biophotonic applications. Appl. Sci. 2021, 11, 4565. [Google Scholar] [CrossRef]
- Laurence, T.A.; Braun, G.; Talley, C.; Schwartzberg, A.; Moskovits, M.; Reich, N.; Huser, T. Rapid, Solution-Based Characterization of Optimized SERS Nanoparticle Substrates. J. Am. Chem. Soc. 2009, 131, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Gonchar, K.A.; Agafilushkina, S.N.; Moiseev, D.V.; Bozhev, I.V.; Manykin, A.A.; Kropotkina, E.A.; Gambaryan, A.S.; Osminkina, L.A. H1N1 influenza virus interaction with a porous layer of silicon nanowires. Mat. Res. Express 2020, 7, 035002. [Google Scholar] [CrossRef]
- Jabbar, A.A.; Alwan, A.M.; Zayer, M.Q.; Bohan, A.J. Efficient single cell monitoring of pathogenic bacteria using bimetallic nanostructures embedded in gradient porous silicon. Mat. Chem. Phys. 2020, 241, 122359. [Google Scholar] [CrossRef]
- Rani, S.; Shukla, A.K. Investigation of silver decorated silicon nanowires as ultrasensitive and cost-effective surface-enhanced Raman substrate. Thin Solid Films 2021, 723, 138595. [Google Scholar] [CrossRef]
- Jian, H.; Dayan, M.; Kewei, X. Growth and morphology modulation of needle-like silicon nanowires for SERS application. Rare Metal Mater. Eng. 2015, 44, 2692–2697. [Google Scholar] [CrossRef]
- Powell, J.A.; Venkatakrishnan, K.; Tan, B. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial. Sci. Rep. 2016, 6, 19663. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Chinh Vu, D.; Hai Pham, V.; Binh Pham, T.; Hoi Pham, V.; Bui, H. Improvement of SERS for detection of ultra-low concentration of methyl orange by nanostructured silicon decorated with Ag nanoparticles. Optik 2021, 231, 166431. [Google Scholar] [CrossRef]
- He, Y.; Su, S.; Xu, T.; Zhong, Y.; Zapien, J.A.; Li, J.; Fan, C.; Lee, S. Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 2011, 6, 122–130. [Google Scholar] [CrossRef]
- Hong, L.; Wang, X.; Zheng, H.; Wang, X.; Yu, X. Design guidelines for slanting silicon nanowire arrays for solar cell application. J. Appl. Phys. 2013, 114, 084303. [Google Scholar] [CrossRef]
- Amdouni, S.; Cherifi, Y.; Coffinier, Y.; Addad, A.; Zaïbi, M.; Oueslati, M.; Boukherroub, R. Gold nanoparticles coated silicon nanowires for efficient catalytic and photocatalytic applications. Mat. Sci. Semicond. Process. 2018, 75, 206–213. [Google Scholar] [CrossRef]
- Abdul Rashid, J.I.; Abdullah, J.; Yusof, N.A.; Hajian, R. The development of silicon nanowire as sensing material and its applications. J. Nanomat. 2013, 2013, 14. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.; Su, Y.; Ji, X.; Zhong, Y.; Wei, X.; He, Y. Doxorubicin-loaded silicon nanowires for the treatment of drug-resistant cancer cells. Biomaterials 2014, 35, 5188–5195. [Google Scholar] [CrossRef]
- Wu, J.Y.; Tseng, C.L.; Wang, Y.K.; Yu, Y.; Ou, K.L.; Wu, C.C. Detecting interleukin-1β genes using a N2O plasma modified silicon nanowire biosensor. J. Exp. Clin. Medic. 2013, 5, 12–16. [Google Scholar] [CrossRef]
- Rajkumar, K.; Rajendrakumar, R.T. Fabrication and electrowetting properties of poly Si nanostructure based superhydrophobic platform. Plasma Chem. Plasma Proc. 2013, 33, 807–816. [Google Scholar] [CrossRef]
- Pan, H.; Lim, S.; Poh, C.; Sun, H.; Wu, X.; Feng, Y.; Lin, J. Growth of Si nanowires by thermal evaporation. Nanotechnology 2005, 16, 417. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, S.J.; Chiu, H.S.; Lin, P.I.; Chen, Y.T. Catalytic growth of silicon nanowires assisted by laser ablation. J. Phys. Chem. B 2004, 108, 846–852. [Google Scholar] [CrossRef]
- Mrazkova, Z.; Foldyna, M.; Misra, S.; Al-Ghzaiwat, M.; Postava, K.; Pištora, J.; Roca i Cabarrocas, P. In-situ Mueller matrix ellipsometry of silicon nanowires grown by plasma-enhanced vapor-liquid-solid method for radial junction solar cells. Appl. Surf. Sci. 2017, 421, 667–673. [Google Scholar] [CrossRef]
- Ng, R.M.Y.; Wang, T.; Liu, F.; Zuo, X.; He, J.; Chan, M. Vertically stacked silicon nanowire transistors fabricated by inductive plasma etching and stress-limited oxidation. IEEE Electr. Dev. Lett. 2009, 30, 520–522. [Google Scholar] [CrossRef]
- Schmidt, V.; Wittemann, J.V.; Senz, S.; Gösele, U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mat. 2009, 21, 2681–2702. [Google Scholar] [CrossRef]
- He, X.; Li, S.; Ma, W.; Ding, Z.; Yu, J.; Qin, B.; Yang, J.; Zou, Y.X.; Qiu, J. A simple and low-cost chemical etching method for controllable fabrication of large-scale kinked silicon nanowires. Mat. Lett. 2017, 196, 269–272. [Google Scholar] [CrossRef]
- Lam, N.T.N. Cong, L.T.; Giang, N.T.; Kien, P.T.; Dung, N.D.; Ha, N.N. N-type silicon nanowires prepared by silver metal-assisted chemical etching: Fabrication and optical properties. Mat. Sci. Semicond. Proc. 2019, 90, 198–204. [Google Scholar] [CrossRef]
- Sun, X.; Tao, R.; Lin, L.; Li, Z.; Zhang, Z.; Feng, J. Fabrication and characterization of polycrystalline silicon nanowires with silver-assistance by electroless deposition. Appl. Surf. Sci. 2011, 257, 3861–3866. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chen, C.M.; Chou, C.M. A facile self-deposition of Ag nanosheets on silicon substrates for high-performance SERS sensing. Opt. Mat. 2021, 111, 110609. [Google Scholar] [CrossRef]
- Abdolirad, M.; Khalilzadeh, R.; Alijanianzadeh, M. Growth of silicon nanowires from bio-templated gold nanoparticles. Superlatt. Microstruct. 2018, 120, 370–376. [Google Scholar] [CrossRef]
- Coluccio, M.L.; Vitis, S.D.; Strumbo, G.; Candeloro, P.; Perozziello, G.; Di Fabrizio, E.; Gentile, F. Inclusion of gold nanoparticles in meso-porous silicon for the SERS analysis of cell adhesion on nano-structured surfaces. Microelectr. Eng. 2016, 158, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Dridi, H.; Haji, L.; Moadhen, A. Studies of SERS efficiency of gold coated porous silicon formed on rough silicon backside. Appl. Surf. Sci. 2017, 426, 1190–1197. [Google Scholar] [CrossRef]
- Wang, J.; Jia, Z.; Lv, C. Enhanced Raman scattering in porous silicon grating. Opt. Express 2018, 26, 6507–6518. [Google Scholar] [CrossRef] [PubMed]
- Alwan, A.M.; Naseef, I.A.; Dheyab, A.B. Well controlling of plasmonic features of gold nanoparticles on macro porous silicon substrate by HF Acid concentration. Plasmonics 2018, 13, 2037–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Dykes, J.; Chopra, N. Silicon nanowire-gold nanoparticle heterostructures for Surface-enhanced Raman Spectroscopy. Nano-Struct. Nano-Objects 2016, 7, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.D.; Ghosh, M.; Chowdhury, J. Adsorptive parameters and influence of hot geometries on the SER(R) S spectra of methylene blue molecules adsorbed on gold nanocolloidal particles. J. Ram. Spectr. 2015, 46, 451–461. [Google Scholar] [CrossRef]
- Zhang, L.; Dang, F.; Ding, W.; Zhu, L. Quantitative study of meso-damage process on concrete by CT technology and improved differential box counting method. Measurement 2020, 160, 107832. [Google Scholar] [CrossRef]
- Osminkina, L.A.; Gonchar, K.A.; Marshov, V.S.; Bunkov, K.V.; Petrov, D.V.; Golovan, L.A.; Talkenberg, F.; Sivakov, V.A.; Timoshenko, V.Y. Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: Evidences for light localization effect. Nanosc. Res. Lett. 2012, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Pahang, F.; Parvin, P.; Ghafoori-Fard, H.; Bavali, A.; Moafi, A. Fluorescence properties of methylene blue molecules coupled with metal oxide nanoparticles Fluorescence. OSA Contin. 2020, 3, 688–697. [Google Scholar] [CrossRef]
- Liao, W.; Liu, K.; Chen, Y.; Hu, J.; Gan, Y. Au–Ag bimetallic nanoparticles decorated silicon nanowires with fixed and dynamic hot spots for ultrasensitive 3D SERS sensing. J. Alloys Comp. 2021, 868, 159136. [Google Scholar] [CrossRef]
Frequency (cm−1) | Assignment | Enhancement Factor (104) | ||
---|---|---|---|---|
P = 55% | P = 72% | P = 83% | ||
450 | α (C―N―C)AMG | 5.33 | 3.10 | 0.86 |
500 | α (C―N―C)AMG | 2.92 | 1.45 | 0.50 |
595 | α (C―N―C)AMG | 1.52 | 0.89 | 0.32 |
669 | α (C―C―C)Ring | 1.01 | 0.45 | 0.21 |
769 | ν (C―N)AMG α (C―N―C)Ring | 3.09 | 1.27 | 0.60 |
874 | α (C―C―C)Ring | 1.75 | 1.02 | 0.41 |
949 | ρ (CH2); β (CH) | 3.74 | 1.67 | 0.77 |
1035 | β (CH); ν (C-S) | 1.12 | 0.58 | 0.22 |
1181 | ρ (CH3); β (CH) | 2.06 | 0.78 | 0.34 |
1301 | β (CH); ν (C―N)Ring | 2.27 | 0.94 | 0.39 |
1392 | ν(C9―N10); ν(C3―N2) | 6.3 | 2.78 | 1.09 |
1444 | α(N―C―H)AMG ν(C―C)Ring/ν(C―C)Ring | 16.68 | 7.96 | 2.89 |
1625 | {ν(C―C)/ν(C―N)}Ring | 6.13 | 2.58 | 1.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikramova, S.B.; Utegulov, Z.N.; Dikhanbayev, K.K.; Gaipov, A.E.; Nemkayeva, R.R.; Yakunin, V.G.; Savinov, V.P.; Timoshenko, V.Y. Surface-Enhanced Raman Scattering from Dye Molecules in Silicon Nanowire Structures Decorated by Gold Nanoparticles. Int. J. Mol. Sci. 2022, 23, 2590. https://doi.org/10.3390/ijms23052590
Ikramova SB, Utegulov ZN, Dikhanbayev KK, Gaipov AE, Nemkayeva RR, Yakunin VG, Savinov VP, Timoshenko VY. Surface-Enhanced Raman Scattering from Dye Molecules in Silicon Nanowire Structures Decorated by Gold Nanoparticles. International Journal of Molecular Sciences. 2022; 23(5):2590. https://doi.org/10.3390/ijms23052590
Chicago/Turabian StyleIkramova, Saltanat B., Zhandos N. Utegulov, Kadyrjan K. Dikhanbayev, Abduzhappar E. Gaipov, Renata R. Nemkayeva, Valery G. Yakunin, Vladimir P. Savinov, and Victor Yu Timoshenko. 2022. "Surface-Enhanced Raman Scattering from Dye Molecules in Silicon Nanowire Structures Decorated by Gold Nanoparticles" International Journal of Molecular Sciences 23, no. 5: 2590. https://doi.org/10.3390/ijms23052590
APA StyleIkramova, S. B., Utegulov, Z. N., Dikhanbayev, K. K., Gaipov, A. E., Nemkayeva, R. R., Yakunin, V. G., Savinov, V. P., & Timoshenko, V. Y. (2022). Surface-Enhanced Raman Scattering from Dye Molecules in Silicon Nanowire Structures Decorated by Gold Nanoparticles. International Journal of Molecular Sciences, 23(5), 2590. https://doi.org/10.3390/ijms23052590