Antiphospholipid Antibodies and Lipids in Hematological Malignancies
Abstract
:1. Overview of Lipids
1.1. Classification of Lipids
1.2. Lipid Biosynthesis
2. Overview of Phospholipids
3. Lipids and Their Relationship with Hematological Malignancies’ Biology
Lipids, Phospholipids, and Hematological Malignancies
4. Phospholipids as a Target of Antibodies in the Immune Response
4.1. Overview of Antiphospholipid Antibodies
4.2. Anti-β2 Glycoprotein I (anti-β2GP-I)
4.3. Anticardiolipin Antibodies (aCL)
4.4. Lupus Anticoagulant (LA)
5. Autoantibodies in Hematological Malignancies
5.1. aPL
5.2. ANCA
5.3. ANA
6. Mechanisms of Cellular Activation of aPL and Hematological Malignancies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | Acetyl-CoA carboxylase |
AMPK | AMP-activated kinase |
anti-β2GP-I | Anti-β2 glycoprotein I |
anti-dsDNA | Double-stranded anti-DNA antibodies |
aCL | Anticardiolipin |
ADCC | Antibody-dependent cell-mediated cytotoxicity |
ANCA | Anti-cytoplasmic neutrophil antibodies |
aPL | Antiphospholipid antibodies |
APS | Antiphospholipid syndrome |
CCL | Chronic lymphocytic leukemia |
CCP | Cytidine choline diphosphate |
DNA | Deoxyribonucleic acid |
ENAs | Autoantibodies against extractable nuclear antigens |
FAS | Fatty acid synthase |
LA | Lupus anticoagulant |
HL | Hodgkin Lymphoma |
NETs | Extracellular neutrophil traps |
NHL | Non-Hodgkin Lymphoma |
PC | Phosphatidylcholine |
PEMT | Phosphatidylethanolamine N-methyltransferase |
TLR2 | Receptor type Toll 2 |
TLR4 | Receptor type Toll 4 |
TLR7 | Receptor type Toll 7 |
References
- Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys. Acta 2011, 1811, 637–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdge, G.C.; Calder, P.C. Introduction to fatty acids and lipids. World Rev. Nutr. Diet. 2015, 112, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Sohlenkamp, C.; Geiger, O. Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiol. Rev. 2016, 40, 133–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowhan, W.; Bogdanov, M.; Mileykovskaya, E. Chapter 1—Functional Roles of Lipids in Membranes. In Biochemistry of Lipids, Lipoproteins and Membranes, 6th ed.; Ridgway, N.D., McLeod, R.S., Eds.; Elsevier: Boston, MA, USA, 2016; pp. 1–40. [Google Scholar]
- Zhang, C.; Wang, K.; Yang, L.; Liu, R.; Chu, Y.; Qin, X.; Yang, P.; Yu, H. Lipid metabolism in inflammation-related diseases. Analyst 2018, 143, 4526–4536. [Google Scholar] [CrossRef]
- Brown, H.A.; Marnett, L.J. Introduction to Lipid Biochemistry, Metabolism, and Signaling. Chem. Rev. 2011, 111, 5817–5820. [Google Scholar] [CrossRef]
- Afonso, M.S.; Machado, R.M.; Lavrador, M.S.; Quintao, E.C.R.; Moore, K.J.; Lottenberg, A.M. Molecular Pathways Underlying Cholesterol Homeostasis. Nutrients 2018, 10, 760. [Google Scholar] [CrossRef] [Green Version]
- Caforio, A.; Driessen, A.J.M. Archaeal phospholipids: Structural properties and biosynthesis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1325–1339. [Google Scholar] [CrossRef]
- Lagace, T.A.; Ridgway, N.D. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. Biochim. Biophys. Acta 2013, 1833, 2499–2510. [Google Scholar] [CrossRef] [Green Version]
- Mejia, E.M.; Hatch, G.M. Mitochondrial phospholipids: Role in mitochondrial function. J. Bioenerg. Biomembr. 2016, 48, 99–112. [Google Scholar] [CrossRef]
- Cole, L.K.; Vance, J.E.; Vance, D.E. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim. Biophys. Acta 2012, 1821, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Vance, D.E. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 2008, 49, 1187–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, A.; Sharma-Walia, N. Curbing Lipids: Impacts ON Cancer and Viral Infection. Int. J. Mol. Sci. 2019, 20, 644. [Google Scholar] [CrossRef] [Green Version]
- Baenke, F.; Peck, B.; Miess, H.; Schulze, A. Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour development. Dis. Models Mech. 2013, 6, 1353–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larrouy-Maumus, G. Lipids as Biomarkers of Cancer and Bacterial Infections. Curr. Med. Chem. 2019, 26, 1924–1932. [Google Scholar] [CrossRef] [PubMed]
- Kant, S.; Kumar, A.; Singh, S.M. Tumor growth retardation and chemosensitizing action of fatty acid synthase inhibitor orlistat on T cell lymphoma: Implication of reconstituted tumor microenvironment and multidrug resistance phenotype. Biochim. Biophys. Acta 2014, 1840, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Hussain, A.R.; Ahmed, M.; Bu, R.; Ahmed, S.O.; Ajarim, D.; Al-Dayel, F.; Bavi, P.; Al-Kuraya, K.S. Inhibition of fatty acid synthase suppresses c-Met receptor kinase and induces apoptosis in diffuse large B-cell lymphoma. Mol. Cancer Ther. 2010, 9, 1244–1255. [Google Scholar] [CrossRef] [Green Version]
- Grunt, T.W. Interacting Cancer Machineries: Cell Signaling, Lipid Metabolism, and Epigenetics. Trends Endocrinol. Metab. 2018, 29, 86–98. [Google Scholar] [CrossRef]
- Buckley, D.; Duke, G.; Heuer, T.S.; O’Farrell, M.; Wagman, A.S.; McCulloch, W.; Kemble, G. Fatty acid synthase—Modern tumor cell biology insights into a classical oncology target. Pharmacol. Ther. 2017, 177, 23–31. [Google Scholar] [CrossRef]
- Gelebart, P.; Zak, Z.; Anand, M.; Belch, A.; Lai, R. Blockade of fatty acid synthase triggers significant apoptosis in mantle cell lymphoma. PLoS ONE 2012, 7, e33738. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Puerta, J.A.; Espinosa, G.; Cervera, R. Antiphospholipid Antibodies: From General Concepts to Its Relation with Malignancies. Antibodies 2016, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassalo, J.; Spector, N.; de Meis, E.; Rabello, L.S.; Rosolem, M.M.; do Brasil, P.E.; Salluh, J.I.; Soares, M. Antiphospholipid antibodies in critically ill patients with cancer: A prospective cohort study. J. Crit. Care 2014, 29, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Sciascia, S.; Radin, M.; Bazzan, M.; Roccatello, D. Novel diagnostic and therapeutic frontiers in thrombotic anti-phospholipid syndrome. Intern. Emerg. Med. 2017, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Virachith, S.; Saito, M.; Watanabe, Y.; Inoue, K.; Hoshi, O.; Kubota, T. Anti-beta2 -glycoprotein I antibody with DNA binding activity enters living monocytes via cell surface DNA and induces tissue factor expression. Clin. Exp. Immunol. 2019, 195, 167–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.A. Antiphospholipid antibodies and antiphospholipid syndrome in cancer: Uninvited guests in troubled times. Semin. Cancer Biol. 2020, 64, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, K.; Sciascia, S.; de Groot, P.G.; Devreese, K.; Jacobsen, S.; Ruiz-Irastorza, G.; Salmon, J.E.; Shoenfeld, Y.; Shovman, O.; Hunt, B.J. Antiphospholipid syndrome. Nat. Rev. Dis. Primers 2018, 4, 17103. [Google Scholar] [CrossRef]
- Chaturvedi, S.; McCrae, K.R. Diagnosis and management of the antiphospholipid syndrome. Blood Rev. 2017, 31, 406–417. [Google Scholar] [CrossRef]
- Willis, R.; Gonzalez, E.B.; Brasier, A.R. The journey of antiphospholipid antibodies from cellular activation to antiphospholipid syndrome. Curr. Rheumatol. Rep. 2015, 17, 16. [Google Scholar] [CrossRef]
- Kalgudi, S.; Ho, K.M. Incidence of Antithrombin Deficiency and Anti-Cardiolipin Antibodies After Severe Traumatic Brain Injury: A Prospective Cohort Study. Neurocrit. Care 2020. [Google Scholar] [CrossRef]
- Hoxha, A.; Banzato, A.; Ruffatti, A.; Pengo, V. Detection of lupus anticoagulant in the era of direct oral anticoagulants. Autoimmun. Rev. 2017, 16, 173–178. [Google Scholar] [CrossRef]
- Sur, L.M.; Floca, E.; Sur, D.G.; Colceriu, M.C.; Samasca, G.; Sur, G. Antinuclear Antibodies: Marker of Diagnosis and Evolution in Autoimmune Diseases. Lab. Med. 2018, 49, e62–e73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Wahab, N.; Tayar, J.H.; Fa’ak, F.; Sharma, G.; Lopez-Olivo, M.A.; Yousif, A.; Shagroni, T.; Al-Hawamdeh, S.; Rojas-Hernandez, C.M.; Suarez-Almazor, M.E. Systematic review of observational studies reporting antiphospholipid antibodies in patients with solid tumors. Blood Adv. 2020, 4, 1746–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Markham, M.; Mandernach, M.W. Marginal zone lymphoma-associated antiphospholipid antibodies successfully treated with bendamustine rituximab. BMJ Case Rep. 2019, 12, e224636. [Google Scholar] [CrossRef] [PubMed]
- Suwanchote, S.; Rachayon, M.; Rodsaward, P.; Wongpiyabovorn, J.; Deekajorndech, T.; Wright, H.L.; Edwards, S.W.; Beresford, M.W.; Rerknimitr, P.; Chiewchengchol, D. Anti-neutrophil cytoplasmic antibodies and their clinical significance. Clin. Rheumatol. 2018, 37, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Scandolara, T.B.; da Silva, J.C.; Malanowski, J.; de Oliveira, J.A.; Rech, D.; Panis, C. Anti-neutrophil antibodies (anti-MPO-ANCAs) are associated with poor prognosis in breast cancer patients. Immunobiology 2020, 225, 152011. [Google Scholar] [CrossRef] [PubMed]
- Vlagea, A.; Falagan, S.; Gutierrez-Gutierrez, G.; Moreno-Rubio, J.; Merino, M.; Zambrana, F.; Casado, E.; Sereno, M. Antinuclear antibodies and cancer: A literature review. Crit. Rev. Oncol. Hematol. 2018, 127, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Yamada, T.; Nakamura, R.; Katayama, Y.; Tanaka, S.; Takumi, C.; Hiraoka, N.; Ogura, Y.; Takeda, T.; Onoi, K.; et al. Impact of preexisting antinuclear antibodies on combined immunotherapy and chemotherapy in advanced non-small cell lung cancer patients. Med. Oncol. 2020, 37, 111. [Google Scholar] [CrossRef]
- Nisihara, R.; Machoski, M.C.C.; Neppel, A.; Maestri, C.A.; Messias-Reason, I.; Skare, T.L. Anti-nuclear antibodies in patients with breast cancer. Clin. Exp. Immunol. 2018, 193, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Grygiel-Gorniak, B.; Rogacka, N.; Puszczewicz, M. Antinuclear antibodies in healthy people and non-rheumatic diseases—Diagnostic and clinical implications. Reumatologia 2018, 56, 243–248. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, L.; Zhu, H.Y.; Miao, Y.; Wu, W.; Liang, J.H.; Cao, L.; Xia, Y.; Wu, J.Z.; Wang, Y.; et al. Presence of serum antinuclear antibodies correlating unfavorable overall survival in patients with chronic lymphocytic leukemia. Chin. Med. J. 2019, 132, 525–533. [Google Scholar] [CrossRef]
- Lang, J.; Ma, K.; Guo, J.; Zhang, J.; Wang, Q.; Sun, H. Clinical significance of elevated antinuclear antibodies in patients with diffuse large B-cell lymphoma: A single center study. J. Cancer Res. Ther. 2018, 14, 213–219. [Google Scholar] [CrossRef]
- Uskudar Teke, H.; Gulbas, Z.; Bal, C. Serum levels of cytokines and prevalence of autoantibodies in lymphoma patients and their prognostic value. JBUON 2014, 19, 191–197. [Google Scholar] [PubMed]
- Genvresse, I.; Luftner, D.; Spath-Schwalbe, E.; Buttgereit, F. Prevalence and clinical significance of anticardiolipin and anti-beta2-glycoprotein-I antibodies in patients with non-Hodgkin’s lymphoma. Eur. J. Haematol. 2002, 68, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Pusterla, S.; Previtali, S.; Marziali, S.; Cortelazzo, S.; Rossi, A.; Barbui, T.; Galli, M. Antiphospholipid antibodies in lymphoma: Prevalence and clinical significance. Hematol. J. 2004, 5, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Kungwankiattichai, S.; Nakkinkun, Y.; Owattanapanich, W.; Ruchutrakool, T. High Incidence of Antiphospholipid Antibodies in Newly Diagnosed Patients With Lymphoma and a Proposed aPL Predictive Score. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620928392. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef]
- Scandolara, T.B.; Panis, C. Neutrophil traps, anti-myeloperoxidase antibodies and cancer: Are they linked? Immunol. Lett. 2020, 221, 33–38. [Google Scholar] [CrossRef]
- Philipponnet, C.; Garrouste, C.; Le Guenno, G.; Cartery, C.; Guillevin, L.; Boffa, J.J.; Heng, A.E. Antineutrophilic cytoplasmic antibody-associated vasculitis and malignant hemopathies, a retrospective study of 16 cases. Jt. Bone Spine 2017, 84, 51–57. [Google Scholar] [CrossRef]
- Sevim, E.; Willis, R.; Erkan, D. Is there a role for immunosuppression in antiphospholipid syndrome? Hematol. Am. Soc. Hematol. Educ. Program. 2019, 2019, 426–432. [Google Scholar] [CrossRef]
- Sharma, M.C. Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers. Int. J. Cancer 2019, 144, 2074–2081. [Google Scholar] [CrossRef]
- Muller-Calleja, N.; Lackner, K.J. Mechanisms of Cellular Activation in the Antiphospholipid Syndrome. Semin. Thromb. Hemost. 2018, 44, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Zibouche, M.; Illien, F.; Ayala-Sanmartin, J. Annexin A2 expression and partners during epithelial cell differentiation. Biochem. Cell Biol. 2019, 97, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Staquicini, D.I.; Rangel, R.; Guzman-Rojas, L.; Staquicini, F.I.; Dobroff, A.S.; Tarleton, C.A.; Ozbun, M.A.; Kolonin, M.G.; Gelovani, J.G.; Marchio, S.; et al. Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting. Sci. Rep. 2017, 7, 4243. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.V.; Hogdall, C.K.; Jochumsen, K.M.; Hogdall, E.V.S. Annexin A2 and cancer: A systematic review. Int. J. Oncol. 2018, 52, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.W.; Liu, Y.F.; Cao, X.Q.; Wang, Y.; Cui, X.H.; Ye, X.; Huang, S.W.; Xie, H.J.; Zhang, H.J. Annexin A2 promotion of hepatocellular carcinoma tumorigenesis via the immune microenvironment. World J. Gastroenterol. 2020, 26, 2126–2137. [Google Scholar] [CrossRef] [PubMed]
- Shetab Boushehri, M.A.; Lamprecht, A. TLR4-Based Immunotherapeutics in Cancer: A Review of the Achievements and Shortcomings. Mol. Pharm. 2018, 15, 4777–4800. [Google Scholar] [CrossRef] [PubMed]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef]
- Murata, M. Inflammation and cancer. Environ. Health Prev. Med. 2018, 23, 50. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121–126. [Google Scholar] [CrossRef]
- Salle, V.; Maziere, J.C.; Smail, A.; Cevallos, R.; Maziere, C.; Fuentes, V.; Tramier, B.; Makdassi, R.; Choukroun, G.; Vittecoq, O.; et al. Anti-annexin II antibodies in systemic autoimmune diseases and antiphospholipid syndrome. J. Clin. Immunol. 2008, 28, 291–297. [Google Scholar] [CrossRef]
- Sorice, M.; Buttari, B.; Capozzi, A.; Profumo, E.; Facchiano, F.; Truglia, S.; Recalchi, S.; Alessandri, C.; Conti, F.; Misasi, R.; et al. Antibodies to age-beta2 glycoprotein I in patients with anti-phospholipid antibody syndrome. Clin. Exp. Immunol. 2016, 184, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, R.; Bitton, A.; Nahary, L.; Arango, M.T.; Benhar, I.; Blank, M.; Shoenfeld, Y.; Chapman, J. Cross-reactivity between annexin A2 and Beta-2-glycoprotein I in animal models of antiphospholipid syndrome. Immunol. Res. 2017, 65, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yu, M.; Guo, Q.; Li, R.; Li, G.; Tan, S.; Li, X.; Wei, Y.; Wu, M. Annexin A2 binds to endosomes and negatively regulates TLR4-triggered inflammatory responses via the TRAM-TRIF pathway. Sci. Rep. 2015, 5, 15859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, H.; Zhou, H.; Wang, H.; Chen, D.; Xia, L.; Wang, T.; Yan, J. Anti-beta(2)GPI/beta(2)GPI induced TF and TNF-alpha expression in monocytes involving both TLR4/MyD88 and TLR4/TRIF signaling pathways. Mol. Immunol. 2013, 53, 246–254. [Google Scholar] [CrossRef]
- Zhou, H.; Yan, Y.; Xu, G.; Zhou, B.; Wen, H.; Guo, D.; Zhou, F.; Wang, H. Toll-like receptor (TLR)-4 mediates anti-beta2GPI/beta2GPI-induced tissue factor expression in THP-1 cells. Clin. Exp. Immunol. 2011, 163, 189–198. [Google Scholar] [CrossRef]
- Zhou, H.; Sheng, L.; Wang, H.; Xie, H.; Mu, Y.; Wang, T.; Yan, J. Anti-beta2GPI/beta2GPI stimulates activation of THP-1 cells through TLR4/MD-2/MyD88 and NF-kappaB signaling pathways. Thromb. Res. 2013, 132, 742–749. [Google Scholar] [CrossRef]
- Rodriguez-Pinto, I.; Moitinho, M.; Santacreu, I.; Shoenfeld, Y.; Erkan, D.; Espinosa, G.; Cervera, R.; Group, C.R.P. Catastrophic antiphospholipid syndrome (CAPS): Descriptive analysis of 500 patients from the International CAPS Registry. Autoimmun. Rev. 2016, 15, 1120–1124. [Google Scholar] [CrossRef]
- Cervera, R.; Rodriguez-Pinto, I.; Espinosa, G. The diagnosis and clinical management of the catastrophic antiphospholipid syndrome: A comprehensive review. J. Autoimmun. 2018, 92, 1–11. [Google Scholar] [CrossRef]
- Romero-Caballero, M.D.; Lozano-Garcia, I.; Gomez-Molina, C.; Gil-Linan, A.I.; Arcas, I. Primary lymphocytic lymphoma of lacrimal gland. Arch. Soc. Esp. Oftalmol. 2017, 92, 82–85. [Google Scholar] [CrossRef]
- Oka, S.; Ono, K.; Nohgawa, M. Successful Treatment of Catastrophic Antiphospholipid Antibody Syndrome Associated with MALT Lymphoma by Autologous Hematopoietic Stem Cell Transplantation. Intern. Med. 2017, 56, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Bonnin, A.J.; DeBrosse, C.; Moncrief, T.; Richmond, G.W. Case report presenting the diagnostic challenges in a patient with recurrent acquired angioedema, antiphospholipid antibodies and undetectable C2 levels. Allergy Asthma Clin. Immunol. 2018, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Ba, M.; Li, C.; Li, H.; Guo, Z.; He, P.; Lin, C. A case of acute myelogenous leukemia characterized by arterial and venous thrombosis. Cardiovasc. Diagn. Ther. 2020, 10, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Chen, L.; Hou, J.; Chi, H.; Wang, Z.; Yang, C.; Su, Y. Probable catastrophic antiphospholipid syndrome secondary to chronic myelomonocytic leukaemia in an adult patient and a mini review. Lupus 2020, 29, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, N.; Norozi, S. Massive pulmonary thrombo-embolism in a case of multiple myeloma and concurrent anti-phospholipid syndrome. Indian J. Cancer 2016, 53, 42–43. [Google Scholar] [CrossRef] [PubMed]
Categories | ||||||
---|---|---|---|---|---|---|
Fatty and Conjugated Acids | Glycerolipids | Glycerophospholipids | Sterols | |||
Sphingolipids | Prenol Lipids | Saccharolipids | Polyketide | |||
Function | Promote angiogenesis, reduce inflammation | Energy store, second messenger signaling lipid, stabilization of T cell activation and proliferation | Structural components of the membrane affects membrane fluidity. Component of the cell membrane induces lipotoxicity and inflammation, regulates apoptosis. | Regulates the progression of aging-related diseases, diabetes | Cell wall lipids from plants, bacteria, and fungi | Anti-microbial, anti-parasitic, and anticancer functions |
Examples | Octadecanoids, eicosanoids, docosanoids, fatty acids esters, fatty amides, fatty acid glycosides | Monoradyl-glycerol, diradyl-glycerol, triadyl-glycerol, glycosyl-monoradyl-glycerol and glycosyl-diradyl-glycerol | Sphingoid bases, ceramides, phosphosphingolipids, neutral glycosphingolipids, acid glycosphingolipids. | Isoprenoids, polyprenols | Acrylamine-Sugar | Linear polyketide |
Type of Neoplasm | Type of Autoantibodies | Percentage |
---|---|---|
Hodgkin lymphoma [22,23,26,43] | LA | 67% |
aCL | 67% | |
anti β2 GP I | 46% | |
Non Hodgkin lymphoma [22,23,26,42,43,44] | ANAs | 30.5% |
aCL | 22% | |
LA | 48–61% | |
anti β2 GP I | 46% | |
Acute and chronic leukemia [22,23,26,41] | ANAs | |
aCL | 40–62% | |
LA | 48% | |
anti β2 GP I | 6% | |
Myeloma multiple [22,23] | aCL | 40–62% |
LA | 48% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreno-Rocha, S.G.; Guzmán-Silahua, S.; Rodríguez-Dávila, S.-d.-C.; Gavilanez-Chávez, G.E.; Cardona-Muñoz, E.G.; Riebeling-Navarro, C.; Rubio-Jurado, B.; Nava-Zavala, A.H. Antiphospholipid Antibodies and Lipids in Hematological Malignancies. Int. J. Mol. Sci. 2022, 23, 4151. https://doi.org/10.3390/ijms23084151
Barreno-Rocha SG, Guzmán-Silahua S, Rodríguez-Dávila S-d-C, Gavilanez-Chávez GE, Cardona-Muñoz EG, Riebeling-Navarro C, Rubio-Jurado B, Nava-Zavala AH. Antiphospholipid Antibodies and Lipids in Hematological Malignancies. International Journal of Molecular Sciences. 2022; 23(8):4151. https://doi.org/10.3390/ijms23084151
Chicago/Turabian StyleBarreno-Rocha, Sonia Guadalupe, Sandra Guzmán-Silahua, Sinaí-del-Carmen Rodríguez-Dávila, Guadalupe Estela Gavilanez-Chávez, Ernesto Germán Cardona-Muñoz, Carlos Riebeling-Navarro, Benjamín Rubio-Jurado, and Arnulfo Hernán Nava-Zavala. 2022. "Antiphospholipid Antibodies and Lipids in Hematological Malignancies" International Journal of Molecular Sciences 23, no. 8: 4151. https://doi.org/10.3390/ijms23084151
APA StyleBarreno-Rocha, S. G., Guzmán-Silahua, S., Rodríguez-Dávila, S.-d.-C., Gavilanez-Chávez, G. E., Cardona-Muñoz, E. G., Riebeling-Navarro, C., Rubio-Jurado, B., & Nava-Zavala, A. H. (2022). Antiphospholipid Antibodies and Lipids in Hematological Malignancies. International Journal of Molecular Sciences, 23(8), 4151. https://doi.org/10.3390/ijms23084151