The Rationale for the Dual-Targeting Therapy for RSK2 and AKT in Multiple Myeloma
Abstract
:1. Introduction
2. Results
2.1. Effects of BI-D1870 and Ipatasertib in 6 Human Myeloma Cell Lines (HMCLs)
2.2. The Combinatory Anti-Tumor Effect of BI-D1870 and Ipatasertib on HMCLs with Active RSK2-NTKD and AKT
2.3. Mechanisms of Apoptosis Induced by the Combination of BI-D1870 and Ipatasertib in HMCLs
2.4. Molecular Effects Induced by the Dual Blockade of RSK2-NTKD and AKT
3. Discussion
4. Materials and Methods
4.1. Cells and Reagents
4.2. Cell Proliferation Assay
4.3. Analysis of Cell Cycle and Detection of Apoptosis
4.4. Caspase Assay
4.5. WB Analysis
4.6. qRT-PCR
4.7. Microarray Analysis and GSEA
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kazandjian, D. Multiple myeloma epidemiology and survival: A unique malignancy. Semin. Oncol. 2016, 43, 676–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolli, N.; Avet-Loiseau, H.; Wedge, D.C.; Van Loo, P.; Alexandrov, L.B.; Martincorena, I.; Dawson, K.J.; Iorio, F.; Nik-Zainal, S.; Bignell, G.R.; et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat. Commun. 2014, 5, 2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barwick, B.G.; Gupta, V.A.; Vertino, P.M.; Boise, L.H. Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma. Front. Immunol. 2019, 10, 1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Rodríguez, E.; Álvarez-Fernández, S.; Chen, X.; Paiva, B.; López-Pérez, R.; García-Hernández, J.L.; San Miguel, J.F.; Pandiella, A. Deficient spindle assembly checkpoint in multiple myeloma. PLoS ONE 2011, 6, e27583. [Google Scholar]
- Fujibayashi, Y.; Isa, R.; Nishiyama, D.; Sakamoto-Inada, N.; Kawasumi, N.; Yamaguchi, J.; Kuwahara-Ota, S.; Matsumura-Kimoto, Y.; Tsukamoto, T.; Chinen, Y.; et al. Aberrant BUB1 Overexpression Promotes Mitotic Segregation Errors and Chromosomal Instability in Multiple Myeloma. Cancers 2020, 12, 2206. [Google Scholar] [CrossRef]
- Furukawa, Y.; Kikuchi, J. Molecular basis of clonal evolution in multiple myeloma. Int. J. Hematol. 2020, 111, 496–511. [Google Scholar] [CrossRef] [Green Version]
- Hoang, P.H.; Cornish, A.J.; Dobbins, S.E.; Kaiser, M.; Houlston, R.S. Mutational processes contributing to the development of multiple myeloma. Blood Cancer J. 2019, 9, 60. [Google Scholar] [CrossRef]
- Hoang, P.H.; Cornish, A.J.; Sherborne, A.L.; Chubb, D.; Kimber, S.; Jackson, G.; Morgan, G.J.; Cook, G.; Kinnersley, B.; Kaiser, M.; et al. An enhanced genetic model of relapsed IGH-translocated multiple myeloma evolutionary dynamics. Blood Cancer J. 2020, 10, 101. [Google Scholar] [CrossRef]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Ashby, T.C.; Bauer, M.; Davies, F.; Rosenthal, A.; Wang, H.; Qu, P.; Hoering, A.; et al. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia 2019, 33, 159–170. [Google Scholar] [CrossRef]
- Awada, H.; Thapa, B.; Awada, H.; Dong, J.; Gurnari, C.; Hari, P.; Dhakal, B. A Comprehensive Review of the Genomics of Multiple Myeloma: Evolutionary Trajectories, Gene Expression Profiling, and Emerging Therapeutics. Cells 2021, 10, 1961. [Google Scholar] [CrossRef]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Ashby, T.C.; Bauer, M.; Davies, F.E.; Rosenthal, A.; Wang, H.; Qu, P.; Hoering, A.; et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood 2018, 132, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Ziccheddu, B.; Biancon, G.; Bagnoli, F.; De Philippis, C.; Maura, F.; Rustad, E.H.; Dugo, M.; Devecchi, A.; De Cecco, L.; Sensi, M.; et al. Integrative analysis of the genomic and transcriptomic landscape of double-refractory multiple myeloma. Blood Adv. 2020, 4, 830–844. [Google Scholar] [CrossRef] [PubMed]
- Van Nieuwenhuijzen, N.; Spaan, I.; Raymakers, R.; Peperzak, V. From MGUS to Multiple Myeloma, a Paradigm for Clonal Evolution of Premalignant Cells. Cancer Res. 2018, 78, 2449–2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montel, R.A.; Gregory, M.; Chu, T.; Cottrell, J.; Bitasktsis, C.; Chang, S.L. Genetic variants as biomarkers for progression and resistance in multiple myeloma. Cancer Genet. 2021, 252, 1–5. [Google Scholar] [CrossRef]
- Mishima, Y.; Mishima, Y.; Shirouchi, Y.; Nishimura, N.; Yokoyama, M.; Okabe, T.; Inoue, N.; Uryu, H.; Fukuta, T.; Hatake, K.; et al. The clonal evolution during long-term clinical course of multiple myeloma. Int. J. Hematol. 2021, 113, 279–284. [Google Scholar] [CrossRef]
- Dehghanifard, A.; Kaviani, S.; Abroun, S.; Mehdizadeh, M.; Saiedi, S.; Maali, A.; Ghaffari, S.; Azad, M. Various Signaling Pathways in Multiple Myeloma Cells and Effects of Treatment on These Pathways. Clin. Lymphoma Myeloma Leuk. 2018, 18, 311–320. [Google Scholar] [CrossRef]
- Saltarella, I.; Lamanuzzi, A.; Apollonio, B.; Desantis, V.; Bartoli, G.; Vacca, A.; Frassanito, M.A. Role of Extracellular Vesicle-Based Cell-to-Cell Communication in Multiple Myeloma Progression. Cells 2021, 10, 3185. [Google Scholar] [CrossRef]
- Solimando, A.G.; Da Vià, M.C.; Leone, P.; Borrelli, P.; Croci, G.A.; Tabares, P.; Brandl, A.; Di Lernia, G.; Bianchi, F.P.; Tafuri, S.; et al. Halting the vicious cycle within the multiple myeloma ecosystem: Blocking JAM-A on bone marrow endothelial cells restores angiogenic homeostasis and suppresses tumor progression. Haematologica 2021, 106, 1943–1956. [Google Scholar] [CrossRef]
- Giannakoulas, N.; Ntanasis-Stathopoulos, I.; Terpos, E. The Role of Marrow Microenvironment in the Growth and Development of Malignant Plasma Cells in Multiple Myeloma. Int. J. Mol. Sci. 2021, 22, 4462. [Google Scholar] [CrossRef]
- Tamura, H. Immunopathogenesis and immunotherapy of multiple myeloma. Int. J. Hematol. 2018, 107, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Botta, C.; Mendicino, F.; Martino, E.A.; Vigna, E.; Ronchetti, D.; Correale, P.; Morabito, F.; Neri, A.; Gentile, M. Mechanisms of Immune Evasion in Multiple Myeloma: Open Questions and Therapeutic Opportunities. Cancers 2021, 13, 3213. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Gao, Q.; Foltz, S.M.; Fowles, J.S.; Yao, L.; Wang, J.T.; Cao, S.; Sun, H.; Wendl, M.C.; Sethuraman, S.; et al. Co-evolution of tumor and immune cells during progression of multiple myeloma. Nat. Commun. 2021, 12, 2559. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara-Ota, S.; Shimura, Y.; Steinebach, C.; Isa, R.; Yamaguchi, J.; Nishiyama, D.; Fujibayashi, Y.; Takimoto-Shimomura, T.; Mizuno, Y.; Matsumura-Kimoto, Y.; et al. Lenalidomide and pomalidomide potently interfere with induction of myeloid-derived suppressor cells in multiple myeloma. Br. J. Haematol. 2020, 191, 784–795. [Google Scholar] [CrossRef]
- Görgün, G.T.; Whitehill, G.; Anderson, J.L.; Hideshima, T.; Maguire, C.; Laubach, J.; Raje, N.; Munshi, N.C.; Richardson, P.G.; Anderson, K.C. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 2013, 121, 2975–2987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, M.; Nandakumar, B.; Rajkumar, S.V.; Kapoor, P.; Buadi, F.K.; Dingli, D.; Lacy, M.Q.; Gertz, M.A.; Hayman, S.R.; Leung, N.; et al. Mortality trends in multiple myeloma after the introduction of novel therapies in the United States. Leukemia 2021. in print. [Google Scholar] [CrossRef] [PubMed]
- Thorsteinsdottir, S.; Dickman, P.W.; Landgren, O.; Blimark, C.; Hultcrantz, M.; Turesson, I.; Björkholm, M.; Kristinsson, S.Y. Dramatically improved survival in multiple myeloma patients in the recent decade: Results from a Swedish population-based study. Haematologica 2018, 103, e412–e415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleber, M.; Ntanasis-Stathopoulos, I.; Terpos, E. BCMA in Multiple Myeloma-A Promising Key to Therapy. J. Clin. Med. 2021, 10, 4088. [Google Scholar] [CrossRef]
- Zanwar, S.; Nandakumar, B.; Kumar, S. Immune-based therapies in the management of multiple myeloma. Blood Cancer J. 2020, 10, 84. [Google Scholar] [CrossRef]
- Chinen, Y.; Kuroda, J.; Shimura, Y.; Nagoshi, H.; Kiyota, M.; Yamamoto-Sugitani, M.; Mizutani, S.; Sakamoto, N.; Ri, M.; Kawatam, E.; et al. Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma. Cancer Res. 2014, 74, 7418–7429. [Google Scholar] [CrossRef] [Green Version]
- Tatekawa, S.; Chinen, Y.; Ri, M.; Narita, T.; Shimura, Y.; Matsumura-Kimoto, Y.; Tsukamoto, T.; Kobayashi, T.; Kawata, E.; Uoshima, N.; et al. Epigenetic repression of miR-375 is the dominant mechanism for constitutive activation of the PDPK1/RPS6KA3 signalling axis in multiple myeloma. Br. J. Haematol. 2017, 178, 534–546. [Google Scholar] [CrossRef]
- Calleja, V.; Laguerre, M.; de Las Heras-Martinez, G.; Parker, P.J.; Requejo-Isidro, J.; Larijani, B. Acute regulation of PDK1 by a complex interplay of molecular switches. Biochem. Soc. Trans. 2014, 42, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Shimura, Y.; Kuroda, J.; Ri, M.; Nagoshi, H.; Yamamoto-Sugitani, M.; Kobayashi, T.; Kiyota, M.; Nakayama, R.; Mizutani, S.; Chinen, Y.; et al. RSK2(Ser227) at N-terminal kinase domain is a potential therapeutic target for multiple myeloma. Mol. Cancer Ther. 2012, 11, 2600–2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumura-Kimoto, Y.; Tsukamoto, T.; Shimura, Y.; Chinen, Y.; Tanba, K.; Kuwahara-Ota, S.; Fujibayashi, Y.; Nishiyama, D.; Isa, R.; Yamaguchi, J.; et al. Serine-227 in the N-terminal kinase domain of RSK2 is a potential therapeutic target for mantle cell lymphoma. Cancer Med. 2020, 9, 5185–5199. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Jiang, J.; Lin, L.; Cheng, S.; Xin, D.; Jiang, W.; Shen, J.; Hu, Z. Downregulation of RSK2 influences the biological activities of human osteosarcoma cells through inactivating AKT/mTOR signaling pathways. Int. J. Oncol. 2016, 48, 2508–2520. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.F.; Kong, F.L. Akt regulates RSK2 to alter phosphorylation level of H2A.X in breast cancer. Oncol. Lett. 2021, 21, 187. [Google Scholar] [CrossRef]
- Steinbrunn, T.; Stühmer, T.; Gattenlöhner, S.; Rosenwald, A.; Mottok, A.; Unzicker, C.; Einsele, H.; Chatterjee, M.; Bargou, R.C. Mutated RAS and constitutively activated Akt delineate distinct oncogenic pathways, which independently contribute to multiple myeloma cell survival. Blood 2011, 117, 1998–2004. [Google Scholar] [CrossRef] [Green Version]
- John, L.; Krauth, M.T.; Podar, K.; Raab, M.S. Pathway-Directed Therapy in Multiple Myeloma. Cancers 2021, 13, 1668. [Google Scholar] [CrossRef]
- Lind, J.; Czernilofsky, F.; Vallet, S.; Podar, K. Emerging protein kinase inhibitors for the treatment of multiple myeloma. Expert Opin. Emerg. Drugs 2019, 24, 133–152. [Google Scholar] [CrossRef]
- Carriere, A.; Ray, H.; Blenis, J.; Roux, P.P. The RSK factors of activating the Ras/MAPK signaling cascade. Front Biosci. 2008, 13, 4258–4275. [Google Scholar] [CrossRef]
- Romeo, Y.; Zhang, X.; Roux, P.P. Regulation and function of the RSK family of protein kinases. Biochem. J. 2012, 441, 553–569. [Google Scholar] [CrossRef] [Green Version]
- Cragg, M.S.; Kuroda, J.; Puthalakath, H.; Huang, D.C.; Strasser, A. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med. 2007, 4, 1681–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.; Cho, Y.Y.; Zhu, F.; Zhang, J.; Wen, W.; Xu, Y.; Yao, K.; Ma, W.Y.; Bode, A.M.; Dong, Z. Phosphorylation of caspase-8 (Thr-263) by ribosomal S6 kinase 2 (RSK2) mediates caspase-8 ubiquitination and stability. J. Biol. Chem. 2011, 286, 6946–6954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, K.S.; Kreutz, C.; Macnelly, S.; Neubert, K.; Haber, A.; Bogyo, M.; Timmer, J.; Borner, C. Caspase-3 feeds back on caspase-8, Bid and XIAP in type I Fas signaling in primary mouse hepatocytes. Apoptosis 2012, 17, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.E.; Rahimi, S.; Zarandi, B.; Chegeni, R.; Safa, M. MYC: A multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J. Hematol. Oncol. 2021, 14, 121. [Google Scholar] [CrossRef]
- Jovanović, K.K.; Roche-Lestienne, C.; Ghobrial, I.M.; Facon, T.; Quesnel, B.; Manier, S. Targeting MYC in multiple myeloma. Leukemia 2018, 32, 1295–1306. [Google Scholar] [CrossRef]
- Shaffer, A.L.; Emre, N.C.; Lamy, L.; Ngo, V.N.; Wright, G.; Xiao, W.; Powell, J.; Dave, S.; Yu, X.; Zhao, H.; et al. IRF4 addiction in multiple myeloma. Nature 2008, 454, 226–231. [Google Scholar] [CrossRef]
- Mikulasova, A.; Ashby, C.; Tytarenko, R.G.; Qu, P.; Rosenthal, A.; Dent, J.A.; Ryan, K.R.; Bauer, M.A.; Wardell, C.P.; Hoering, A.; et al. Microhomology-mediated end joining drives complex rearrangements and overexpression of MYC and PVT1 in multiple myeloma. Haematologica 2020, 105, 1055–1066. [Google Scholar] [CrossRef] [Green Version]
- Nagoshi, H.; Taki, T.; Hanamura, I.; Nitta, M.; Otsuki, T.; Nishida, K.; Okuda, K.; Sakamoto, N.; Kobayashi, S.; Yamamoto-Sugitani, M.; et al. Frequent PVT1 rearrangement and novel chimeric genes PVT1-NBEA and PVT1-WWOX occur in multiple myeloma with 8q24 abnormality. Cancer Res. 2012, 72, 4954–4962. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Girona, A.; Heintel, D.; Zhang, L.H.; Mendy, D.; Gaidarova, S.; Brady, H.; Bartlett, J.B.; Schafer, P.H.; Schreder, M.; Bolomsky, A.; et al. Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br. J. Haematol. 2011, 154, 325–336. [Google Scholar] [CrossRef]
- Yamamoto, J.; Suwa, T.; Murase, Y.; Tateno, S.; Mizutome, H.; Asatsuma-Okumura, T.; Shimizu, N.; Kishi, T.; Momose, S.; Kizaki, M.; et al. ARID2 is a pomalidomide-dependent CRL4CRBN substrate in multiple myeloma cells. Nat. Chem. Biol. 2020, 16, 1208–1217. [Google Scholar] [CrossRef]
- Lamanuzzi, A.; Saltarella, I.; Desantis, V.; Frassanito, M.A.; Leone, P.; Racanelli, V.; Nico, B.; Ribatti, D.; Ditonno, P.; Prete, M.; et al. Inhibition of mTOR complex 2 restrains tumor angiogenesis in multiple myeloma. Oncotarget 2018, 9, 20563–20577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Liu, Z.; Li, Y.; Jing, Q.; Wang, H.; Liu, H.; Chen, J.; Feng, J.; Shao, Q.; Fu, R. Everolimus shows synergistic antimyeloma effects with bortezomib via the AKT/mTOR pathway. J. Investig. Med. 2019, 67, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Eichner, R.; Fernández-Sáiz, V.; Targosz, B.S.; Bassermann, F. Cross Talk Networks of Mammalian Target of Rapamycin Signaling With the Ubiquitin Proteasome System and Their Clinical Implications in Multiple Myeloma. Int. Rev. Cell. Mol. Biol. 2019, 343, 219–297. [Google Scholar] [PubMed]
- Ramakrishnan, V.; Kumar, S. PI3K/AKT/mTOR pathway in multiple myeloma: From basic biology to clinical promise. Leuk Lymphoma 2018, 59, 2524–2534. [Google Scholar] [CrossRef]
- Lessard, F.; Igelmann, S.; Trahan, C.; Huot, G.; Saint-Germain, E.; Mignacca, L.; Del Toro, N.; Lopes-Paciencia, S.; Le Calvé, B.; Montero, M.; et al. Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nat. Cell Biol. 2018, 20, 789–799. [Google Scholar] [CrossRef]
- Yang, T.; Song, B.; Zhang, J.; Yang, G.S.; Zhang, H.; Yu, W.F.; Wu, M.C.; Lu, J.H.; Shen, F. STK33 promotes hepatocellular carcinoma through binding to c-Myc. Gut 2016, 65, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Steinestel, K.; Rouhi, A.; Armacki, M.; Diepold, K.; Chiosis, G.; Simmet, T.; Seufferlein, T.; Azoitei, N. STK33 participates to HSP90-supported angiogenic program in hypoxic tumors by regulating HIF-1α/VEGF signaling pathway. Oncotarget 2017, 8, 77474–77488. [Google Scholar] [CrossRef]
- Kortüm, K.M.; Mai, E.K.; Hanafiah, N.H.; Shi, C.X.; Zhu, Y.X.; Bruins, L.; Barrio, S.; Jedlowski, P.; Merz, M.; Xu, J.; et al. Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. Blood 2016, 128, 1226–1233. [Google Scholar] [CrossRef] [Green Version]
- Shirazi, F.; Jones, R.J.; Singh, R.K.; Zou, J.; Kuiatse, I.; Berkova, Z.; Wang, H.; Lee, H.C.; Hong, S.; Dick, L.; et al. Activating KRAS, NRAS, and BRAF mutants enhance proteasome capacity and reduce endoplasmic reticulum stress in multiple myeloma. Proc. Natl. Acad. Sci. USA 2020, 117, 20004–20014. [Google Scholar] [CrossRef]
- Yu, W.; Chen, Y.; Xiang, R.; Xu, W.; Wang, Y.; Tong, J.; Zhang, N.; Wu, Y.; Yan, H. Novel phosphatidylinositol 3-kinase inhibitor BKM120 enhances the sensitivity of multiple myeloma to bortezomib and overcomes resistance. Leuk Lymphoma 2017, 58, 428–437. [Google Scholar] [CrossRef]
- Kinoshita, S.; Ri, M.; Kanamori, T.; Aoki, S.; Yoshida, T.; Narita, T.; Totani, H.; Ito, A.; Kusumoto, S.; Ishida, T. Potent antitumor effect of combination therapy with sub-optimal doses of Akt inhibitors and pomalidomide plus dexamethasone in multiple myeloma. Oncol. Lett. 2018, 15, 9450–9456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, Z.J.; Idler, B.M.; Davis, L.N.; Stevens, B.M.; VanWyngarden, M.J.; Ohlstrom, D.; Bearrows, S.C.; Hammes, A.; Smith, C.A.; Jordan, C.T.; et al. Exploiting Protein Translation Dependence in Multiple Myeloma with Omacetaxine-Based Therapy. Clin. Cancer Res. 2021, 27, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Watari, K.; Kawahara, A.; Sudo, T.; Hattori, S.; Murakami, Y.; Izumi, H.; Itou, J.; Toi, M.; Akiba, J.; et al. Targeting Phosphorylation of Y-Box-Binding Protein YBX1 by TAS0612 and Everolimus in Overcoming Antiestrogen Resistance. Mol. Cancer Ther. 2020, 19, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, G.P.; Cummings, L.; Newell, F.S.; Armstrong, C.; Bain, J.; Frodin, M.; Grauert, M.; Hoffmann, M.; Schnapp, G.; Steegmaier, M.; et al. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms In Vitro and In Vivo. Biochem. J. 2007, 401, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Blake, J.F.; Xu, R.; Bencsik, J.R.; Xiao, D.; Kallan, N.C.; Schlachter, S.; Mitchell, I.S.; Spencer, K.L.; Banka, A.L.; Wallace, E.M.; et al. Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors. J. Med. Chem. 2012, 55, 8110–8127. [Google Scholar] [CrossRef]
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [Green Version]
Cluster in Figure 4C | Gene Expression Change | Gene List | |
---|---|---|---|
Treatment | |||
BI-D1870 or Ipatasertib | Combination | ||
C1 | Significant downregulation compared to untreated cells | More significant downregulation compared to that induced by either BI-D1870 or ipatasertib | NBPF3 PIGV STX12 OXCT2P1 BTBD8 LCE1E MGST3 UBR4 EVA1B CLDN19 PLPPR5 NBPF15 NBPF20 CBX7 LOC100131107 THBS3 GREM2 OR2T35 ACKR1 NBPF10 GBA CHIT1 MSGN1 KRTCAP3 C2orf73 BCL2L11 DNAJB2 DAW1 TGFA DLX2 PDE6D CAMP RHO ZNF445 MYL3 PRICKLE2 ZXDC C3orf36 SLC7A14 PIGZ NFKBIZ PFKFB4 POPDC2 TMEM175 BLOC1S4 USP17L19 USP17L24 MED15 USP17L25 METTL14 ADAD1 TLR10 PAPSS1 CPZ DUX4 PCDHB11 CDH12 MOCS2 MTRNR2L2 MCTP1 SLC36A2 NMUR2 TRIM7 ZNF76 NCR2 FAM83B SDHAF4 PNRC1 SMIM29 CRISP2 PLAGL1 RSPH3 ADGRF2 CAGE1 H2BC4 GABBR1 RAMP3 ZKSCAN1 DPY19L1 HERPUD2 ERVW-1 TCAF1 ZNF705D P2RX6 FAM160B2 SDCBP GPAA1 RMDN1 KCNV2 TMEM8B OR1J4 GPR21 RALGPS1 AK8 CDKN2B SYAP1 SLC16A2 TKTL1 ITIH6 KCNE5 TSPY2 WAC DPYSL4 ST8SIA6 CALHM2 AKR1C1 SMPD1 OR5L1 OR4D9 C11orf86 TTC12 C11orf40 OR51G1 OR56A5 KRTAP5-10 WNT5B C12orf54 HIGD1C SCYL2 SIRT4 HNF1A AKAP3 TAS2R42 BAZ2A APPL2 MYL6 ACAD10 CD163L1 R3HDM2 CCDC92 CRYL1 RGS6 GSKIP PRKCH RTF1 GJD2 ITGAD FOXL1 LMF1 TBX6 MTRNR2L1 RAPGEFL1 TBCD NATD1 SRCIN1 KRTAP2-3 RETREG3 ASB16-AS1 PLEKHM1 CD300LB CEP131 KRTAP9-8 PRKAR1A TBC1D3L EPG5 TNFAIP8L1 GPR42 USP29 CLEC4G BORCS8 TYROBP WDR87 CEACAM7 EYA2 CD93 ZNF334 LIPI LRRC74B UPB1 YPEL1 |
C5 | Significant upregulation compared to untreated cells | More significant upregulation compared to that induced by either BI-D1870 or ipatasertib | GPR3 EIF3I UTP11 LRRC42 CFHR5 TIMM17A TMEM183A SDF4 ICMT ACOT7 MRPS15 GNL2 SF3A3 MAGOH ITGB3BP GCLM VAV3 ANP32E SLC41A1 MICOS10 SELENOI WDR43 CCT7 MRPL35 RPIA DDX18 AGPS XRCC5 ITGB1BP1 CEBPZ PNPT1 CCT4 TACR1 NIFK CHN1 HSPD1 LBH SNRNP27 CCDC138 RNASEH1 MRPS22 KCNAB1 CCDC12 NEPRO MRPL3 ANAPC13 A4GNT GK5 TMEM183B NRROS HIGD1A TWF2 ETV5 TMEM165 HADH GAR1 PLK4 NOP14 PPAT CCNA2 UFSP2 SLC39A8 CCT5 ISOC1 UNC5A OXCT1 ETF1 LARS1 GEMIN5 ZNF131 CDKAL1 MAD2L1BP NUS1 MYCT1 KCNK16 PKHD1 MMS22L SEC63 HDDC2 FBXO5 TCP1 PTP4A1 GMDS EEF1E1 NUP42 TMEM270 ASB4 DLD ST7 PRKAR1B DDX56 SBDS POM121C ASZ1 CHCHD3 SLC25A37 ZFHX4 ZNF7 C8orf33 LSM1 THAP1 UBXN8 DNAJA1 FOXB2 CENPP WDR5 MRPS2 TRUB2 MSANTD3 AWAT1 CSTF2 TCP11X2 STK26 HDAC8 MORF4L2 SERPINA7 NKRF CDY2B TXLNGY CDY1 HSPA14 PDSS1 VDAC2 LARP4B ZWINT TBATA FGFBP3 SFXN4 MRPL23 IPO7 LINC02687 P2RX3 RNF169 ACER3 DEUP1 JAM3 DEAF1 MRPL17 GALNT18 NUP160 SSRP1 ALG8 MMP3 TMX2- CTNND1 RASSF3 MSRB3 C12orf45 RIC8 FAM216A CRACR2A YARS2 IKBIP PPTC7 NDUFA9 PA2G4 PTPRQ C12orf73 MRPL57 BORA ALG5 MZT1 RUBCNL CARMIL3 AP5M1 TRMT61A ZNF219 PRMT5 PSMB5 TICRR PLA2G4F SHF TIPIN MMP25 ALDOA PSMD7 HSBP1 PDZD9 EMC8 ZNF689 CTRL PSMB6 PFAS ALKBH5 TRAF4 CISD3 C17orf80 FAM83G POLDIP2 BLMH CWC25 ETV4 ATXN7L3 CCDC182 C17orf58 CD300LF RSKR KAT2A CCDC47 GH2 EMILIN2 TIMM21 DAZAP1 CARM1 GPATCH1 WDR62 MRPS12 NR2C2AP CCNP SPINT2 CST2 WFDC9 ANKEF1 RAB5IF TGIF2-RAB5IF WDR4 SLC19A1 ATF4 BID PISD TTLL12 DRG1 SAMM50 |
Downregulated by BI-D1870 Plus Ipatasertib | Upregulated by BI-D1870 Plus Ipatasertib | Downregulated by BI-D1870 | Downregulated by Ipatasertib | Upregulated by Ipatasertib | |||||
---|---|---|---|---|---|---|---|---|---|
Gene Set Name | FDR q-Value | Gene Set Name | FDR q-Value | Gene Set Name | FDR q-Value | Gene Set Name | FDR q-Value | Gene Set Name | FDR q-Value |
MYC_UP.V1_UP | 0 | MTOR_UP.N4.V1_DN | 0 | MYC_UP.V1_UP | 0.0072 | MYC_UP.V1_UP | 0 | MTOR_UP.N4.V1_DN | 0.0057 |
CSR_LATE_UP.V1_UP | 0.0012 | STK33_SKM_UP | 0.0058 | EGFR_UP.V1_UP | 0.0096 | MTOR_UP.N4.V1_UP | 0.0056 | STK33_UP | 0.0205 |
MTOR_UP.N4.V1_UP | 0.0018 | MYC_UP.V1_DN | 0.0111 | RPS14_DN.V1_ DN | 0.0101 | CSR_LATE_UP.V1_UP | 0.0412 | KRAS.LUNG_UP.V1_DN | 0.0230 |
RPS14_DN.V1_DN | 0.0020 | STK33_UP | 0.0151 | CSR_EARLY_UP.V1_UP | 0.0103 | − | − | RPS14_DN.V1_ UP | 0.0387 |
CSR_EARLY_UP.V1_UP | 0.0039 | − | − | RAF_UP.V1_DN | 0.0120 | − | − | − | − |
VEGF_A_UP.V1_ DN | 0.0045 | − | − | CSR_LATE_UP.V1_UP | 0.0143 | − | − | − | − |
ESC_V6.5_UP_ LATE.V1_DN | 0.0084 | − | − | ERBB2_UP.V1_ DN | 0.0144 | − | − | − | − |
IL15_UP.V1_UP | 0.0099 | − | − | VEGF_A_UP.V1_DN | 0.0157 | − | − | − | − |
ESC_J1_UP_LATE.V1_DN | 0.0179 | − | − | TBK1.DF_DN | 0.0390 | − | − | − | − |
GCNP_SHH_UP_ LATE.V1_UP | 0.0209 | − | − | MEK_UP.V1_DN | 0.0426 | − | − | − | − |
EGFR_UP.V1_UP | 0.0234 | − | − | GCNP_SHH_UP_LATE.V1_UP | 0.0449 | − | − | − | − |
ERBB2_UP.V1_DN | 0.0246 | − | − | STK33_NOMO_UP | 0.0456 | − | − | − | − |
IL2_UP.V1_UP | 0.0267 | − | − | − | - | − | − | − | − |
MTOR_UP.V1_UP | 0.0465 | − | − | − | - | − | − | − | − |
CAMP_UP.V1_UP | 0.0468 | − | − | − | - | − | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isa, R.; Horinaka, M.; Tsukamoto, T.; Mizuhara, K.; Fujibayashi, Y.; Taminishi-Katsuragawa, Y.; Okamoto, H.; Yasuda, S.; Kawaji-Kanayama, Y.; Matsumura-Kimoto, Y.; et al. The Rationale for the Dual-Targeting Therapy for RSK2 and AKT in Multiple Myeloma. Int. J. Mol. Sci. 2022, 23, 2919. https://doi.org/10.3390/ijms23062919
Isa R, Horinaka M, Tsukamoto T, Mizuhara K, Fujibayashi Y, Taminishi-Katsuragawa Y, Okamoto H, Yasuda S, Kawaji-Kanayama Y, Matsumura-Kimoto Y, et al. The Rationale for the Dual-Targeting Therapy for RSK2 and AKT in Multiple Myeloma. International Journal of Molecular Sciences. 2022; 23(6):2919. https://doi.org/10.3390/ijms23062919
Chicago/Turabian StyleIsa, Reiko, Mano Horinaka, Taku Tsukamoto, Kentaro Mizuhara, Yuto Fujibayashi, Yoko Taminishi-Katsuragawa, Haruya Okamoto, Shusuke Yasuda, Yuka Kawaji-Kanayama, Yayoi Matsumura-Kimoto, and et al. 2022. "The Rationale for the Dual-Targeting Therapy for RSK2 and AKT in Multiple Myeloma" International Journal of Molecular Sciences 23, no. 6: 2919. https://doi.org/10.3390/ijms23062919
APA StyleIsa, R., Horinaka, M., Tsukamoto, T., Mizuhara, K., Fujibayashi, Y., Taminishi-Katsuragawa, Y., Okamoto, H., Yasuda, S., Kawaji-Kanayama, Y., Matsumura-Kimoto, Y., Mizutani, S., Shimura, Y., Taniwaki, M., Sakai, T., & Kuroda, J. (2022). The Rationale for the Dual-Targeting Therapy for RSK2 and AKT in Multiple Myeloma. International Journal of Molecular Sciences, 23(6), 2919. https://doi.org/10.3390/ijms23062919