Sevoflurane Effects on Neuronal Energy Metabolism Correlate with Activity States While Mitochondrial Function Remains Intact
Abstract
:1. Introduction
2. Results
2.1. Effects of Sevoflurane on Cerebral Metabolic Rate of Oxygen (CMRO2) and Synaptic Activity in Naive Slices
2.2. Sevoflurane Effects on Gamma Oscillations and Associated Changes in CMRO2
2.3. Effects of Sevoflurane during Stimulus-Induced Energy Demand
2.4. Sevoflurane Effects on the FAD Redox State
2.5. Computational Modeling: Effects on Mitochondrial FAD during Electrical Stimulation
3. Discussion
3.1. Effects of Sevoflurane on Neurometabolism Depend on Neuronal Activity States
3.2. No Evidence for Direct Impairment of the Mitochondrial Enzymes at Clinically Used Sevoflurane Concentrations
3.3. Metabolic Profile of Sevoflurane and Translational Relevance
3.4. Isoflurane vs. Sevoflurane
3.5. Isoflurane and Sevoflurane vs. Propofol
4. Materials and Methods
4.1. Slice Preparation and Maintenance
4.2. Electrophysiology, ptiO2 Recordings, and Fluorescence Imaging
4.3. Sevoflurane Application and Induction of Gamma Oscillations
4.4. Data Acquisition and Data Analysis
4.5. Calculation of Cerebral Metabolic Rate of O2
4.6. Calculations of FAD Transients and ATP Consumption Rates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, E.N.; Lydic, R.; Schiff, N.D. General anesthesia, sleep, and coma. N. Engl. J. Med. 2010, 363, 2638–2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soriano, S.G.; Vutskits, L.; Jevtovic-Todorovic, V.; Hemmings, H.C.; 2016 BJA Neurotoxicology and Neuroplasticity Study Group. Thinking, fast and slow: Highlights from the 2016 BJA seminar on anaesthetic neurotoxicity and neuroplasticity. Br. J. Anaesth. 2017, 119, 443–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesse, S.; Kreuzer, M.; Hight, D.; Gaskell, A.; Devari, P.; Singh, D.; Taylor, N.B.; Whalin, M.K.; Lee, S.; Sleigh, J.W.; et al. Association of electroencephalogram trajectories during emergence from anaesthesia with delirium in the postanaesthesia care unit: An early sign of postoperative complications. Br. J. Anaesth. 2019, 122, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Soehle, M.; Dittmann, A.; Ellerkmann, R.K.; Baumgarten, G.; Putensen, C.; Guenther, U. Intraoperative burst suppression is associated with postoperative delirium following cardiac surgery: A prospective, observational study. BMC Anesthesiol. 2015, 15, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, P.L.; Shintani, A.K.; Tyson, R.; Pandharipande, P.P.; Pun, B.T.; Ely, E.W. Presence of electroencephalogram burst suppression in sedated, critically ill patients is associated with increased mortality. Crit. Care Med. 2008, 36, 3171–3177. [Google Scholar] [CrossRef] [Green Version]
- Alkire, M.T. Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers. Anesthesiology 1998, 89, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Stocchetti, N.; Maas, A.I.R. Traumatic Intracranial Hypertension. N. Engl. J. Med. 2014, 370, 2121–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtkamp, M. Pharmacotherapy for Refractory and Super-Refractory Status Epilepticus in Adults. Drugs 2018, 78, 307–326. [Google Scholar] [CrossRef]
- Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic Energy Use and Supply. Neuron 2012, 75, 762–777. [Google Scholar] [CrossRef] [Green Version]
- Liotta, A.; Rösner, J.; Huchzermeyer, C.; Wojtowicz, A.; Kann, O.; Schmitz, D.; Heinemann, U.; Kovács, R. Energy demand of synaptic transmission at the hippocampal Schaffer-collateral synapse. J. Cereb. Blood Flow Metab. 2012, 32, 2076–2083. [Google Scholar] [CrossRef] [Green Version]
- Vutskits, L.; Xie, Z.C. Lasting impact of general anaesthesia on the brain: Mechanisms and relevance. Nat. Rev. Neurosci. 2016, 17, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Xu, Z.; Wang, H.; Dong, Y.; Shi, H.N.; Culley, D.J.; Crosby, G.; Marcantonio, E.R.; Tanzi, R.E.; Xie, Z. Anesthetics Isoflurane and Desflurane Differently Affect Mitochondrial Function, Learning, and Memory. Ann. Neurol. 2012, 71, 687–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimin, P.I.; Woods, C.B.; Kayser, E.B.; Ramirez, J.M.; Morgan, P.G.; Sedensky, M.M. Isoflurane disrupts excitatory neurotransmitter dynamics via inhibition of mitochondrial complex I. Br. J. Anaesth. 2018, 120, 1019–1032. [Google Scholar] [CrossRef] [Green Version]
- Bains, R.; Moe, M.C.; Vinje, M.L.; Berg-Johnsen, J. Sevoflurane and propofol depolarize mitochondria in rat and human cerebrocortical synaptosomes by different mechanisms. Acta Anaesthesiol. Scand. 2009, 53, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Kajimoto, M.; Atkinson, D.B.; Ledee, D.R.; Kayser, E.B.; Morgan, P.G.; Sedensky, M.M.; Isern, N.G.; Des Rosiers, C.; Portman, M.A. Propofol compared with isoflurane inhibits mitochondrial metabolism in immature swine cerebral cortex. J. Cereb. Blood Flow Metab. 2014, 34, 514–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finsterer, J.; Frank, M. Propofol Is Mitochondrion-Toxic and May Unmask a Mitochondrial Disorder. J. Child Neurol. 2016, 31, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Berndt, N.; Rösner, J.; Kann, O.; Kovács, R.; Holzhütter, H.G.; Spies, C.; Liotta, A. Possible neurotoxicity of the anesthetic propofol: Evidence for the inhibition of complex II of the respiratory chain in area CA3 of rat hippocampal slices. Arch. Toxicol. 2018, 92, 3191–3205. [Google Scholar] [CrossRef]
- Franks, N.P. General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 2008, 9, 370–386. [Google Scholar] [CrossRef]
- Nishikawa, K.; MacIver, M.B. Agent-selective effects of volatile anesthetics on GABAA receptor-mediated synaptic inhibition in hippocampal interneurons. Anesthesiology 2001, 94, 340–347. [Google Scholar] [CrossRef]
- Larsen, M.; Langmoen, I.A. The effect of volatile anaesthetics on synaptic release and uptake of glutamate. Toxicol. Lett. 1998, 101, 59–64. [Google Scholar] [CrossRef]
- Moe, M.C.; Berg-Johnsen, J.; Larsen, G.A.; Røste, G.K.; Vinje, M.L. Sevoflurane reduces synaptic glutamate release in human synaptosomes. J. Neurosurg. Anesthesiol. 2002, 14, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Kamiya, H.; Morimoto, Y. Sevoflurane inhibits presynaptic calcium influx without affecting presynaptic action potentials in hippocampal CA1 region. Biomed. Res. Tokyo 2018, 39, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.J.; Honoré, E.; Lesage, F.; Fink, M.; Romey, G.; Lazdunski, M. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat. Neurosci. 1999, 2, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Au, J.D.; Zou, H.L.; Cotten, J.F.; Yost, C.S. Potent activation of the human tandem pore domain K channel TRESK with clinical concentrations of volatile anesthetics. Anesth. Analg. 2004, 99, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Barber, A.F.; Liang, Q.S.; Covarrubias, M. Novel Activation of Voltage-gated K+ Channels by Sevoflurane. J. Biol. Chem. 2012, 287, 40425–40432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, S.; Kalikiri, P.; Mychaskiw, G., 2nd; Zhang, D.; Zhang, Y.; Liu, G.J.; Wang, G.L.; Shen, Z.Y. Sevoflurane postconditioning ameliorates oxygen-glucose deprivation-reperfusion injury in the rat hippocampus. CNS Neurosci. Ther. 2011, 17, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, S.; Robin, E.; Simerabet, M.; Kipnis, E.; Tavernier, B.; Vallet, B.; Bordet, R.; Lebuffe, G. Sevoflurane pre- and post-conditioning protect the brain via the mitochondrial K ATP channel. Br. J. Anaesth. 2010, 104, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Ye, R.; Yang, Q.; Kong, X.; Li, N.; Zhang, Y.; Han, J.; Xiong, L.; Liu, X.; Zhao, G. Sevoflurane preconditioning improves mitochondrial function and long-term neurologic sequelae after transient cerebral ischemia: Role of mitochondrial permeability transition. Crit. Care Med. 2012, 40, 2685–2693. [Google Scholar] [CrossRef]
- Codaccioni, J.L.; Velly, L.J.; Moubarik, C.; Bruder, N.J.; Pisano, P.S.; Guillet, B.A. Sevoflurane Preconditioning against Focal Cerebral Ischemia Inhibition of Apoptosis in the Face of Transient Improvement of Neurological Outcome. Anesthesiology 2009, 110, 1271–1278. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, P.; Lin, X.; Zhang, H.; Miao, J.; Zhou, Y.; Chen, G. Mitophagy impairment is involved in sevoflurane-induced cognitive dysfunction in aged rats. Aging-Us 2020, 12, 17235–17256. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, Y.; Tan, H.; Boukhali, M.; Khatri, A.; Yu, Y.; Hua, F.; Liu, L.; Li, M.; Yang, G.; et al. Tau Contributes to Sevoflurane-induced Neurocognitive Impairment in Neonatal Mice. Anesthesiology 2020, 133, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Zuo, Y.; Xie, J.; Li, X.; Li, Y.; Thirupathi, A.; Yu, P.; Gao, G.; Zhou, C.; Chang, Y.; et al. A new mechanism of POCD caused by sevoflurane in mice: Cognitive impairment induced by cross-dysfunction of iron and glucose metabolism. Aging-Us 2021, 13, 22375–22389. [Google Scholar] [CrossRef] [PubMed]
- Bains, R.; Moe, M.C.; Larsen, G.A.; Berg-Johnsen, J.; Vinje, M.L. Volatile anaesthetics depolarize neural mitochondria by inhibiton of the electron transport chain. Acta Anaesthesiol. Scand. 2006, 50, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Huchzermeyer, C.; Berndt, N.; Holzhütter, H.G.; Kann, O. Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network. J. Cereb. Blood Flow Metab. 2013, 33, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisahn, A.; Pike, F.G.; Buhl, E.H.; Paulsen, O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 1998, 394, 186–189. [Google Scholar] [CrossRef]
- Huchzermeyer, C.; Albus, K.; Gabriel, H.J.; Otáhal, J.; Taubenberger, N.; Heinemann, U.; Kovács, R.; Kann, O. Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state. J. Neurosci. 2008, 28, 1153–1162. [Google Scholar] [CrossRef] [Green Version]
- Kann, O.; Huchzermeyer, C.; Kovacs, R.; Wirtz, S.; Schuelke, M. Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria. Brain 2011, 134, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Berndt, N.; Kovács, R.; Schoknecht, K.; Rösner, J.; Reiffurth, C.; Maechler, M.; Holzhütter, H.G.; Dreier, J.P.; Spies, C.; Liotta, A. Low neuronal metabolism during isoflurane-induced burst suppression is related to synaptic inhibition while neurovascular coupling and mitochondrial function remain intact. J. Cereb. Blood Flow Metab. 2021, 41, 2640–2655. [Google Scholar] [CrossRef]
- Rösner, J.; Liotta, A.; Angamo, E.A.; Spies, C.; Heinemann, U.; Kovács, R. Minimizing photodecomposition of flavin adenine dinucleotide fluorescence by the use of pulsed LEDs. J. Microsc. 2016, 264, 215–223. [Google Scholar] [CrossRef]
- Berndt, N.; Kovács, R.; Rösner, J.; Wallach, I.; Dreier, J.P.; Liotta, A. Flavin Adenine Dinucleotide Fluorescence as an Early Marker of Mitochondrial Impairment During Brain Hypoxia. Int. J. Mol. Sci. 2020, 21, 3977. [Google Scholar] [CrossRef]
- Shuttleworth, C.W. Use of NAD(P)H and flavoprotein autofluorescence transients to probe neuron and astrocyte responses to synaptic activation. Neurochem. Int. 2010, 56, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berndt, N.; Kann, O.; Holzhutter, H.G. Physiology-based kinetic modeling of neuronal energy metabolism unravels the molecular basis of NAD(P)H fluorescence transients. J. Cereb. Blood Flow Metab. 2015, 35, 1494–1506. [Google Scholar] [CrossRef] [PubMed]
- Bartos, M.; Vida, I.; Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 2007, 8, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, H.J.; Traub, R.D.; Whittington, M.A. Disruption of synchronous gamma oscillations in the rat hippocampal slice: A common mechanism of anaesthetic drug action. Br. J. Pharmacol. 1998, 125, 483–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.; Li, Y.; Zhu, G.; Zhang, X. Activation of mitochondria apoptotic pathway is involved in the sevoflurane-induced hippocampal neuronal HT22 cells toxicity through miR-145/Binp3 axis. Int. J. Clin. Exp. Pathol. 2017, 10, 10873–10882. [Google Scholar] [PubMed]
- Li, M.; Guo, J.; Wang, H.; Li, Y. Involvement of Mitochondrial Dynamics and Mitophagy in Sevoflurane-Induced Cell Toxicity. Oxidative Med. Cell. Longev. 2021, 2021, 6685468. [Google Scholar] [CrossRef]
- Giorgi, C.; Marchi, S.; Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 2018, 19, 713–730. [Google Scholar] [CrossRef]
- Bundgaard, H.; von Oettingen, G.; Larsen, K.M.; Landsfeldt, U.; Jensen, K.A.; Nielsen, E.; Cold, G.E. Effects of sevoflurane on intracranial pressure, cerebral blood flow and cerebral metabolism. A dose-response study in patients subjected to craniotomy for cerebral tumours. Acta Anaesthesiol. Scand. 1998, 42, 621–627. [Google Scholar] [CrossRef]
- Oshima, T.; Karasawa, F.; Okazaki, Y.; Wada, H.; Satoh, T. Effects of sevoflurane on cerebral blood flow and cerebral metabolic rate of oxygen in human beings: A comparison with isoflurane. Eur. J. Anaesthesiol. 2003, 20, 543–547. [Google Scholar] [CrossRef]
- Kuroda, Y.; Murakami, M.; Tsuruta, J.; Murakawa, T.; Sakabe, T. Preservation of the ration of cerebral blood flow/metabolic rate for oxygen during prolonged anesthesia with isoflurane, sevoflurane, and halothane in humans. Anesthesiology 1996, 84, 555–561. [Google Scholar] [CrossRef]
- Oertel, M.; Kelly, D.F.; Lee, J.H.; McArthur, D.L.; Glenn, T.C.; Vespa, P.; Boscardin, W.J.; Hovda, D.A.; Martin, N.A. Efficacy of hyperventilation, blood pressure elevation, and metabolic suppression therapy in controlling intracranial pressure after head injury. J. Neurosurg. 2002, 97, 1045–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, S.K.; Tanaka, E.; Shin, M.C.; Kotani, N.; Akaike, N. Volatile anesthetic effects on isolated GABA synapses and extrasynaptic receptors. Neuropharmacology 2011, 60, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dong, Y.; Huang, L.; Xu, X.; Liang, F.; Soriano, S.G.; Zhang, Y.; Xie, Z. Interaction of Tau, IL-6 and mitochondria on synapse and cognition following sevoflurane anesthesia in young mice. Brain Behav. Immun. Health 2020, 8, 100133. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, B.; Li, G.; Dong, X.; Yu, G.; Qian, Q.; Duan, L.; Li, H.; Jia, Z.; Bai, J. Disruption of microRNA-214 during general anaesthesia prevents brain injury and maintains mitochondrial fusion by promoting Mfn2 interaction with Pkm2. J. Cell Mol. Med. 2020, 24, 13589–13599. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, V.; Feinstein, S.D.; Lunardi, N.; Joksovic, P.M.; Boscolo, A.; Todorovic, S.M.; Jevtovic-Todorovic, V. General Anesthesia Causes Long-term Impairment of Mitochondrial Morphogenesis and Synaptic Transmission in Developing Rat Brain. Anesthesiology 2011, 115, 992–1002. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, L.M.; Tanaka, K.; Eells, J.T.; Weihrauch, D.; Pagel, P.S.; Kersten, J.R.; Warltier, D.C. Preconditioning by isoflurane is mediated by reactive oxygen species generated from mitochondrial electron transport chain complex III. Anesth. Analg. 2004, 99, 1308–1315. [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.; Qiao, S.; Li, H.; Che, T.; Wang, C.; An, J. Effects of isoflurane on complex IIassociated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels. Mol. Med. Rep. 2019, 20, 4383–4390. [Google Scholar] [CrossRef]
- Hönemann, C.W.; Washington, J.; Hönemann, M.C.; Nietgen, G.W.; Durieux, M.E. Partition coefficients of volatile anesthetics in aqueous electrolyte solutions at various temperatures. Anesthesiology 1998, 89, 1032–1035. [Google Scholar] [CrossRef]
- Kasischke, K.A.; Lambert, E.M.; Panepento, B.; Sun, A.; Gelbard, H.A.; Burgess, R.W.; Foster, T.H.; Nedergaard, M. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J. Cereb. Blood Flow Metab. 2011, 31, 68–81. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maechler, M.; Rösner, J.; Wallach, I.; Geiger, J.R.P.; Spies, C.; Liotta, A.; Berndt, N. Sevoflurane Effects on Neuronal Energy Metabolism Correlate with Activity States While Mitochondrial Function Remains Intact. Int. J. Mol. Sci. 2022, 23, 3037. https://doi.org/10.3390/ijms23063037
Maechler M, Rösner J, Wallach I, Geiger JRP, Spies C, Liotta A, Berndt N. Sevoflurane Effects on Neuronal Energy Metabolism Correlate with Activity States While Mitochondrial Function Remains Intact. International Journal of Molecular Sciences. 2022; 23(6):3037. https://doi.org/10.3390/ijms23063037
Chicago/Turabian StyleMaechler, Mathilde, Jörg Rösner, Iwona Wallach, Joerg R. P. Geiger, Claudia Spies, Agustin Liotta, and Nikolaus Berndt. 2022. "Sevoflurane Effects on Neuronal Energy Metabolism Correlate with Activity States While Mitochondrial Function Remains Intact" International Journal of Molecular Sciences 23, no. 6: 3037. https://doi.org/10.3390/ijms23063037
APA StyleMaechler, M., Rösner, J., Wallach, I., Geiger, J. R. P., Spies, C., Liotta, A., & Berndt, N. (2022). Sevoflurane Effects on Neuronal Energy Metabolism Correlate with Activity States While Mitochondrial Function Remains Intact. International Journal of Molecular Sciences, 23(6), 3037. https://doi.org/10.3390/ijms23063037