Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer
Abstract
:1. Colorectal Cancer
1.1. Epidemiology
1.2. Pathogenesis
1.3. Classification
1.4. Diagnostics
2. VEGF Family and Their Receptors
2.1. Physiological Function of VEGF Family
2.2. Pathological Role of VEGF Family
3. Possible Utilities of VEGF Family Members in Colorectal Cancer
3.1. VEGF as a Diagnostic Biomarker
3.2. VEGF as a Therapeutic Target
3.3. Relationship between VEGF and Apoptosis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsiuying, W. MicroRNAs and Apoptosis in Colorectal Cancer. Int. J. Mol. Sci. 2020, 21, 5353. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Simon, K. Colorectal cancer development and advances in screening. Clin. Interv. Aging 2016, 11, 967–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Cancer Research Fund/American Institute for Cancer Research, The Continuous Update Project Expert Report 2018. Diet, Nutrition, Physical Activity and Colorectal Cancer. Available online: https://www.wcrf.org/wp-content/uploads/2021/02/Colorectal-cancer-report.pdf (accessed on 4 February 2022).
- Thanikachalam, K.; Khan, G. Colorectal Cancer and Nutrition. Nutrients 2019, 11, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abancens, M.; Bustos, V.; Harvey, H.; McBryan, J.; Harvey, B.J. Sexual Dimorphism in Colon Cancer. Front. Oncol. 2020, 10, 607909. [Google Scholar] [CrossRef] [PubMed]
- de Porras, V.R.; Layos, L.; Martínez-Balibrea, E. Curcumin: A therapeutic strategy for colorectal cancer? Semin. Cancer Biol. 2021, 73, 321–330. [Google Scholar] [CrossRef]
- Al-Joufi, F.A.; Setia, A.; Salem-Bekhit, M.M.; Sahu, R.K.; Alqahtani, F.Y.; Widyowati, R.; Aleanizy, F.S. Molecular Pathogenesis of Colorectal Cancer with an Emphasis on Recent Advances in Biomarkers, as well as Nanotechnology-Based Diagnostic and Therapeutic Approaches. Nanomaterials 2022, 12, 169. [Google Scholar] [CrossRef] [PubMed]
- Bali, M.E.; Bakkach, J.; Mechita, M.B. Colorectal Cancer: From Genetic Landscape to Targeted Therapy. J. Oncol. 2021, 2021, 9918116. [Google Scholar] [CrossRef]
- Takahashi, S. Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy. Biol. Pharm. Bull. 2011, 34, 1785–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zajkowska, M.; Lubowicka, E.; Szmitkowski, M.; Ławicki, S. Czynniki z rodziny VEGF oraz ich receptory w diagnostyce raka piersi. Diagn. Lab. 2018, 54, 105–112. [Google Scholar] [CrossRef]
- Lohela, M.; Bry, M.; Tammela, T.; Alitalo, K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr. Opin. Cell Biol. 2009, 21, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Gao, Z.; Huang, L.; Qin, H. Gut microbiota and colorectal cancer. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 757–776. [Google Scholar] [CrossRef]
- Ueno, H.; Mochizuki, H.; Akagi, Y.; Kusumi, T.; Yamada, K. Optimal Colorectal Cancer Staging Criteria in TNM Classification. J. Clin. Med. 2021, 17, 267. [Google Scholar] [CrossRef] [PubMed]
- Jass, J.R.; Morson, B.C. Reporting colorectal cancer. J. Clin. Pathol. 1987, 40, 1016–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noszczyk, W. Chirurgia; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2005; pp. 898–899. [Google Scholar]
- Alidoust, M.; Hamzehzadeh, L.; Shamshiri, A.K.; Afzaljavan, F.; Kerachian, M.A.; Fanipakdel, A.; Aledavood, S.A.; Allahyari, A.; Bari, A.; Mozaffari, H.M.; et al. Association of SMAD7 genetic markers and haplotypes with colorectal cancer risk. BMC Med. Genom. 2022, 15, 8. [Google Scholar] [CrossRef]
- Lech, G.; Słotwiński, R.; Słodkowski, M.; Krasnodębski, I.W. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances. World J. Gastroenterol. 2016, 22, 1745–1755. [Google Scholar] [CrossRef]
- Osumi, H.; Shinozaki, E.; Yamaguchi, K.; Zembutsu, H. Clinical utility of circulating tumor DNA for colorectal cancer. Cancer Sci. 2019, 110, 1148–1155. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Yang, Y.; Yang, C.; Li, H.; Cheng, H.; Zheng, Y. Overexpression of LBX2 associated with tumor progression and poor prognosis in colorectal cancer. Oncol. Lett. 2020, 19, 3751–3760. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Wang, W.; Deng, J.; Ni, T.; Chu, Z.; Lv, M.; Liu, Y.; Zhou, Y. A long noncoding RNA, LncRNA-LOC100127888, is associated with poor prognosis in colorectal cancer patients. Bull. Cancer 2022, 109(3), 258–267. [Google Scholar] [CrossRef]
- Sidorkiewicz, I.; Zbucka-Krętowska, M.; Zaręba, K.; Lubowicka, E.; Zajkowska, M.; Szmitkowski, M.; Gacuta, E.; Ławicki, S. Plasma levels of M-CSF and VEGF in laboratory diagnostics and differentiation of selected histological types of cervical cancers. BMC Cancer 2019, 19, 398. [Google Scholar] [CrossRef]
- de Almeida, P.E.; Mak, J.; Hernandez, G.R.; Herault, A.; Javinal, V.; Borneo, J.; Kim, J.M.; Walsh, K.B. Anti-VEGF Treatment Enhances CD8 + T-cell Antitumor Activity by Amplifying Hypoxia. Cancer Immunol. Res. 2020, 8, 806–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.A. Vascular endothelial growth factor (VEGF)—key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar] [PubMed]
- Kristensen, T.B.; Knutsson, M.L.; Wehland, M.; Laursen, B.E.; Grimm, D.; Warnke, E.; Magnusson, N.E. Anti-vascular endothelial growth factor therapy in breast cancer. Int. J. Mol. Sci. 2014, 15, 23024–23041. [Google Scholar] [CrossRef] [PubMed]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease. Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005, 69 (Suppl. 3), 4–10. [Google Scholar] [CrossRef]
- Wang, J.; Xiang, Y.; Jiang, S.; Li, H.; Caviezel, F.; Katawatin, S.; Duangjinda, M. Involvement of the VEGF signaling pathway in immunosuppression and hypoxia stress: Analysis of mRNA expression in lymphocytes mediating panting in Jersey cattle under heat stress. BMC Vet. Res. 2021, 17, 209. [Google Scholar] [CrossRef]
- Chavakis, E.; Dimmeler, S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arter. Thromb. Vasc. Biol. 2002, 22, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Dimova, I.; Djonov, V. Angiogenesis in cancer general pathways and their therapeutic implications. JBUON 2014, 19, 15–21. [Google Scholar]
- Rajabi, M.; Mousa, S.A. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol. Life Sci. 2020, 77, 745–770. [Google Scholar] [CrossRef] [Green Version]
- Kudelski, J.; Młynarczyk, G.; Darewicz, B.; Bruczko-Goralewska, M.; Romanowicz, L. Dominative role of MMP-14 over MMP-15 in human urinary bladder carcinoma on the basis of its enhanced specific activity. Medicine 2020, 99, e19224. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Carrer, A.; Moimas, S.; Zandonà, L.; Bussani, R.; Casagranda, B.; Palmisano, S.; Prelazzi, P.; Giacca, M.; Zentilin, L.; et al. VEGF121 and VEGF165 differentially promote vessel maturation and tumor growth in mice and humans. Cancer Gene Ther. 2016, 23, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Costache, M.I.; Iordache, S.; Ene, D.; Costache, C.A.; Saftoiu, A. VEGF expression in pancreatic cancer and other malignancies: A review of the literature. Rom. J. Intern. Med. 2015, 53, 199–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Zong, S.; Zeng, H.; Ruan, X.; Yao, L.; Han, S.; Hou, F. MicroRNAs and angiogenesis: A new era for the management of colorectal cancer. Cancer Cell Int. 2021, 21, 221. [Google Scholar] [CrossRef]
- Yanase, M.; Kato, K.; Yoshizawa, K.; Noguchi, N.; Kitahara, H.; Nakamura, H. Prognostic value of vascular endothelial growth factors A and C in oral squamous cell carcinoma. J. Oral Pathol. Med. 2014, 43, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Blank, S.; Deck, C.; Dreikhausen, L.; Weichert, W.; Giese, N.; Falk, C.; Schmidt, T.; Ott, K. Angiogenic and growth factors in gastric cancer. J. Surg. Res. 2015, 194, 420–429. [Google Scholar] [CrossRef]
- Zhao, Z.; Xia, G.; Li, N.; Su, R.; Chen, X.; Zhong, L. Autophagy Inhibition Promotes Bevacizumab-induced Apoptosis and Proliferation Inhibition in Colorectal Cancer Cells. J. Cancer 2018, 9, 3407–3416. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, M.H.; Shaik, A.S.; Mohammed, M.; Khayal, K.A.A.; Traiki, T.B.; Zubaidi, A.M.; Al-Johani, T.; Shakoor, Z.; Al-Obeed, O.A. Expression of VEGF, EGF and HGF in early- and late-stage colorectal cancer. Mol. Clin. Oncol. 2021, 15, 251. [Google Scholar] [CrossRef]
- Martini, M.; de Pascalis, I.; D’Alessandris, Q.G.; Fiorentino, V.; Pierconti, F.; Marei, H.E.; Ricci-Vitiani, L.; Pallini, R.; Larocca, L.M. VEGF-121 plasma level as biomarker for response to anti-angiogenetic therapy in recurrent glioblastoma. BMC Cancer 2018, 18, 553. [Google Scholar] [CrossRef] [Green Version]
- Wojtukiewicz, M.; Mysliwiec, M.; Sierko, E.; Sobierska, M.; Kruszewska, J.; Lipska, A.; Radziwon, P.; Tucker, C.S.; Honn, K.V. Elevated Microparticles, Thrombin-antithrombin and VEGF Levels in Colorectal Cancer Patients Undergoing Chemotherapy. Pathol. Oncol. Res. 2020, 26, 2499–2507. [Google Scholar] [CrossRef]
- Celen, O.; Kahraman, I.; Yildirim, E.; Berberoglu, U. Correlation of vascular endothelial growth factor (VEGF) and CEA with clinicopathological variables in colorectal cancer patients. Neoplasma 2004, 51, 293–299. [Google Scholar] [PubMed]
- Li, Z.P.; Han, J.Q.; Meng, X.W.; Yang, Y.F. Clinical value of preoperative serum VEGF, CRP and IL-6 levels in colorectal carcinoma. Zhonghua zhong liu za zhi [Chin. J. Oncol.] 2010, 32, 795–799. [Google Scholar]
- Wang, G.; Wang, Y.; Yang, X.; Zhang, Y.; Lu, Y.; Li, Y. The expression and diagnostic value of serum levels of EphA2 and VEGF-A in patients with colorectal cancer. Cancer Biomark. 2021, 31, 399–408. [Google Scholar] [CrossRef]
- Schee, K.; Boye, K.; Abrahamsen, T.W.; Fodstad, Ø.; Flatmark, K. Clinical relevance of microRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 in colorectal cancer. BMC Cancer 2012, 12, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, J.; Hurwitz, I.H.; Sandler, B.A.; Miles, D.; Coleman, L.R.; Deurloo, R.; Chinot, L.O. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev. 2020, 86, 102017. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Wang, R.; Wang, Y.; Peng, S.; Ma, Y.; Ding, S.; Yang, H.; Chen, S.; Luo, X.; Wang, W. Dual inhibition of VEGF and PARP suppresses KRAS-mutant colorectal cancer. Neoplasia 2020, 22, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Mody, K.; Baldeo, C.; Bekaii-Saab, T. Antiangiogenic Therapy in Colorectal Cancer. Cancer J. 2018, 24, 165–170. [Google Scholar] [CrossRef]
- Kabel, A.M.; Ashour, A.M.; Ali, D.A.; Arab, H.H. The immunomodulatory effects of topiramate on azoxymethane-induced colon carcinogenesis in rats: The role of the inflammatory cascade, vascular endothelial growth factor, AKT/mTOR/MAP kinase signaling and the apoptotic markers. Int. Immunopharmacol. 2021, 98, 107830. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, J.; Zhu, J.; Yin, X.; You, H.; Lin, Y.; Zhu, H. MicroRNA-125 inhibits RKO colorectal cancer cell growth by targeting VEGF. Int. J. Mol. Med. 2018, 42, 665–673. [Google Scholar] [CrossRef]
- Yan, S.; Wang, H.; Chen, X.; Liang, C.; Shang, W.; Wang, L.; Li, J.; Xu, D. MiR-182-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-C. Cancer Lett. 2020, 488, 18–26. [Google Scholar] [CrossRef]
- Strippoli, A.; Cocomazzi, A.; Basso, M.; Cenci, T.; Ricci, R.; Pierconti, F.; Cassano, A.; Fiorentino, V.; Barone, C.; Bria, E.; et al. c-MYC Expression Is a Possible Keystone in the Colorectal Cancer Resistance to EGFR Inhibitors. Cancers 2020, 12, 638. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.; Sun, Y.; Pan, X.; Yang, J.; Li, X.; Wu, A.; Qin, D.; Cao, S.; Zou, W.; Wu, J. Antitumor Effects of Trimethylellagic Acid Isolated from Sanguisorba officinalis L. on Colorectal Cancer via Angiogenesis Inhibition and Apoptosis Induction. Front. Pharmacol. 2020, 10, 1646. [Google Scholar] [PubMed]
- Li, S.; van Dijk, C.G.M.; Meeldijk, J.; Kok, H.M.; Blommestein, I.; Verbakel, A.L.F.; Kotte, M.; Broekhuizen, R.; Laclé, M.M.; Goldschmeding, R.; et al. Extracellular Granzyme K Modulates Angiogenesis by Regulating Soluble VEGFR1 Release from Endothelial Cells. Front. Oncol. 2021, 11, 681967. [Google Scholar] [CrossRef]
- Yu, M.; Qi, B.; Wu, X.; Xu, J.; Liu, X. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed. Pharmacother. 2017, 90, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhong, K.; Tan, J.; Meng, M.; Liu, C.M.; Chen, B.; Huang, C.; Wong, H.L.X.; Bian, Z.; Su, T.; et al. Baicalein is a novel TLR4-targeting therapeutics agent that inhibits TLR4/HIF-1α/VEGF signaling pathway in colorectal cancer. Clin. Transl. Med. 2021, 11, e564. [Google Scholar] [CrossRef] [PubMed]
- de Mejia, E.G.; Dia, V.P. The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis. Rev. 2010, 29, 511–528. [Google Scholar] [CrossRef] [PubMed]
- Stoian, M.; State, N.; Stoica, V.; Radulian, G. Apoptosis in colorectal cancer. J. Med. Life 2014, 7, 160–164. [Google Scholar]
- Ramesh, P.; Medema, J.P. BCL-2 family deregulation in colorectal cancer: Potential for BH3 mimetics in therapy. Apoptosis 2020, 25, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Folkman, J. Angiogenesis and apoptosis. Semin. Cancer Biol. 2003, 13, 159–167. [Google Scholar] [CrossRef]
- Watson, E.C.; Grant, Z.L.; Coultas, L. Endothelial cell apoptosis in angiogenesis and vessel regression. Cell Mol. Life Sci. 2017, 74, 4387–4403. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Li, M.Y.; Wang, Z.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Jin, C.; Xu, G.; Piao, L.; Piao, H.; et al. Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer. Phytomedicine 2020, 68, 153172. [Google Scholar] [CrossRef] [PubMed]
Classification | Definition |
---|---|
T—primary tumor | TX: primary tumor cannot be assessed T0: no evidence of primary tumor Tis: carcinoma in situ, intramucosal carcinoma (involvement of lamina propria with no invasion through muscularis mucosae) T1: tumor invades submucosa (through the muscularis mucosa but not into the muscularis propria) T2: tumor invades muscularis propria T3: tumor invades through the muscularis propria into the pericolorectal tissues T4: tumor invades surrounding tissues T4a: tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum) T4b: tumor directly invades or adheres to other adjacent organs or structures |
N—regional lymph nodes | NX: regional lymph nodes cannot be assessed N0: no regional lymph node metastasis N1: metastasis in 1–3 regional lymph nodes N1a: metastasis in 1 regional lymph node N1b: metastasis in 2–3 regional lymph nodes N1c: no regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery or nonperitonealized pericolic or perirectal/mesorectal tissues N2: metastasis in 4 or more regional lymph nodes N2a: metastasis in 4–6 regional lymph nodes N2b: metastasis in 7 or more regional lymph nodes |
M—distant metastasis | MX: distant metastasis cannot be assessed M0: no distant metastasis by imaging; no evidence of tumor in other sites or organs M1: distant metastasis M1a: metastasis confined to 1 organ or site without peritoneal metastasis M1b: metastasis to 2 or more organs or sites but without peritoneal metastasis M1c: metastasis to the peritoneal surface is identified alone or with other site or organ metastases |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dakowicz, D.; Zajkowska, M.; Mroczko, B. Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 3375. https://doi.org/10.3390/ijms23063375
Dakowicz D, Zajkowska M, Mroczko B. Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer. International Journal of Molecular Sciences. 2022; 23(6):3375. https://doi.org/10.3390/ijms23063375
Chicago/Turabian StyleDakowicz, Dominika, Monika Zajkowska, and Barbara Mroczko. 2022. "Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer" International Journal of Molecular Sciences 23, no. 6: 3375. https://doi.org/10.3390/ijms23063375
APA StyleDakowicz, D., Zajkowska, M., & Mroczko, B. (2022). Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer. International Journal of Molecular Sciences, 23(6), 3375. https://doi.org/10.3390/ijms23063375