Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Physicochemical Properties
2.2. In Vitro Antimicrobial Activity
2.3. In Vitro Cell Viability
2.4. Structure–Activity Relationships
3. Materials and Methods
3.1. General Methods
3.2. Synthesis
General Procedure for Synthesis of Carboxamide Derivatives 1a–2r
3.3. Lipophilicity Determination by HPLC
3.4. In Vitro Antibacterial Evaluation
3.5. In Vitro Antimycobacterial Evaluation
3.6. In Vitro Cell Viability Analysis
3.7. Flow Cytometry Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; The International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Jampilek, J. Recent advances in design of potential quinoxaline anti-infectives. Curr. Med. Chem. 2014, 21, 4347–4373. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Goleniowski, M.; Bonfill, M.; Cusido, R.; Palazon, J. Phenolic acids. In Natural Products; Ramawat, K., Merillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1951–1973. [Google Scholar]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Shuab, R.; Lone, R.; Koul, K.K. Cinnamate and cinnamate derivatives in plants. Acta Physiol. Plant 2016, 38, 64. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef]
- Gaikwad, N.; Nanduri, S.; Madhavi, Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur. J. Med. Chem. 2019, 181, 111561. [Google Scholar] [CrossRef]
- Gryko, K.; Kalinowska, M.; Ofman, P.; Choinska, R.; Swiderski, G.; Swislocka, R.; Lewandowski, W. Natural cinnamic acid derivatives: A comprehensive study on structural, anti/pro-oxidant, and environmental impacts. Materials 2021, 14, 6098. [Google Scholar] [CrossRef]
- Pospisilova, S.; Kos, J.; Michnova, H.; Kapustikova, I.; Strharsky, T.; Oravec, M.; Moricz, A.M.; Bakonyi, J.; Kauerova, T.; Kollar, P.; et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018, 19, 2318. [Google Scholar] [CrossRef] [Green Version]
- Hosek, J.; Kos, J.; Strharsky, T.; Cerna, L.; Starha, P.; Vanco, J.; Travnicek, Z.; Devinsky, F.; Jampilek, J. Investigation of anti-inflammatory potential of N-arylcinnamamide derivatives. Molecules 2019, 24, 4531. [Google Scholar] [CrossRef] [Green Version]
- Kos, J.; Bak, A.; Kozik, V.; Jankech, T.; Strharsky, T.; Swietlicka, A.; Michnova, H.; Hosek, J.; Smolinski, A.; Oravec, M.; et al. Biological activities and ADMET-related properties of novel set of cinnamanilides. Molecules 2020, 25, 4121. [Google Scholar] [CrossRef]
- Kos, J.; Strharsky, T.; Stepankova, S.; Svrckova, K.; Oravec, M.; Hosek, J.; Imramovsky, A.; Jampilek, J. Trimethoxycinnamates and their cholinesterase inhibitory activity. Appl. Sci. 2021, 11, 4691. [Google Scholar] [CrossRef]
- WHO. Antimicrobial Resistance. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 10 February 2022).
- WHO. World Health Statistics. 2021. Available online: https://apps.who.int/iris/bitstream/handle/10665/342703/9789240027053-eng.pdf (accessed on 10 February 2022).
- European Centre for Disease Prevention and Control. 2021. Available online: https://www.ecdc.europa.eu/en (accessed on 10 February 2022).
- WHO. Global Tuberculosis Report. 2021. Available online: File:///C:/Users/UIVATE~1/AppData/Local/Temp/9789240037021-eng.pdf (accessed on 10 February 2022).
- Molchanova, N.; Nielsen, J.E.; Sorensen, K.B.; Prabhala, B.K.; Hansen, P.R.; Lund, R.; Barron, A.E.; Jenssen, H. Halogenation as a tool to tune antimicrobial activity of peptoids. Sci. Rep. 2020, 10, 14805. [Google Scholar] [CrossRef]
- Huigens, R.W. The path to new halogenated quinolines with enhanced activities against Staphylococcus epidermidis. Microbiol. Insights 2018, 11, 1178636118808532. [Google Scholar] [CrossRef]
- Musiol, R.; Jampilek, J.; Nycz, J.E.; Pesko, M.; Carroll, J.; Kralova, K.; Vejsova, M.; O’Mahony, J.; Coffey, A.; Mrozek, A.; et al. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules 2010, 15, 288–304. [Google Scholar] [CrossRef] [Green Version]
- Dolezal, M.; Zitko, J.; Osicka, Z.; Kunes, J.; Vejsova, M.; Buchta, V.; Dohnal, J.; Jampilek, J.; Kralova, K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules 2010, 15, 8567–8581. [Google Scholar] [CrossRef]
- Kushkevych, I.; Kollar, P.; Ferreira, A.L.; Palma, D.; Duarte, A.; Lopes, M.M.; Bartos, M.; Pauk, K.; Imramovsky, A.; Jampilek, J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016, 14, 125–130. [Google Scholar] [CrossRef]
- Pandi, A.; Kalappan, V.M. Pharmacological and therapeutic applications of sinapic acid-an updated review. Mol. Biol. Rep. 2021, 48, 3733–3745. [Google Scholar] [CrossRef]
- Mirzaei, S.; Gholami, M.H.; Zabolian, A.; Saleki, H.; Farahani, M.V.; Hamzehlou, S.; Far, F.B.; Sharifzadeh, S.O.; Samarghandian, S.; Khan, H.; et al. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol. Res. 2021, 171, 105759. [Google Scholar] [CrossRef]
- Abu Almaaty, A.H.; Elgrahy, N.A.; Fayad, E.; Abu Ali, O.A.; Mahdy, A.R.E.; Barakat, L.A.A.; El Behery, M. Design, synthesis and anticancer evaluation of substituted cinnamic acid bearing 2-quinolone hybrid derivatives. Molecules 2021, 26, 4724. [Google Scholar] [CrossRef]
- Wang, R.; Yang, W.; Fan, Y.; Dehaen, W.; Li, Y.; Li, H.; Wang, W.; Zheng, Q.; Huai, Q. Design and synthesis of the novel oleanolic acid-cinnamic acid ester derivatives and glycyrrhetinic acid-cinnamic acid ester derivatives with cytotoxic properties. Bioorg. Chem. 2019, 88, 102951. [Google Scholar] [CrossRef]
- Franca, S.B.; dos Santos Correia, P.R.; de Castro, I.B.D.; da Silva, E.F.; de Sa Barreto Barros, M.E.; da Paz Lima, D.J. Synthesis, applications and structure-activity relationship (SAR) of cinnamic acid derivatives: A review. Res. Soc. Dev. 2021, 10, e28010111691. [Google Scholar] [CrossRef]
- Kerns, E.H.; Di, L. Drug-Like Properties: Concepts, Structure Design and Methods: From ADME to Toxicity Optimization; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Wermuth, C.; Aldous, D.; Raboisson, P.; Rognan, D. The Practice of Medicinal Chemistry, 4th ed.; Academic Press: San Diego, CA, USA, 2015. [Google Scholar]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Pliska, V.; Testa, B.; van der Waterbeemd, H. Lipophilicity in Drug Action and Toxicology; Wiley-VCH: Weinheim, Germany, 1996. [Google Scholar]
- Urner, L.M.; Lee, G.Y.; Treacy, J.W.; Turlik, A.; Khan, S.I.; Houk, K.N.; Jung, M.E. Intramolecular N−H⋯F hydrogen bonding interaction in a series of 4-anilino-5-fluoroquinazolines: Experimental and theoretical characterization of electronic and conformational effects. Chem. Eur. J. 2022, 28, e202103135. [Google Scholar] [CrossRef]
- Pietrus, W.; Kafel, R.; Bojarski, A.J.; Kurczab, R. Hydrogen bonds with fluorine in ligand–protein complexes-the PDB analysis and energy calculations. Molecules 2022, 27, 1005. [Google Scholar] [CrossRef] [PubMed]
- Imramovsky, A.; Pejchal, V.; Stepankova, S.; Vorcakova, K.; Jampilek, J.; Vanco, J.; Simunek, P.; Kralovec, K.; Bruckova, L.; Mandikova, J.; et al. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorg. Med. Chem. 2013, 21, 1735–1748. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.S.; Seybold, P.G.; Politzer, P. The many faces of fluorine: Some noncovalent interactions of fluorine compounds. J. Chem. Thermodyn. 2021, 156, 106382. [Google Scholar] [CrossRef]
- Zadrazilova, I.; Pospisilova, S.; Masarikova, M.; Imramovsky, A.; Monreal-Ferriz, J.; Vinsova, J.; Cizek, A.; Jampilek, J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus. Eur. J. Pharm. Sci. 2015, 77, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Oravcova, V.; Zurek, L.; Townsend, A.; Clark, A.B.; Ellis, J.C.; Cizek, A. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ. Microbiol. 2014, 16, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Sundarsingh, J.A.T.; Ranjitha, J.; Rajan, A.; Shankar, V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Inf. Public. Health 2020, 13, 1255–1264. [Google Scholar]
- Luukinen, H.; Hammaren, M.M.; Vanha-Aho, L.M.; Parikka, M. Modeling tuberculosis in Mycobacterium marinum infected adult Zebrafish. J. Vis. Exp. 2018, 140, 58299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonec, T.; Kos, J.; Zadrazilova, I.; Pesko, M.; Keltosova, S.; Tengler, J.; Bobal, P.; Kollar, P.; Cizek, A.; Kralova, K.; et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013, 21, 6531–6541. [Google Scholar] [CrossRef]
- Gonec, T.; Pospisilova, S.; Kauerova, T.; Kos, J.; Dohanosova, J.; Oravec, M.; Kollar, P.; Coffey, A.; Liptaj, T.; Cizek, A.; et al. N-Alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules 2016, 21, 1068. [Google Scholar] [CrossRef]
- Imramovsky, A.; Pesko, M.; Kralova, K.; Vejsova, M.; Stolarikova, J.; Vinsova, J.; Jampilek, J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules 2011, 16, 2414–2430. [Google Scholar] [CrossRef] [Green Version]
- Nubel, U.; Dordel, J.; Kurt, K.; Strommenger, B.; Westh, H.; Shukla, S.K.; Zemlickova, H.; Leblois, R.; Wirth, T.; Jombart, T.; et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010, 6, e1000855. [Google Scholar] [CrossRef] [Green Version]
- Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 2009, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Kos, J.; Nevin, E.; Soral, M.; Kushkevych, I.; Gonec, T.; Bobal, P.; Kollar, P.; Coffey, A.; O’Mahony, J.; Liptaj, T.; et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015, 23, 2035–2043. [Google Scholar] [CrossRef]
- Mrozek-Wilczkiewicz, A.; Kalinowski, D.S.; Musiol, R.; Finster, J.; Szurko, A.; Serafin, K.; Knas, M.; Kamalapuram, S.K.; Kovacevic, Z.; Jampilek, J.; et al. Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010, 18, 2664–2671. [Google Scholar] [CrossRef]
- Imramovsky, A.; Stepankova, S.; Vanco, J.; Pauk, K.; Monreal-Ferriz, J.; Vinsova, J.; Jampilek, J. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking. Molecules 2012, 17, 10142–10158. [Google Scholar] [CrossRef]
- Feng, P.; Lee, K.N.; Lee, J.W.; Zhan, C.; Ngai, M.Y. Access to a new class of synthetic building blocks via trifluoromethoxylation of pyridines and pyrimidines. Chem. Sci. 2016, 7, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.N.; Lei, Z.; Morales-Rivera, C.A.; Liu, P.; Ngai, M.Y. Mechanistic studies on intramolecular C-H trifluoromethoxylation of (hetero)arenes via OCF3-migration. Org. Biomol. Chem. 2016, 14, 5599–5605. [Google Scholar] [CrossRef] [Green Version]
- Logvinenko, I.G.; Markushyna, Y.; Kondratov, I.S.; Vashchenko, B.V.; Kliachyna, M.; Tokaryeva, Y.; Pivnytska, V.; Grygorenko, O.O.; Haufe, G. Synthesis, physico-chemical properties and microsomal stability of compounds bearing aliphatic trifluoromethoxy group. J. Fluor. Chem. 2020, 231, 109461. [Google Scholar] [CrossRef]
- Duhail, T.; Bortolato, T.; Mateos, J.; Anselmi, E.; Jelier, B.; Togni, A.; Magnier, E.; Dagousset, G.; Dell’Amico, L. Radical α-trifluoromethoxylation of ketones under batch and flow conditions by means of organic photoredox catalysis. Org. Lett. 2021, 23, 7088–7093. [Google Scholar] [CrossRef]
- Kos, J.; Kozik, V.; Pindjakova, D.; Jankech, T.; Smolinski, A.; Stepankova, S.; Hosek, J.; Oravec, M.; Jampilek, J.; Bak, A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors. Int. J. Mol. Sci. 2021, 22, 3444. [Google Scholar] [CrossRef]
- Bak, A.; Kos, J.; Michnova, H.; Gonec, T.; Pospisilova, S.; Kozik, V.; Cizek, A.; Smolinski, A.; Jampilek, J. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. Int. J. Mol. Sci. 2020, 21, 6583. [Google Scholar] [CrossRef]
- Kos, J.; Zadrazilova, I.; Pesko, M.; Keltosova, S.; Tengler, J.; Gonec, T.; Bobal, P.; Kauerova, T.; Oravec, M.; Kollar, P.; et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules 2013, 18, 7977–7997. [Google Scholar] [CrossRef] [Green Version]
- Otevrel, J.; Mandelova, Z.; Pesko, M.; Guo, J.; Kralova, K.; Sersen, F.; Vejsova, M.; Kalinowski, D.S.; Kovacevic, Z.; Coffey, A.; et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules 2010, 15, 8122–8142. [Google Scholar] [CrossRef]
- Wu, X.-F.; Chen, B. Synthesis of linear α,β-unsaturated amides from isocyanates and alkenylaluminum reagents. Synlett 2020, 31, 788–792. [Google Scholar] [CrossRef]
- Zimmerman, S.M.; Lafontaine, A.-A.J.; Herrera, C.M.; Mclean, A.B.; Trent, M.S. A whole-cell screen identifies small bioactives that synergize with polymyxin and exhibit antimicrobial activities against multidrug-resistant bacteria. Antimicrob. Agents Chemother. 2020, 64, e01677-e19. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wu, N.; Cheng, X. Chlorination reaction of aromatic compounds and unsaturated carbon–carbon bonds with chlorine on demand. Org. Lett. 2021, 23, 3015–3020. [Google Scholar] [CrossRef] [PubMed]
- Passos, G.F.S.; Gomes, M.G.M.; de Aquino, T.M.; de Araujo-Junior, J.X.; de Souza, S.J.M.; Cavalcante, J.P.M.; dos Santos, E.C.; Bassi, E.J.; da Silva-Junior, E.F. Computer-aided design, synthesis, and antiviral evaluation of novel acrylamides as potential inhibitors of E3-E2-E1 glycoproteins complex from chikungunya virus. Pharmaceuticals 2020, 13, 141. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; M07; NCCLS: Wayne, PA, USA, 2018. [Google Scholar]
- Schwalbe, R.; Steele-Moore, L.; Goodwin, A.C. Antimicrobial Susceptibility Testing Protocols; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Kavanova, L.; Matiaskova, K.; Leva, L.; Stepanova, H.; Nedbalcova, K.; Matiasovic, J.; Faldyna, M.; Salat, J. Concurrent infection with porcine reproductive and respiratory syndrome virus and Haemophilus parasuis in two types of porcine macrophages: Apoptosis, production of ROS and formation of multinucleated giant cells. Vet. Res. 2017, 48, 28. [Google Scholar] [CrossRef] [Green Version]
No. | R1 | R2 | log P 1 | log P 2 | Clog P 2 | log k | log D6.5 | log D7.4 |
---|---|---|---|---|---|---|---|---|
1a | H | H | 3.84 | 3.74 | 4.3770 | 0.4490 | 0.4428 | 0.4515 |
1b | H | 2-F | 4.42 | 4.30 | 4.4976 | 0.6459 | 0.5908 | 0.5965 |
1c | H | 3-F | 4.64 | 4.30 | 5.3476 | 0.7859 | 0.7296 | 0.7325 |
1d | H | 4-F | 4.49 | 4.30 | 5.3476 | 0.7808 | 0.7252 | 0.7290 |
1e | H | 2-Cl | 3.65 | 3.90 | 4.1776 | 0.5241 | 0.4650 | 0.4724 |
1f | H | 3-Cl | 3.91 | 3.90 | 4.7776 | 0.6192 | 0.5603 | 0.5666 |
1g | H | 4-Cl | 3.76 | 3.90 | 4.7776 | 0.5598 | 0.5012 | 0.5065 |
1h | H | 2-CF3 | 4.75 | 4.66 | 4.2608 | 0.5506 | 0.4938 | 0.5010 |
1i | H | 3-CF3 | 4.84 | 4.66 | 5.7108 | 0.8612 | 0.8071 | 0.8105 |
1j | H | 4-CF3 | 4.65 | 4.66 | 5.7108 | 0.9078 | 0.8541 | 0.8560 |
1k | H | 4-OCF3 | 4.74 | 5.27 | 5.5614 | 0.8759 | 0.8702 | 0.8754 |
1l | H | 2,4-F | 3.73 | 4.06 | 4.4108 | 0.5746 | 0.5172 | 0.5223 |
1m | H | 3,5-F | 4.24 | 4.06 | 5.0108 | 0.8054 | 0.7502 | 0.7537 |
1n | H | 2,4-Cl | 5.23 | 4.86 | 5.3008 | 0.9665 | 0.9141 | 0.9170 |
1o | H | 2,5-Cl | 5.27 | 4.86 | 5.3008 | 0.9507 | 0.8986 | 0.9010 |
1p | H | 3,5-Cl | 5.40 | 4.86 | 6.1508 | 1.1899 | 1.1368 | 1.1366 |
1q | H | 3,5-CF3 | 6.12 | 5.58 | 6.7516 | 1.3064 | 1.2925 | 1.2980 |
1r | H | 2-Br-4-OCF3 | 5.38 | 6.09 | 5.7423 | 1.0278 | 1.0236 | 1.0284 |
2a | Cl | H | 4.42 | 4.30 | 4.9700 | 0.6199 | 0.6669 | 0.6354 |
2b | Cl | 2-F | 5.10 | 4.86 | 5.0906 | 0.7764 | 0.8203 | 0.8019 |
2c | Cl | 3-F | 5.31 | 4.86 | 5.9406 | 0.9071 | 0.9453 | 0.8735 |
2d | Cl | 4-F | 5.19 | 4.86 | 5.9406 | 0.9009 | 0.9381 | 0.8660 |
2e | Cl | 2-Cl | 4.38 | 4.46 | 4.7706 | 0.6488 | 0.6925 | 0.6739 |
2f | Cl | 3-Cl | 4.63 | 4.46 | 5.3706 | 0.7404 | 0.7816 | 0.7616 |
2g | Cl | 4-Cl | 4.57 | 4.46 | 5.3706 | 0.6786 | 0.7224 | 0.7021 |
2h | Cl | 2-CF3 | 5.37 | 5.22 | 4.8538 | 0.6836 | 0.7295 | 0.6526 |
2i | Cl | 3-CF3 | 5.54 | 5.22 | 6.3038 | 0.9873 | 0.9915 | 0.9505 |
2j | Cl | 4-CF3 | 5.35 | 5.22 | 6.3038 | 1.0364 | 1.0370 | 0.9945 |
2k | Cl | 4-OCF3 | 5.05 | 5.82 | 6.1544 | 1.0513 | 1.0544 | 1.0053 |
2l | Cl | 2,4-F | 4.50 | 4.61 | 5.0038 | 0.6989 | 0.7094 | 0.6632 |
2m | Cl | 3,5-F | 4.97 | 4.61 | 5.6038 | 0.9298 | 0.9345 | 0.8882 |
2n | Cl | 2,4-Cl | 5.68 | 5.41 | 5.8938 | 1.0932 | 1.0985 | 1.0565 |
2o | Cl | 2,5-Cl | 5.72 | 5.41 | 5.8938 | 1.0840 | 1.0887 | 1.0474 |
2p | Cl | 3,5-Cl | 5.90 | 5.41 | 6.7438 | 1.3043 | 1.3336 | 1.3080 |
2q | Cl | 3,5-CF3 | 6.43 | 6.14 | 7.3446 | 1.4731 | 1.4967 | 1.4717 |
2r | Cl | 2-Br-4-OCF3 | 5.91 | 6.65 | 6.3353 | 1.2065 | 1.2373 | 1.2178 |
No. | MIC (µM) | IC50 (µM) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SA | MRSA1 | MRSA2 | MRSA3 | EF | VRE1 | VRE2 | VRE3 | MS | MM | THP-1 SFM | THP-1 10% FSB | SW982 10% FSB | MDM 10% FSB | |
1i | 6.14 | 6.14 | 3.07 | 6.14 | >786 | >786 | >786 | >786 | >786 | >786 | 2.9 ± 1.2 | >10 | >10 | >10 |
1p | 0.383 | 0.383 | 0.383 | 0.765 | >783 | >783 | >783 | >783 | 24.48 | >783 | 2.5 ± 1.1 | >10 | >10 | >10 |
1q | 0.318 | 0.318 | 0.318 | 0.635 | 325 | 650 | 325 | 325 | 2.54 | >650 | 1.0 ± 1.1 | >10 | >10 | >10 |
2a | 13.6 | >876 | >876 | >876 | 876 | >876 | >876 | >876 | 13.6 | 876 | 7.5 ± 1.0 | >10 | >10 | >10 |
2i | 1.39 | 0.694 | 1.39 | 1.39 | 22.2 | 22.2 | 22.2 | 44.4 | 5.55 | 5.55 | 1.9 ± 1.0 | >10 | >10 | >10 |
2j | 0.694 | 0.371 | 0.371 | 0.694 | 11.1 | 11.1 | 11.1 | 11.1 | 2.78 | 2.78 | 0.9 ± 1.0 | >10 | >10 | >10 |
2k | 1.33 | 1.33 | 1.33 | 1.33 | 10.6 | 21.3 | 42.5 | 21.3 | 10.6 | 2.66 | 1.0 ± 1.0 | >10 | >10 | >10 |
2q | 0.292 | 0.136 | 0.136 | 0.292 | 4.67 | 9.34 | 18.69 | 4.67 | 2.34 | 0.292 | 0.5 ± 1.0 | >10 | >10 | 5–10 |
AMP | 5.72 | 45.8 | >45.8 | >45.8 | 11.5 | 11.5 | 11.5 | 5.72 | – | – | – | – | – | – |
INH | – | – | – | – | – | – | – | – | 117 | 467 | – | – | – | – |
RIF | – | – | – | – | – | – | – | – | 19.4 | 2.43 | – | – | – | – |
No. | R1 | R2 | MW | log P | HBD | HBA | RB | TPSA | Parachor (cm3) | σPh-R2 | ST (dyne/cm) |
---|---|---|---|---|---|---|---|---|---|---|---|
1i | H | 3-CF3 | 325.71 | 4.84 | 1 | 2 | 4 | 29.10 | 602.60 | 0.89 | 41.91 |
1p | H | 3,5-Cl | 326.60 | 5.40 | 1 | 2 | 3 | 29.10 | 617.13 | 1.11 | 54.41 |
1q | H | 3,5-CF3 | 393.71 | 6.12 | 1 | 2 | 5 | 29.10 | 659.80 | 1.05 | 35.48 |
2a | Cl | H | 292.16 | 4.42 | 1 | 2 | 3 | 29.10 | 581.26 | 0.60 | 53.15 |
2i | Cl | 3-CF3 | 360.16 | 5.54 | 1 | 2 | 4 | 29.10 | 638.47 | 0.89 | 43.37 |
2j | Cl | 4-CF3 | 360.16 | 5.35 | 1 | 2 | 4 | 29.10 | 638.47 | 0.95 | 43.37 |
2k | Cl | 4-OCF3 | 376.16 | 5.05 | 1 | 3 | 5 | 38.33 | 661.54 | 0.62 | 44.82 |
2q | Cl | 3,5-CF3 | 428.16 | 6.43 | 1 | 2 | 5 | 29.10 | 695.67 | 1.05 | 36.88 |
Ro5 | <500 | <5 | <5 | <10 | – | – | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strharsky, T.; Pindjakova, D.; Kos, J.; Vrablova, L.; Michnova, H.; Hosek, J.; Strakova, N.; Lelakova, V.; Leva, L.; Kavanova, L.; et al. Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides. Int. J. Mol. Sci. 2022, 23, 3159. https://doi.org/10.3390/ijms23063159
Strharsky T, Pindjakova D, Kos J, Vrablova L, Michnova H, Hosek J, Strakova N, Lelakova V, Leva L, Kavanova L, et al. Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides. International Journal of Molecular Sciences. 2022; 23(6):3159. https://doi.org/10.3390/ijms23063159
Chicago/Turabian StyleStrharsky, Tomas, Dominika Pindjakova, Jiri Kos, Lucia Vrablova, Hana Michnova, Jan Hosek, Nicol Strakova, Veronika Lelakova, Lenka Leva, Lenka Kavanova, and et al. 2022. "Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides" International Journal of Molecular Sciences 23, no. 6: 3159. https://doi.org/10.3390/ijms23063159
APA StyleStrharsky, T., Pindjakova, D., Kos, J., Vrablova, L., Michnova, H., Hosek, J., Strakova, N., Lelakova, V., Leva, L., Kavanova, L., Oravec, M., Cizek, A., & Jampilek, J. (2022). Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides. International Journal of Molecular Sciences, 23(6), 3159. https://doi.org/10.3390/ijms23063159