Connexin Mutations and Hereditary Diseases
Abstract
:1. Introduction
2. Hereditary Diseases and Connexins
2.1. Hereditary Deafness
2.1.1. Connexin Mutations and Hereditary Deafness
2.1.2. Mouse Models for Human Hereditary Deafness
Gjb2-Related Deafness Models
Gjb6-Related Deafness Models
2.2. Congenital Cataract
2.2.1. Connexin Mutations and Congenital Cataract
2.2.2. Mouse Models for Human Congenital Cataract
2.3. Congenital Heart Diseases
2.3.1. Connexin Mutations and Congenital Heart Diseases
2.3.2. Mouse Models for Human Congenital Heart Diseases
Gja1-Related Heart Disease Models
Gja5- and Gjc1-Related Heart Disease Models
2.4. Hereditary Skin Diseases
2.4.1. Connexin Mutations and Hereditary Skin Diseases
2.4.2. Mouse Models for Human Hereditary Skin Diseases
2.5. X-Linked Charcot–Marie–Tooth Disease
2.5.1. Connexin Mutations and X-Linked Charcot–Marie–Tooth Disease
2.5.2. Mouse Models for Human CMT1X
3. Functional Effects of Gene Mutations on Corresponding Connexins
3.1. Effects on Hemichannel or Gap Junction Formation
3.2. Functional Effects of Gene Mutations on Gap Junctions
3.3. Functional Effects of Gene Mutations on Hemichannels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mulkearns-Hubert, E.E.; Torre-Healy, L.A.; Silver, D.J.; Eurich, J.T.; Bayik, D.; Serbinowski, E.; Hitomi, M.; Zhou, J.; Przychodzen, B.; Zhang, R.L.; et al. Development of a Cx46 Targeting Strategy for Cancer Stem Cells. Cell Rep. 2019, 27, 1062–1072.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.M.; Gilula, N.B. The gap junction communication channel. Cell 1996, 84, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Beyer, E.C.; Berthoud, V.M. Gap junction gene and protein families: Connexins, innexins, and pannexins. Biochim. Biophys. Acta (BBA)-Biomembr. 2018, 1860, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Beyer, E.C.; Paul, D.L.; Goodenough, D.A. Connexin43: A protein from rat heart homologous to a gap junction protein from liver. J. Cell Biol. 1987, 105, 2621–2629. [Google Scholar] [CrossRef] [Green Version]
- Bosco, D.; Haefliger, J.A.; Meda, P. Connexins: Key mediators of endocrine function. Physiol Rev. 2011, 91, 1393–1445. [Google Scholar] [CrossRef] [Green Version]
- Bruzzone, R.; White, T.W.; Paul, D.L. Connections with connexins: The molecular basis of direct intercellular signaling. Eur. J. Biochem. 1996, 238, 1–27. [Google Scholar] [CrossRef]
- Hua, V.B.; Chang, A.B.; Tchieu, J.H.; Kumar, N.M.; Nielsen, P.A.; Saier, M.H., Jr. Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: Connexins, innexins, claudins and occludins. J. Membr. Biol. 2003, 194, 59–76. [Google Scholar] [CrossRef]
- Mese, G.; Richard, G.; White, T.W. Gap junctions: Basic structure and function. J. Investig. Dermatol. 2007, 127, 2516–2524. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.K.; Jagielnicki, M.; Bennett, B.C.; Purdy, M.D.; Yeager, M. Cryo-EM structure of an open conformation of a gap junction hemichannel in lipid bilayer nanodiscs. Structure 2021, 29, 1040–1047.e3. [Google Scholar] [CrossRef]
- Lee, H.J.; Jeong, H.; Hyun, J.; Ryu, B.; Park, K.; Lim, H.H.; Yoo, J.; Woo, J.S. Cryo-EM structure of human Cx31.3/GJC3 connexin hemichannel. Sci. Adv. 2020, 6, eaba4996. [Google Scholar] [CrossRef]
- Myers, J.B.; Haddad, B.G.; O’Neill, S.E.; Chorev, D.S.; Yoshioka, C.C.; Robinson, C.V.; Zuckerman, D.M.; Reichow, S.L. Structure of native lens connexin 46/50 intercellular channels by cryo-EM. Nature 2018, 564, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Oshima, A. Potential of cryo-EM for high-resolution structural analysis of gap junction channels. Curr. Opin. Struct. Biol. 2019, 54, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Colucci, W.S. Mitochondrial Dynamics in Cardiovascular Medicine Foreword; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Mammano, F. Inner Ear Connexin Channels: Roles in Development and Maintenance of Cochlear Function. Cold Spring Harb. Perspect. Med. 2019, 9, a033233. [Google Scholar] [CrossRef] [PubMed]
- Reaume, A.G.; de Sousa, P.A.; Kulkarni, S.; Langille, B.L.; Zhu, D.; Davies, T.C.; Juneja, S.C.; Kidder, G.M.; Rossant, J. Cardiac malformation in neonatal mice lacking connexin43. Science 1995, 267, 1831–1834. [Google Scholar] [CrossRef] [PubMed]
- Ewart, J.L.; Cohen, M.F.; Meyer, R.A.; Huang, G.Y.; Wessels, A.; Gourdie, R.G.; Chin, A.J.; Park, S.M.J.; Lazatin, B.O.; Villabon, S.; et al. Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene. Development 1997, 124, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Gutstein, D.E.; Morley, G.E.; Tamaddon, H.; Vaidya, D.; Schneider, M.D.; Chen, J.; Chien, K.R.; Stuhlmann, H.; Fishman, G.I. Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ. Res. 2001, 88, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.S.; Liu, F.Y.; Schneider, A.E.; St Amand, T.; Epstein, J.A.; Gutstein, D.E. Distinct cardiac malformations caused by absence of connexin 43 in the neural crest and in the non-crest neural tube. Development 2006, 133, 2063–2073. [Google Scholar] [CrossRef] [Green Version]
- Plum, A.; Hallas, G.; Magin, T.; Dombrowski, F.; Hagendorff, A.; Schumacher, B.; Wolpert, C.; Kim, J.S.; Lamers, W.H.; Evert, M.; et al. Unique and shared functions of different connexins in mice. Curr. Biol. 2000, 10, 1083–1091. [Google Scholar] [CrossRef] [Green Version]
- Zheng-Fischhofer, Q.; Ghanem, A.; Kim, J.S.; Kibschull, M.; Schwarz, G.; Schwab, J.O.; Nagy, J.; Winterhager, E.; Tiemann, K.; Willecke, K. Connexin31 cannot functionally replace connexin43 during cardiac morphogenesis in mice. J. Cell Sci. 2006, 119, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Winterhager, E.; Pielensticker, N.; Freyer, J.; Ghanem, A.; Schrickel, J.W.; Kim, J.S.; Behr, R.; Grummer, R.; Maass, K.; Urschel, S.; et al. Replacement of connexin43 by connexin26 in transgenic mice leads to dysfunctional reproductive organs and slowed ventricular conduction in the heart. BMC Dev. Biol. 2007, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Kalcheva, N.; Qu, J.X.; Sandeep, N.; Garcia, L.; Zhang, J.; Wang, Z.Y.; Lampe, P.D.; Suadicani, S.O.; Spray, D.C.; Fishman, G.I. Gap junction remodeling and cardiac arrhythmogenesis in a murine model of oculodentodigital dysplasia. Proc. Natl. Acad. Sci. USA 2007, 104, 20512–20516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.; Shen, Y.; Chatterjee, B.; Siegfried, B.H.; Leatherbury, L.; Rosenthal, J.; Lucas, J.F.; Wessels, A.; Spurney, C.F.; Wu, Y.J.; et al. ENU induced mutations causing congenital cardiovascular anomalies. Development 2004, 131, 6211–6223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maass, K.; Ghanem, A.; Kim, J.S.; Saathoff, M.; Urschel, S.; Kirfel, G.; Grummer, R.; Kretz, M.; Lewalter, T.; Tiemann, K.; et al. Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin43. Mol. Biol. Cell 2004, 15, 4597–4608. [Google Scholar] [CrossRef] [Green Version]
- Lubkemeier, I.; Requardt, R.P.; Lin, X.; Sasse, P.; Andrie, R.; Schrickel, J.W.; Chkourko, H.; Bukauskas, F.F.; Kim, J.S.; Frank, M.; et al. Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels. Basic Res. Cardiol. 2013, 108, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrowolski, R.; Sasse, P.; Schrickel, J.W.; Watkins, M.; Kim, J.S.; Rackauskas, M.; Troatz, C.; Ghanem, A.; Tiemann, K.; Degen, J.; et al. The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans. Hum. Mol. Genet. 2008, 17, 539–554. [Google Scholar] [CrossRef]
- Flenniken, A.M.; Osborne, L.R.; Anderson, N.; Ciliberti, N.; Fleming, C.; Gittens, J.E.I.; Gong, X.Q.; Kelsey, L.B.; Lounsbury, C.; Moreno, L.; et al. A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development 2005, 132, 4375–4386. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Li, E.; Klier, G.; Huang, Q.; Wu, Y.; Lei, H.; Kumar, N.M.; Horwitz, J.; Gilula, N.B. Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 1997, 91, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.H.; Cheng, C.; Huang, Q.L.; Cheung, D.; Li, L.; Dunia, I.; Benedetti, L.E.; Horwitz, J.; Gong, X.H. Absence of alpha 3 (Cx46) and alpha 8 (Cx50) connexins leads to cataracts by affecting lens inner fiber cells. Exp. Eye Res. 2006, 83, 688–696. [Google Scholar] [CrossRef]
- Berthoud, V.M.; Minogue, P.J.; Yu, H.; Snabb, J.I.; Beyer, E.C. Connexin46fs380 causes progressive cataracts. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6639–6648. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Smith, F.C.; Taffet, S.M.; Delmar, M. High incidence of cardiac malformations in connexin40-deficient mice. Circ. Res. 2003, 93, 201–206. [Google Scholar] [CrossRef]
- Kirchhoff, S.; Nelles, E.; Hagendorff, A.; Kruger, O.; Traub, O.; Willecke, K. Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Curr. Biol. 1998, 8, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.M.; Goodenough, D.A.; Paul, D.L. Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr. Biol. 1998, 8, 295–298. [Google Scholar] [CrossRef] [Green Version]
- Alcolea, S.; Jarry-Guichard, T.; de Bakker, J.; Gonzalez, D.; Lamers, W.; Coppen, S.; Barrio, L.; Jongsma, H.; Gros, D.; van Rijen, H. Replacement of connexin40 by connexin45 in the mouse—Impact on cardiac electrical conduction. Circ. Res. 2004, 94, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Graw, J.; Loster, J.; Soewarto, D.; Fuchs, H.; Meyer, B.; Reis, A.; Wolf, E.; Balling, R.; Hrabe de Angelis, M. Characterization of a mutation in the lens-specific MP70 encoding gene of the mouse leading to a dominant cataract. Exp. Eye Res. 2001, 73, 867–876. [Google Scholar] [CrossRef]
- Chang, B.; Wang, X.; Hawes, N.L.; Ojakian, R.; Davisson, M.T.; Lo, W.K.; Gong, X.H. A Gja8 (Cx50) point mutation causes an alteration of alpha 3 connexin (Cx46) in semi-dominant cataracts of Lop10 mice. Hum. Mol. Genet. 2002, 11, 507–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, C.H.; Chang, B.; Derosa, A.M.; Cheng, C.; White, T.W.; Gong, X. Cataracts and microphthalmia caused by a Gja8 mutation in extracellular loop 2. PLoS ONE 2012, 7, e52894. [Google Scholar] [CrossRef] [Green Version]
- Steele, E.C.; Lyon, M.F.; Favor, J.; Guillot, P.V.; Boyd, Y.; Church, R.L. A mutation in the connexin 50 (Cx50) gene is a candidate for the No2 mouse cataract. Curr. Eye Res. 1998, 17, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.H.; Liu, H.; Cheung, D.; Cheng, C.; Wang, E.; Du, X.; Beutler, B.; Lo, W.K.; Gong, X. Diverse gap junctions modulate distinct mechanisms for fiber cell formation during lens development and cataractogenesis. Development 2006, 133, 2033–2040. [Google Scholar] [CrossRef] [Green Version]
- White, T.W.; Goodenough, D.A.; Paul, D.L. Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J. Cell Biol. 1998, 143, 815–825. [Google Scholar] [CrossRef]
- Rong, P.; Wang, X.; Niesman, I.; Wu, Y.; Benedetti, L.E.; Dunia, I.; Levy, E.; Gong, X. Disruption of Gja8 (alpha8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation. Development 2002, 129, 167–174. [Google Scholar] [CrossRef]
- White, T.W. Unique and redundant connexin contributions to lens development. Science 2002, 295, 319–320. [Google Scholar] [CrossRef] [PubMed]
- Kudo, T.; Kure, S.; Ikeda, K.; Xia, A.P.; Katori, Y.; Suzuki, M.; Kojima, K.; Ichinohe, A.; Suzuki, Y.; Aoki, Y.; et al. Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and non-syndromic deafness. Hum. Mol. Genet. 2003, 12, 995–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schutz, M.; Auth, T.; Gehrt, A.; Bosen, F.; Korber, I.; Strenzke, N.; Moser, T.; Willecke, K. The connexin26 S17F mouse mutant represents a model for the human hereditary keratitis-ichthyosis-deafness syndrome. Hum. Mol. Genet. 2011, 20, 28–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen-Salmon, M.; Ott, T.; Michel, V.; Hardelin, J.P.; Perfettini, I.; Eybalin, M.; Wu, T.; Marcus, D.C.; Wangemann, P.; Willecke, K.; et al. Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr. Biol. 2002, 12, 1106–1111. [Google Scholar] [CrossRef]
- Takada, Y.; Beyer, L.A.; Swiderski, D.L.; O’Neal, A.L.; Prieskorn, D.M.; Shivatzki, S.; Avraham, K.B.; Raphael, Y. Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy. Hear. Res. 2014, 309, 124–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.F.; Chang, Q.; Tang, W.X.; Sun, Y.; Zhou, B.F.; Li, H.W.; Lin, X. Targeted connexin26 ablation arrests postnatal development of the organ of Corti. Biochem. Biophys. Res. Commun. 2009, 385, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liang, C.; Chen, J.; Zong, L.; Chen, G.D.; Zhao, H.B. Active cochlear amplification is dependent on supporting cell gap junctions. Nat. Commun. 2013, 4, 1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Xu, K.; Xie, L.; Cao, H.Y.; Wu, X.; Du, A.N.; He, Z.H.; Lin, X.; Sun, Y.; Kong, W.J. The spatial distribution pattern of Connexin26 expression in supporting cells and its role in outer hair cell survival. Cell Death Dis. 2018, 9, 1180. [Google Scholar] [CrossRef]
- Bakirtzis, G.; Choudhry, R.; Aasen, T.; Shore, L.; Brown, K.; Bryson, S.; Forrow, S.; Tetley, L.; Finbow, M.; Greenhalgh, D.; et al. Targeted epidermal expression of mutant Connexin 26 (D66H) mimics true Vohwinkel syndrome and provides a model for the pathogenesis of dominant connexin disorders. Hum. Mol. Genet. 2003, 12, 1737–1744. [Google Scholar] [CrossRef]
- Mese, G.; Sellitto, C.; Li, L.P.; Wang, H.Z.; Valiunas, V.; Richard, G.; Brink, P.R.; White, T.W. The Cx26-G45E mutation displays increased hemichannel activity in a mouse model of the lethal form of keratitis-ichthyosis-deafness syndrome. Mol. Biol. Cell 2011, 22, 4776–4786. [Google Scholar] [CrossRef] [Green Version]
- Plum, A.; Winterhager, E.; Pesch, J.; Lautermann, J.; Hallas, G.; Rosentreter, B.; Traub, O.; Herberhold, C.; Willecke, K. Connexin31-deficiency in mice causes transient placental dysmorphogenesis but does not impair hearing and skin differentiation. Dev. Biol. 2001, 231, 334–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnichels, M.; Worsdorfer, P.; Dobrowolski, R.; Markopoulos, C.; Kretz, M.; Schwarz, G.; Winterhager, E.; Willecke, K. The Connexin31 F137L mutant mouse as a model for the human skin disease Erythrokeratodermia variabilis (EKV). Hum. Mol. Genet. 2007, 16, 1216–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schutz, M.; Scimemi, P.; Majumder, P.; De Siati, R.D.; Crispino, G.; Rodriguez, L.; Bortolozzi, M.; Santarelli, R.; Seydel, A.; Sonntag, S.; et al. The human deafness-associated connexin 30 T5M mutation causes mild hearing loss and reduces biochemical coupling among cochlear non-sensory cells in knock-in mice. Hum. Mol. Genet. 2010, 19, 4759–4773. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Tang, W.X.; Chang, Q.; Qu, Y.; Hibshman, J.; Li, Y.H.; Sohl, G.; Willecke, K.; Chen, P.; Lin, X. Restoration of connexin26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin30-linked deafness. Proc. Natl. Acad. Sci. USA 2007, 104, 1337–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teubner, B.; Michel, V.; Pesch, J.; Lautermann, J.; Cohen-Salmon, M.; Sohl, G.; Jahnke, K.; Winterhager, E.; Herberhold, C.; Hardelin, J.P.; et al. Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum. Mol. Genet. 2003, 12, 13–21. [Google Scholar] [CrossRef]
- Boulay, A.C.; del Castillo, F.J.; Giraudet, F.; Hamard, G.; Giaume, C.; Petit, C.; Avan, P.; Cohen-Salmon, M. Hearing Is Normal without Connexin30. J. Neurosci. 2013, 33, 430–434. [Google Scholar] [CrossRef] [Green Version]
- Bosen, F.; Schutz, M.; Beinhauer, A.; Strenzke, N.; Franz, T.; Willecke, K. The Clouston syndrome mutation connexin30 A88V leads to hyperproliferation of sebaceous glands and hearing impairments in mice. FEBS Lett. 2014, 588, 1795–1801. [Google Scholar] [CrossRef] [Green Version]
- Mei, L.; Chen, J.; Zong, L.; Zhu, Y.; Liang, C.; Jones, R.O.; Zhao, H.B. A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall. NeuroBiol. Dis. 2017, 108, 195–203. [Google Scholar] [CrossRef]
- Kumai, M.; Nishii, K.; Nakamura, K.; Takeda, N.; Suzuki, M.; Shibata, Y. Loss of connexin45 causes a cushion defect in early cardiogenesis. Development 2000, 127, 3501–3512. [Google Scholar] [CrossRef]
- Nishii, K.; Kumai, M.; Egashira, K.; Miwa, T.; Hashizume, K.; Miyano, Y.; Shibata, Y. Mice lacking connexin45 conditionally in cardiac myocytes display embryonic lethality similar to that of germline knockout mice without endocardial cushion defect. Cell Commun. Adhes. 2003, 10, 365–369. [Google Scholar] [CrossRef]
- Frank, M.; Eiberger, B.; Janssen-Bienhold, U.; Muller, L.P.D.; Tjarks, A.; Kim, J.S.; Maschke, S.; Dobrowolski, R.; Sasse, P.; Weiler, R.; et al. Neuronal connexin-36 can functionally replace connexin-45 in mouse retina but not in the developing heart. J. Cell Sci. 2010, 123, 3605–3615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betsuyaku, T.; Nnebe, N.S.; Sundset, R.; Patibandla, S.; Krueger, C.M.; Yamada, K.A. Overexpression of cardiac connexin45 increases susceptibility to ventricular tachyarrhythmias in vivo. Am. J. Physiol.-Heart Circ. Physiol. 2006, 290, H163–H171. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.; Wirth, A.; Andrie, R.P.; Kreuzberg, M.M.; Dobrowolski, R.; Seifert, G.; Offermanns, S.; Nickenig, G.; Willecke, K.; Schrickel, J.W. Connexin45 Provides Optimal Atrioventricular Nodal Conduction in the Adult Mouse Heart. Circ. Res. 2012, 111, 1528–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.X.; Zhang, Y.P.; Chang, Q.; Ahmad, S.; Dahlke, I.; Yi, H.; Chen, P.; Paul, D.L.; Lin, X. Connexin29 is highly expressed in cochlear Schwann cells, and it is required for the normal development and function of the auditory nerve of mice. J. Neurosci. 2006, 26, 1991–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eiberger, J.; Kibschull, M.; Stvenzke, N.; Schober, A.; Bussov, H.; Wessig, C.; Djahed, S.; Reucher, H.; Koch, D.A.; Lautermann, J.; et al. Expression pattern and functional characterization of connexin29 in transgenic mice. Glia 2006, 53, 601–611. [Google Scholar] [CrossRef]
- Wingard, J.C.; Zhao, H.B. Cellular and deafness mechanisms underlying connexin mutation-induced hearing loss—A common hereditary deafness. Front. Cell Neurosci. 2015, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Hosoya, M.; Fujioka, M.; Murayama, A.Y.; Ogawa, K.; Okano, H.; Ozawa, H. Dynamic Spatiotemporal Expression Changes in Connexins of the Developing Primate’s Cochlea. Genes 2021, 12, 1082. [Google Scholar] [CrossRef]
- Lautermann, J.; ten Cate, W.J.; Altenhoff, P.; Grummer, R.; Traub, O.; Frank, H.; Jahnke, K.; Winterhager, E. Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res. 1998, 294, 415–420. [Google Scholar] [CrossRef]
- Liu, W.; Li, H.; Edin, F.; Brannstrom, J.; Glueckert, R.; Schrott-Fischer, A.; Molnar, M.; Pacholsky, D.; Pfaller, K.; Rask-Andersen, H. Molecular composition and distribution of gap junctions in the sensory epithelium of the human cochlea—A super-resolution structured illumination microscopy (SR-SIM) study. Ups. J. Med. Sci. 2017, 122, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Edin, F.; Blom, H.; Magnusson, P.; Schrott-Fischer, A.; Glueckert, R.; Santi, P.A.; Li, H.; Laurell, G.; Rask-Andersen, H. Super-resolution structured illumination fluorescence microscopy of the lateral wall of the cochlea: The Connexin26/30 proteins are separately expressed in man. Cell Tissue Res. 2016, 365, 13–27. [Google Scholar] [CrossRef]
- Cohen-Salmon, M.; Maxeiner, S.; Kruger, O.; Theis, M.; Willecke, K.; Petit, C. Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res. 2004, 316, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Usami, S.; Yamazaki, K.; Takumi, Y.; Shinkawa, H.; Kurashima, K.; Kunihiro, T.; Kanzaki, J. Connexin 26 distribution in gap junctions between melanocytes in the human vestibular dark cell area. Anat. Rec. 2001, 262, 137–146. [Google Scholar] [CrossRef]
- Gopalarao, D.; Kimberling, W.J.; Jesteadt, W.; Kelley, P.M.; Beauchaine, K.L.; Cohn, E.S. Is hearing loss due to mutations in the Connexin 26 gene progressive? Int. J. Audiol. 2008, 47, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Orzan, E.; Murgia, A. Connexin 26 deafness is not always congenital. Int. J. Pediatr. Otorhinolaryngol. 2007, 71, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Pollak, A.; Skorka, A.; Mueller-Malesinska, M.; Kostrzewa, G.; Kisiel, B.; Waligora, J.; Krajewski, P.; Oldak, M.; Korniszewski, L.; Skarzynski, H.; et al. M34T and V37I mutations in GJB2 associated hearing impairment: Evidence for pathogenicity and reduced Penetrance. Am. J. Med. Genet. Part A 2007, 143A, 2534–2543. [Google Scholar] [CrossRef]
- Kenna, M.A.; Feldman, H.A.; Neault, M.W.; Frangulov, A.; Wu, B.L.; Fligor, B.; Rehm, H.L. Audiologic Phenotype and Progression in GJB2 (Connexin 26) Hearing Loss. Arch. Otolaryngol. 2010, 136, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Chan, D.K.; Chang, K.W. GJB2-associated hearing loss: Systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope 2014, 124, E34–E53. [Google Scholar] [CrossRef]
- Lucotte, G.; Dieterlen, F. The 35delG mutation in the connexin 26 gene (GJB2) associated with congenital deafness: European carrier frequencies and evidence for its origin in ancient Greece. Genet. Test. 2005, 9, 20–25. [Google Scholar] [CrossRef]
- Dai, Z.Y.; Sun, B.C.; Huang, S.S.; Yuan, Y.Y.; Zhu, Y.H.; Su, Y.; Dai, P. Correlation analysis of phenotype and genotype of GJB2 in patients with non-syndromic hearing loss in China. Gene 2015, 570, 272–276. [Google Scholar] [CrossRef]
- Zheng, J.; Ying, Z.; Cai, Z.; Sun, D.; He, Z.; Gao, Y.; Zhang, T.; Zhu, Y.; Chen, Y.; Guan, M.X. GJB2 Mutation Spectrum and Genotype-Phenotype Correlation in 1067 Han Chinese Subjects with Non-Syndromic Hearing Loss. PLoS ONE 2015, 10, e0128691. [Google Scholar] [CrossRef]
- Lameiras, A.R.; Goncalves, A.C.; Santos, R.; O’Neill, A.; Reis, L.R.; Matos, T.D.; Fialho, G.; Caria, H.; Escada, P. The controversial p.Met34Thr variant in GJB2 gene: Two siblings, one genotype, two phenotypes. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 1316–1319. [Google Scholar] [CrossRef]
- Snoeckx, R.L.; Huygen, P.L.; Feldmann, D.; Marlin, S.; Denoyelle, F.; Waligora, J.; Mueller-Malesinska, M.; Pollak, A.; Ploski, R.; Murgia, A.; et al. GJB2 mutations and degree of hearing loss: A multicenter study. Am. J. Hum. Genet. 2005, 77, 945–957. [Google Scholar] [CrossRef] [Green Version]
- Cryns, K.; Orzan, E.; Murgia, A.; Huygen, P.L.; Moreno, F.; del Castillo, I.; Chamberlin, G.P.; Azaiez, H.; Prasad, S.; Cucci, R.A.; et al. A genotype-phenotype correlation for GJB2 (connexin 26) deafness. J. Med. Genet. 2004, 41, 147–154. [Google Scholar] [CrossRef]
- Wang, X.; Huang, L.; Zhao, X.; Wang, X.; Cheng, X.; Du, Y.; Liu, D. Children with GJB2 gene mutations have various audiological phenotypes. BioSci. Trends 2018, 12, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Grifa, A.; Wagner, C.A.; D’Ambrosio, L.; Melchionda, S.; Bernardi, F.; Lopez-Bigas, N.; Rabionet, R.; Arbones, M.; Della Monica, M.; Estivill, X.; et al. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat. Genet. 1999, 23, 16–18. [Google Scholar] [CrossRef]
- del Castillo, F.J.; Rodriguez-Ballesteros, M.; Alvarez, A.; Hutchin, T.; Leonardi, E.; de Oliveira, C.A.; Azaiez, H.; Brownstein, Z.; Avenarius, M.R.; Marlin, S.; et al. A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J. Med. Genet. 2005, 42, 588–594. [Google Scholar] [CrossRef] [Green Version]
- del Castillo, I.; Villamar, M.; Moreno-Pelayo, M.A.; del Castillo, F.J.; Alvarez, A.; Telleria, D.; Menendez, I.; Moreno, F. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N. Engl. J. Med. 2002, 346, 243–249. [Google Scholar] [CrossRef]
- Pallares-Ruiz, N.; Blanchet, P.; Mondain, M.; Claustres, M.; Roux, A.F. A large deletion including most of GJB6 in recessive non syndromic deafness: A digenic effect? Eur. J. Hum. Genet. 2002, 10, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Su, C.C.; Li, S.Y.; Yen, Y.C.; Nian, J.H.; Liang, W.G.; Yang, J.J. Mechanism of Two Novel Human GJC3 Missense Mutations in Causing Non-Syndromic Hearing Loss. Cell Biochem. Biophys. 2013, 66, 277–286. [Google Scholar] [CrossRef]
- Wang, W.H.; Yang, J.J.; Lin, Y.C.; Yang, J.T.; Chan, C.H.; Li, S.Y. Identification of Novel Variants in the Cx29 Gene of Nonsyndromic Hearing Loss Patients Using Buccal Cells and Restriction Fragment Length Polymorphism Method. Audiol. Neurotol. 2010, 15, 81–87. [Google Scholar] [CrossRef]
- Yang, J.J.; Huang, S.H.; Chou, K.H.; Liao, P.J.; Su, C.C.; Li, S.Y. Identification of mutations in members of the connexin gene family as a cause of nonsyndromic deafness in Taiwan. Audiol. Neurotol. 2007, 12, 198–208. [Google Scholar] [CrossRef]
- Liu, X.Z.; Xia, X.J.; Xu, L.R.; Pandya, A.; Liang, C.Y.; Blanton, S.H.; Brown, S.D.M.; Steel, K.P.; Nance, W.E. Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Hum. Mol. Genet. 2000, 9, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Gardner, P.; Oitmaa, E.; Messner, A.; Hoefsloot, L.; Metspalu, A.; Schrijver, I. Simultaneous multigene mutation detection in patients with sensorineural hearing loss through a novel diagnostic microarray: A new approach for newborn screening follow-up. Pediatrics 2006, 118, 985–994. [Google Scholar] [CrossRef]
- Liu, X.Z.; Xia, X.J.; Adams, J.; Chen, Z.Y.; Welch, K.O.; Tekin, M.; Ouyang, X.M.; Kristiansen, A.; Pandya, A.; Balkany, T.; et al. Mutations in GJA1(connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum. Mol. Genet. 2001, 10, 2945–2951. [Google Scholar] [CrossRef] [Green Version]
- Stojkovic, T.; Latour, P.; Vandenberghe, A.; Hurtevent, J.F.; Vermersch, P. Sensorineural deafness in X-linked Charcot-Marie-Tooth disease with connexin 32 mutation (R142Q). Neurology 1999, 52, 1010–1014. [Google Scholar] [CrossRef]
- Marziano, N.K.; Casalotti, S.O.; Portelli, A.E.; Becker, D.L.; Andrew, F. Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Hum. Mol. Genet. 2003, 12, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Richard, G.; White, T.W.; Smith, L.E.; Bailey, R.A.; Compton, J.G.; Paul, D.L.; Bale, S.J. Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Hum. Genet. 1998, 103, 393–399. [Google Scholar] [CrossRef]
- Inoshita, A.; Iizuka, T.; Okamura, H.O.; Minekawa, A.; Ikeda, K. Postnatal development of the organ of Corti in dominant-negative Gjb2 transgenic mice. Neuroscience 2008, 156, 1039–1047. [Google Scholar] [CrossRef]
- Inoshita, A.; Karasawa, K.; Funakubo, M.; Miwa, A.; Ikeda, K.; Kamiya, K. Dominant negative connexin26 mutation R75W causing severe hearing loss influences normal programmed cell death in postnatal organ of Corti. BMC Genet. 2014, 15, 1. [Google Scholar] [CrossRef] [Green Version]
- Richard, G.; Rouan, F.; Willoughby, C.E.; Brown, N.; Chung, P.; Ryynnen, M.; Jabs, E.W.; Bale, S.J.; Digiovanna, J.J.; Uitto, J. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am. J. Hum. Genet. 2002, 70, 1341–1348. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Hu, L.; Wang, X.; Sun, C.; Lin, X.; Li, L.; Mei, L.; Huang, Z.; Yang, T.; Wu, H. Characterization of a knock-in mouse model of the homozygous p.V37I variant in Gjb2. Sci. Rep. 2016, 6, 33279. [Google Scholar] [CrossRef]
- Chen, S.; Sun, Y.; Lin, X.; Kong, W. Down regulated connexin26 at different postnatal stage displayed different types of cellular degeneration and formation of organ of Corti. Biochem. Biophys. Res. Commun. 2014, 445, 71–77. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Zhu, Y.; Liang, C.; Zhao, H.B. Deafness induced by Connexin 26 (GJB2) deficiency is not determined by endocochlear potential (EP) reduction but is associated with cochlear developmental disorders. Biochem. Biophys. Res. Commun. 2014, 448, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Chang, Q.; Tang, W.; Kim, Y.; Lin, X. Timed conditional null of connexin26 in mice reveals temporary requirements of connexin26 in key cochlear developmental events before the onset of hearing. Neurobiol. Dis. 2015, 73, 418–427. [Google Scholar] [CrossRef]
- Chen, S.; Xie, L.; Xu, K.; Cao, H.Y.; Wu, X.; Xu, X.X.; Sun, Y.; Kong, W.J. Developmental abnormalities in supporting cell phalangeal processes and cytoskeleton in the Gjb2 knockdown mouse model. Dis. Model. Mech. 2018, 11, dmm033019. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.X.; Chen, S.; Xie, L.; Ji, Y.Z.; Wu, X.; Wang, W.W.; Yang, Q.; Yu, J.T.; Sun, Y.; Lin, X.; et al. Reduced Connexin26 in the Mature Cochlea Increases Susceptibility to Noise-Induced Hearing Lossin Mice. Int. J. Mol. Sci. 2016, 17, 301. [Google Scholar] [CrossRef] [Green Version]
- Zong, L.; Chen, J.; Zhu, Y.; Zhao, H.B. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing. Biochem. Biophys. Res. Commun. 2017, 489, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Lukashkina, V.A.; Yamashita, T.; Zuo, J.; Lukashkin, A.N.; Russell, I.J. Amplification mode differs along the length of the mouse cochlea as revealed by connexin 26 deletion from specific gap junctions. Sci. Rep. 2017, 7, 5185. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Chen, S.; Xie, L.; Qiu, Y.; Bai, X.; Liu, X.Z.; Zhang, H.M.; Wang, X.H.; Jin, Y.; Sun, Y.; et al. Local Macrophage-Related Immune Response Is Involved in Cochlear Epithelial Damage in Distinct Gjb2-Related Hereditary Deafness Models. Front. Cell Dev. Biol. 2020, 8, 597769. [Google Scholar] [CrossRef]
- Fetoni, A.R.; Zorzi, V.; Paciello, F.; Ziraldo, G.; Peres, C.; Raspa, M.; Scavizzi, F.; Salvatore, A.M.; Crispino, G.; Tognola, G.; et al. Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway. Redox Biol. 2018, 19, 301–317. [Google Scholar] [CrossRef]
- Minekawa, A.; Abe, T.; Inoshita, A.; Iizuka, T.; Kakehata, S.; Narui, Y.; Koike, T.; Kamiya, K.; Okamura, H.O.; Shinkawa, H.; et al. Cochlear outer hair cells in a dominant-negative connexin26 mutant mouse preserve non-linear capacitance in spite of impaired distortion product otoacoustic emission. Neuroscience 2009, 164, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Crispino, G.; Di Pasquale, G.; Scimemi, P.; Rodriguez, L.; Galindo Ramirez, F.; De Siati, R.D.; Santarelli, R.M.; Arslan, E.; Bortolozzi, M.; Chiorini, J.A.; et al. BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice. PLoS ONE 2011, 6, e23279. [Google Scholar] [CrossRef] [Green Version]
- Anselmi, F.; Hernandez, V.H.; Crispino, G.; Seydel, A.; Ortolano, S.; Roper, S.D.; Kessaris, N.; Richardson, W.; Rickheit, G.; Filippov, M.A.; et al. ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc. Natl. Acad. Sci. USA 2008, 105, 18770–18775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Q.; Tang, W.; Ahmad, S.; Zhou, B.; Lin, X. Gap junction mediated intercellular metabolite transfer in the cochlea is compromised in connexin30 null mice. PLoS ONE 2008, 3, e4088. [Google Scholar] [CrossRef] [Green Version]
- Mazzarda, F.; D’Elia, A.; Massari, R.; De Ninno, A.; Bertani, F.R.; Businaro, L.; Ziraldo, G.; Zorzi, V.; Nardin, C.; Peres, C.; et al. Organ-on-chip model shows that ATP release through connexin hemichannels drives spontaneous Ca2+ signaling in non-sensory cells of the greater epithelial ridge in the developing cochlea. Lab Chip 2020, 20, 3011–3023. [Google Scholar] [CrossRef]
- Kamiya, K.; Yum, S.W.; Kurebayashi, N.; Muraki, M.; Ogawa, K.; Karasawa, K.; Miwa, A.; Guo, X.; Gotoh, S.; Sugitani, Y.; et al. Assembly of the cochlear gap junction macromolecular complex requires connexin 26. J. Clin. Investig. 2014, 124, 1598–1607. [Google Scholar] [CrossRef] [Green Version]
- Berry, V.; Georgiou, M.; Fujinami, K.; Quinlan, R.; Moore, A.; Michaelides, M. Inherited cataracts: Molecular genetics, clinical features, disease mechanisms and novel therapeutic approaches. Br. J. Ophthalmol. 2020, 104, 1331–1337. [Google Scholar] [CrossRef] [Green Version]
- Shiels, A.; Bennett, T.M.; Hejtmancik, J.F. Cat-Map: Putting cataract on the map. Mol. Vis. 2010, 16, 2007–2015. [Google Scholar]
- Pichi, F.; Lembo, A.; Serafino, M.; Nucci, P. Genetics of Congenital Cataract. Dev. Ophthalmol. 2016, 57, 1–14. [Google Scholar] [CrossRef]
- Ponnam, S.P.G.; Ramesha, K.; Tejwani, S.; Ramamurthy, B.; Kannabiran, C. Mutation of the gap junction protein alpha 8 (GJA8) gene causes autosomal recessive cataract. J. Med. Genet. 2007, 44, e85. [Google Scholar] [CrossRef]
- Schmidt, W.; Klopp, N.; Illig, T.; Graw, J. A novel GJA8 mutation causing a recessive triangular cataract. Mol. Vis. 2008, 14, 851–856. [Google Scholar] [PubMed]
- Ma, A.S.; Grigg, J.R.; Ho, G.; Prokudin, I.; Farnsworth, E.; Holman, K.; Cheng, A.; Billson, F.A.; Martin, F.; Fraser, C.; et al. Sporadic and Familial Congenital Cataracts: Mutational Spectrum and New Diagnoses Using Next-Generation Sequencing. Hum. Mutat. 2016, 37, 371–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponnam, S.P.; Ramesha, K.; Matalia, J.; Tejwani, S.; Ramamurthy, B.; Kannabiran, C. Mutational screening of Indian families with hereditary congenital cataract. Mol. Vis. 2013, 19, 1141–1148. [Google Scholar] [PubMed]
- White, T.W.; Bruzzone, R.; Goodenough, D.A.; Paul, D.L. Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70. Mol. Biol. Cell 1992, 3, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Paul, D.L.; Ebihara, L.; Takemoto, L.J.; Swenson, K.I.; Goodenough, D.A. Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J. Cell Biol. 1991, 115, 1077–1089. [Google Scholar] [CrossRef] [Green Version]
- Messina-Baas, O.; Cuevas-Covarrubias, S.A. Inherited Congenital Cataract: A Guide to Suspect the Genetic Etiology in the Cataract Genesis. Mol. Syndromol. 2017, 8, 58–78. [Google Scholar] [CrossRef] [Green Version]
- Favor, J. A comparison of the dominant cataract and recessive specific-locus mutation rates induced by treatment of male mice with ethylnitrosourea. Mutat. Res. 1983, 110, 367–382. [Google Scholar] [CrossRef]
- Runge, P.E.; Hawes, N.L.; Heckenlively, J.R.; Langley, S.H.; Roderick, T.H. Autosomal dominant mouse cataract (Lop-10). Consistent differences of expression in heterozygotes. Investig. Ophthalmol. Vis. Sci. 1992, 33, 3202–3208. [Google Scholar]
- Berthoud, V.M.; Minogue, P.J.; Yu, H.; Schroeder, R.; Snabb, J.I.; Beyer, E.C. Connexin50D47A decreases levels of fiber cell connexins and impairs lens fiber cell differentiation. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7614–7622. [Google Scholar] [CrossRef]
- Gerido, D.A.; Sellitto, C.; Li, L.; White, T.W. Genetic background influences cataractogenesis, but not lens growth deficiency, in Cx50-knockout mice. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2669–2674. [Google Scholar] [CrossRef] [Green Version]
- Tjahjono, N.; Xia, C.H.; Li, R.; Chu, S.; Wang, J.; Gong, X.H. Connexin 50-R205G Mutation Perturbs Lens Epithelial Cell Proliferation and Differentiation. Investig. Ophthalmol. Vis. Sci. 2020, 61, 25. [Google Scholar] [CrossRef] [PubMed]
- Stopka, W.; Libby, T.; Lin, S.; Wang, E.; Xia, C.H.; Gong, X. Age-related changes of lens stiffness in wild-type and Cx46 knockout mice. Exp. Eye Res. 2021, 212, 108777. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, R.M.; Layeghkhavidaki, H.; Kumar, N.M.; Vitale, M.L. Cx30.2 deletion causes imbalances in testicular Cx43, Cx46, and Cx50 and insulin receptors. Reciprocally, diabetes/obesity alters Cx30.2 in mouse testis. Am. J. Physiol. Integr. Comp. Physiol. 2020, 318, R1078–R1090. [Google Scholar] [CrossRef] [PubMed]
- Acuna, R.A.; Varas-Godoy, M.; Herrera-Sepulveda, D.; Retamal, M.A. Connexin46 Expression Enhances Cancer Stem Cell and Epithelial-to-Mesenchymal Transition Characteristics of Human Breast Cancer MCF-7 Cells. Int. J. Mol. Sci. 2021, 22, 12604. [Google Scholar] [CrossRef] [PubMed]
- Orellana, V.P.; Tittarelli, A.; Retamal, M.A. Connexins in melanoma: Potential role of Cx46 in its aggressiveness. Pigment Cell Melanoma Res. 2021, 34, 853–868. [Google Scholar] [CrossRef]
- Johnson, R.D.; Camelliti, P. Role of Non-Myocyte Gap Junctions and Connexin Hemichannels in Cardiovascular Health and Disease: Novel Therapeutic Targets? Int. J. Mol. Sci. 2018, 19, 866. [Google Scholar] [CrossRef] [Green Version]
- Lambiase, P.D.; Tinker, A. Connexins in the heart. Cell Tissue Res. 2015, 360, 675–684. [Google Scholar] [CrossRef]
- Britz-Cunningham, S.H.; Shah, M.M.; Zuppan, C.W.; Fletcher, W.H. Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N. Engl. J. Med. 1995, 332, 1323–1329. [Google Scholar] [CrossRef]
- Dasgupta, C.; Martinez, A.M.; Zuppan, C.W.; Shah, M.M.; Bailey, L.L.; Fletcher, W.H. Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat. Res. 2001, 479, 173–186. [Google Scholar] [CrossRef]
- Wang, B.; Wen, Q.; Xie, X.; Liu, S.; Liu, M.; Tao, Y.; Li, Z.; Suo, P.; Shen, A.; Wang, J.; et al. Mutation analysis of Connexon43 gene in Chinese patients with congenital heart defects. Int. J. Cardiol. 2010, 145, 487–489. [Google Scholar] [CrossRef]
- Van Norstrand, D.W.; Asimaki, A.; Rubinos, C.; Dolmatova, E.; Srinivas, M.; Tester, D.J.; Saffitz, J.E.; Duffy, H.S.; Ackerman, M.J. Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death. Circulation 2012, 125, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Gollob, M.H.; Jones, D.L.; Krahn, A.D.; Danis, L.; Gong, X.Q.; Shao, Q.; Liu, X.Q.; Veinot, J.P.; Tang, A.S.L.; Stewart, A.F.R.; et al. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N. Engl. J. Med. 2006, 354, 2677–2688. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.F.; Yang, J.F.; Wang, Q.; Li, R.G.; Xu, Y.J.; Qu, X.K.; Fang, W.Y.; Liu, X.; Yang, Y.Q. Prevalence and spectrum of GJA5 mutations associated with lone atrial fibrillation. Mol. Med. Rep. 2013, 7, 767–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.G.; Yang, Y.Q.; Gong, X.Q.; Wang, X.H.; Li, R.G.; Tan, H.W.; Liu, X.; Fang, W.Y.; Bai, D.L. Novel Germline GJA5/Connexin40 Mutations Associated with Lone Atrial Fibrillation Impair Gap Junctional Intercellular Communication. Hum. Mutat. 2013, 34, 603–609. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Liu, X.; Zhang, X.L.; Wang, X.H.; Tan, H.W.; Shi, H.F.; Jiang, W.F.; Fang, W.Y. Novel connexin40 missense mutations in patients with familial atrial fibrillation. Europace 2010, 12, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Q.; Zhang, X.L.; Wang, X.H.; Tan, H.W.; Shi, H.F.; Jiang, W.F.; Fang, W.Y.; Liu, X. Connexin40 nonsense mutation in familial atrial fibrillation. Int. J. Mol. Med. 2010, 26, 605–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seki, A.; Ishikawa, T.; Daumy, X.; Mishima, H.; Barc, J.; Sasaki, R.; Nishii, K.; Saito, K.; Urano, M.; Ohno, S.; et al. Progressive Atrial Conduction Defects Associated With Bone Malformation Caused by a Connexin-45 Mutation. J. Am. Coll. Cardiol. 2017, 70, 358–370. [Google Scholar] [CrossRef]
- Basheer, W.A.; Shaw, R.M. Connexin 43 and CaV1.2 Ion Channel Trafficking in Healthy and Diseased Myocardium. Circ. Arrhythmia Electrophysiol. 2016, 9, e001357. [Google Scholar] [CrossRef] [Green Version]
- Boengler, K.; Schulz, R. Connexin 43 and Mitochondria in Cardiovascular Health and Disease. Adv. Exp. Med. Biol. 2017, 982, 227–246. [Google Scholar] [CrossRef]
- Salameh, A.; Blanke, K.; Daehnert, I. Role of connexins in human congenital heart disease: The chicken and egg problem. Front. Pharmacol. 2013, 4, 70. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Shimura, D.; Baum, R.; Hernandez, D.M.; Agvanian, S.; Nagaoka, Y.; Katsumata, M.; Lampe, P.D.; Kleber, A.G.; Hong, T.; et al. Auxiliary trafficking subunit GJA1-20k protects connexin-43 from degradation and limits ventricular arrhythmias. J. Clin. Investig. 2020, 130, 4858–4870. [Google Scholar] [CrossRef]
- Sun, Z.P.; Yang, Y.T.; Wu, L.L.; Talabieke, S.; You, H.J.; Zheng, Y.Y.; Luo, D.L. Connexin 43-serine 282 modulates serine 279 phosphorylation in cardiomyocytes. Biochem. Biophys. Res. Commun. 2019, 513, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.T.; Yan, X.X.; Xue, J.Y.; Zheng, Y.Y.; Chen, M.; Sun, Z.P.; Liu, T.T.; Wang, C.; You, H.J.; Luo, D.L. Connexin43 dephosphorylation at serine 282 is associated with connexin43-mediated cardiomyocyte apoptosis. Cell Death Differ. 2019, 26, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.Y.; Xie, L.J.; Linask, K.L.; Zhang, C.; Zhao, X.Q.; Yang, Y.; Zhou, G.M.; Wu, Y.J.; Marquez-Rosado, L.; McElhinney, D.B.; et al. Evaluating the role of connexin43 in congenital heart disease: Screening for mutations in patients with outflow tract anomalies and the analysis of knock-in mouse models. J. Cardiovasc. Dis. Res. 2011, 2, 206–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahoney, V.M.; Mezzano, V.; Mirams, G.R.; Maass, K.; Li, Z.; Cerrone, M.; Vasquez, C.; Bapat, A.; Delmar, M.; Morley, G.E. Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart. Sci. Rep. 2016, 6, 26744. [Google Scholar] [CrossRef]
- Liao, Y.; Day, K.H.; Damon, D.N.; Duling, B.R. Endothelial cell-specific knockout of connexin 43 causes hypotension and bradycardia in mice. Proc. Natl. Acad. Sci. USA 2001, 98, 9989–9994. [Google Scholar] [CrossRef] [Green Version]
- Theis, M.; de Wit, C.; Schlaeger, T.M.; Eckardt, D.; Kruger, O.; Doring, B.; Risau, W.; Deutsch, U.; Pohl, U.; Willecke, K. Endothelium-specific replacement of the connexin43 coding region by a lacZ reporter gene. Genesis 2001, 29, 1–13. [Google Scholar] [CrossRef]
- Lubkemeier, I.; Andrie, R.; Lickfett, L.; Bosen, F.; Stockigt, F.; Dobrowolski, R.; Draffehn, A.M.; Fregeac, J.; Schultze, J.L.; Bukauskas, F.F.; et al. The Connexin40A96S mutation from a patient with atrial fibrillation causes decreased atrial conduction velocities and sustained episodes of induced atrial fibrillation in mice. J. Mol. Cell Cardiol. 2013, 65, 19–32. [Google Scholar] [CrossRef]
- Faniku, C.; Wright, C.S.; Martin, P.E. Connexins and pannexins in the integumentary system: The skin and appendages. Cell Mol. Life Sci. 2015, 72, 2937–2947. [Google Scholar] [CrossRef]
- Richard, G. Connexins: A connection with the skin. Exp. Dermatol. 2000, 9, 77–96. [Google Scholar] [CrossRef]
- Lilly, E.; Sellitto, C.; Milstone, L.M.; White, T.W. Connexin channels in congenital skin disorders. Semin. Cell Dev. Biol. 2016, 50, 4–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrino, F.; Sartorato, E.L.; Marques-de-Faria, A.P.; Steiner, C.E. G59S mutation in the GJB2 (connexin 26) gene in a patient with Bart-Pumphrey syndrome. Am. J. Med. Genet. Part A 2005, 136A, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Van Geel, M.; Van Steensel, M.A.M.; Kuster, W.; Hennies, H.C.; Happle, R.; Steijlen, P.M.; Konig, A. HID and KID syndromes are associated with the same connexin 26 mutation. Br. J. Dermatol. 2002, 146, 938–942. [Google Scholar] [CrossRef] [PubMed]
- de Zwart-Storm, E.A.; van Geel, M.; Veysey, E.; Burge, S.; Cooper, S.; Steijlen, P.M.; Martin, P.E.; van Steensel, M.A.M. A novel missense mutation in GJB2, p.Tyr65His, causes severe Vohwinkel syndrome. Br. J. Dermatol. 2011, 164, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Avshalumova, L.; Fabrikant, J.; Koriakos, A. Overview of skin diseases linked to connexin gene mutations. Int. J. Dermatol. 2014, 53, 192–205. [Google Scholar] [CrossRef]
- Nemoto-Hasebe, I.; Akiyama, M.; Kudo, S.; Ishiko, A.; Tanaka, A.; Arita, K.; Shimizu, H. Novel mutation p.Gly59Arg in GJB6 encoding connexin 30 underlies palmoplantar keratoderma with pseudoainhum, knuckle pads and hearing loss. Br. J. Dermatol. 2009, 161, 452–455. [Google Scholar] [CrossRef]
- Pandey, N.; Xavier, D.F.; Chatterjee, A.; Mani, R.S.; Hiremagalore, R.; Tharakan, A.; Rajashekhar, B.; Anand, A. Functional Analysis of a Novel Connexin30 Mutation in a Large Family with Hearing Loss, Pesplanus, Ichthyosis, Cutaneous Nodules, and Keratoderma. Ann. Hum. Genet. 2016, 80, 11–19. [Google Scholar] [CrossRef] [PubMed]
- van Steensel, M.A.M.; Steijlen, P.M.; Bladergroen, R.S.; Hoefsloot, E.H.; van Ravenswaaij-Arts, C.M.; van Geel, M. A phenotype resembling the clouston syndrome with deafness is associated with a novel missense GJB2 mutation. J. Investig. Dermatol. 2004, 123, 291–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, G.; Brown, N.; Rouan, F.; Van der Schroeff, J.G.; Bijlsma, E.; Eichenfield, L.E.; Sybert, V.P.; Greer, K.E.; Hogan, P.; Campanelli, C.; et al. Genetic heterogeneity in erythrokeratodermia variabilis: Novel mutations in the connexin gene GJB4 (Cx30.3) and genotype-phenotype correlations. J. Investig. Dermatol. 2003, 120, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Houghton, F.D.; Thonnissen, E.; Kidder, G.M.; Naus, C.C.G.; Willecke, K.; Winterhager, E. Doubly mutant mice, deficient in connexin32 and -43, show normal prenatal development of organs where the two gap junction proteins are expressed in the same cells. Dev. Genet. 1999, 24, 5–12. [Google Scholar] [CrossRef]
- Estivill, X.; Fortina, P.; Surrey, S.; Rabionet, R.; Melchionda, S.; D’Agruma, L.; Mansfield, E.; Rappaport, E.; Govea, N.; Mila, M.; et al. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 1998, 351, 394–398. [Google Scholar] [CrossRef]
- Kelsell, D.P.; Dunlop, J.; Stevens, H.P.; Lench, N.J.; Liang, J.N.; Parry, G.; Mueller, R.F.; Leigh, I.M. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 1997, 387, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Zelante, L.; Gasparini, P.; Estivill, X.; Melchionda, S.; DAgruma, L.; Govea, N.; Mila, M.; DellaMonica, M.; Lutfi, J.; Shohat, M.; et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum. Mol. Genet. 1997, 6, 1605–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fridman, V.; Saporta, M.A. Mechanisms and Treatments in Demyelinating CMT. Neurotherapeutics 2021, 18, 2236–2268. [Google Scholar] [CrossRef]
- Kyriakoudi, S.; Sargiannidou, I.; Kagiava, A.; Olympiou, M.; Kleopa, K.A. Golgi-retained Cx32 mutants interfere with gene addition therapy for CMT1X. Hum. Mol. Genet. 2017, 26, 1622–1633. [Google Scholar] [CrossRef] [PubMed]
- Kulshrestha, R.; Burton-Jones, S.; Antoniadi, T.; Rogers, M.; Jaunmuktane, Z.; Brandner, S.; Kiely, N.; Manuel, R.; Willis, T. Deletion of P2 promoter of GJB1 gene a cause of Charcot-Marie-Tooth disease. Neuromuscul. Disord. 2017, 27, 766–770. [Google Scholar] [CrossRef]
- Shy, M.E.; Siskind, C.; Swan, E.R.; Krajewski, K.M.; Doherty, T.; Fuerst, D.R.; Ainsworth, P.J.; Lewis, R.A.; Scherer, S.S.; Hahn, A.F. CMT1X phenotypes represent loss of GJB1 gene function. Neurology 2007, 68, 849–855. [Google Scholar] [CrossRef]
- Siskind, C.E.; Murphy, S.M.; Ovens, R.; Polke, J.; Reilly, M.M.; Shy, M.E. Phenotype expression in women with CMT1X. J. Peripher. Nerv. Syst. 2011, 16, 102–107. [Google Scholar] [CrossRef]
- Kagiava, A.; Karaiskos, C.; Richter, J.; Tryfonos, C.; Lapathitis, G.; Sargiannidou, I.; Christodoulou, C.; Kleopa, K.A. Intrathecal gene therapy in mouse models expressing CMT1X mutations. Hum. Mol. Genet. 2018, 27, 1460–1473. [Google Scholar] [CrossRef]
- Kagiava, A.; Richter, J.; Tryfonos, C.; Karaiskos, C.; Heslegrave, A.J.; Sargiannidou, I.; Rossor, A.M.; Zetterberg, H.; Reilly, M.M.; Christodoulou, C.; et al. Gene replacement therapy after neuropathy onset provides therapeutic benefit in a model of CMT1X. Hum. Mol. Genet. 2019, 28, 3528–3542. [Google Scholar] [CrossRef]
- Anzini, P.; Neuberg, D.H.H.; Schachner, M.; Nelles, E.; Willecke, K.; Zielasek, J.; Toyka, K.V.; Suter, U.; Martini, R. Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J. Neurosci. 1997, 17, 4545–4551. [Google Scholar] [CrossRef] [PubMed]
- Kobsar, I.; Maurer, M.; Ott, T.; Martini, R. Macrophage-related demyelination in peripheral nerves of mice deficient in the gap junction protein connexin 32. Neurosci. Lett. 2002, 320, 17–20. [Google Scholar] [CrossRef]
- Sargiannidou, I.; Vavlitou, N.; Aristodemou, S.; Hadjisavvas, A.; Kyriacou, K.; Scherer, S.S.; Kleopa, K.A. Connexin32 Mutations Cause Loss of Function in Schwann Cells and Oligodendrocytes Leading to PNS and CNS Myelination Defects. J. Neurosci. 2009, 29, 4736–4749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherer, S.S.; Xu, Y.T.; Nelles, E.; Fischbeck, K.; Willecke, K.; Bone, L.J. Connexin32-null mice develop demyelinating peripheral neuropathy. Glia 1998, 24, 8–20. [Google Scholar] [CrossRef]
- Groh, J.; Heinl, K.; Kohl, B.; Wessig, C.; Greeske, J.; Fischer, S.; Martini, R. Attenuation of MCP-1/CCL2 expression ameliorates neuropathy in a mouse model for Charcot-Marie-Tooth 1X. Hum. Mol. Genet. 2010, 19, 3530–3543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groh, J.; Klein, I.; Hollmann, C.; Wettmarshausen, J.; Klein, D.; Martini, R. CSF-1-Activated Macrophages are Target-Directed and Essential Mediators of Schwann Cell Dedifferentiation and Dysfunction in Cx32-Deficient Mice. Glia 2015, 63, 977–986. [Google Scholar] [CrossRef]
- Groh, J.; Basu, R.; Stanley, E.R.; Martini, R. Cell-Surface and Secreted Isoforms of CSF-1 Exert Opposing Roles in Macrophage-Mediated Neural Damage in Cx32-Deficient Mice. J. Neurosci. 2016, 36, 1890–1901. [Google Scholar] [CrossRef] [Green Version]
- Jeng, L.J.; Balice-Gordon, R.J.; Messing, A.; Fischbeck, K.H.; Scherer, S.S. The effects of a dominant connexin32 mutant in myelinating Schwann cells. Mol. Cell Neurosci. 2006, 32, 283–298. [Google Scholar] [CrossRef]
- D’Andrea, P.; Veronesi, V.; Bicego, M.; Melchionda, S.; Zelante, L.; Di Iorio, E.; Bruzzone, R.; Gasparini, P. Hearing loss: Frequency and functional studies of the most common connexin26 alleles. Biochem. Biophys. Res. Commun. 2002, 296, 685–691. [Google Scholar] [CrossRef]
- Thonnissen, E.; Rabionet, R.; Arbones, M.L.; Estivill, X.; Willecke, K.; Ott, T. Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum. Genet. 2002, 111, 190–197. [Google Scholar] [CrossRef]
- Arora, A.; Minogue, P.J.; Liu, X.; Addison, P.K.; Russel-Eggitt, I.; Webster, A.R.; Hunt, D.M.; Ebihara, L.; Beyer, E.C.; Berthoud, V.M.; et al. A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. J. Med. Genet. 2008, 45, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.E.M.; Coleman, S.L.; Casalotti, S.O.; Forge, A.; Evans, W.H. Properties of connexin26 gap junctional proteins derived from mutations associated with non-syndromal heriditary deafness. Hum. Mol. Genet. 1999, 8, 2369–2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibayama, J.; Paznekas, W.; Seki, A.; Taffet, S.; Jabs, E.W.; Delmar, M.; Musa, H. Functional characterization of connexin43 mutations found in patients with oculodentodigital dysplasia. Circ. Res. 2005, 96, E83–E91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, B.C.; Minogue, P.J.; Valiunas, V.; Kanaporis, G.; Brink, P.R.; Berthoud, V.M.; Beyer, E.C. Cataracts are caused by alterations of a critical n-terminal positive charge in connexin50. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2549–2556. [Google Scholar] [CrossRef]
- Garcia, I.E.; Maripillan, J.; Jara, O.; Ceriani, R.; Palacios-Munoz, A.; Ramachandran, J.; Olivero, P.; Perez-Acle, T.; Gonzalez, C.; Saez, J.C.; et al. Keratitis-Ichthyosis-Deafness Syndrome-Associated Cx26 Mutants Produce Nonfunctional Gap Junctions but Hyperactive Hemichannels When Co-Expressed With Wild Type Cx43. J. Investig. Dermatol. 2015, 135, 1338–1347. [Google Scholar] [CrossRef] [Green Version]
- Beltramello, M.; Piazza, V.; Bukauskas, F.F.; Pozzan, T.; Mammano, F. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat. Cell Biol. 2005, 7, 63–69. [Google Scholar] [CrossRef]
- Bicego, M.; Beltramello, M.; Melchionda, S.; Carella, M.; Piazza, V.; Zelante, L.; Bukauskas, F.F.; Arslan, E.; Cama, E.; Pantano, S.; et al. Pathogenetic role of the deafness-related M34T mutation of Cx26. Hum. Mol. Genet. 2006, 15, 2569–2587. [Google Scholar] [CrossRef] [Green Version]
- Lai, A.; Le, D.N.; Paznekas, W.A.; Gifford, W.D.; Jabs, E.W.; Charles, A.C. Oculodentodigital dysplasia connexin43 mutations result in non-functional connexin hemichannels and gap junctions in C6 glioma cells. J. Cell Sci. 2006, 119, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Banks, E.A.; Toloue, M.M.; Shi, Q.; Zhou, Z.J.; Liu, J.L.; Nicholson, B.J.; Jiang, J.X. Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner. J. Cell Sci. 2009, 122, 378–388. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, E.; Manias, J.L.; Gong, X.Q.; Lounsbury, C.S.; Shao, Q.; Bernier, S.M.; Bai, D.L.; Laird, D.W. Functional characterization of oculodentodigital dysplasia-associated Cx43 mutants. Cell Commun. Adhes. 2005, 12, 279–292. [Google Scholar] [CrossRef] [Green Version]
- Tong, J.J.; Sohn, B.C.; Lam, A.; Walters, D.E.; Vertel, B.M.; Ebihara, L. Properties of two cataract-associated mutations located in the NH2 terminus of connexin 46. Am. J. Physiol. Cell Physiol. 2013, 304, C823–C832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.X.; Scherer, S.S.; Yum, S.W. Dominant Cx26 mutants associated with hearing loss have dominant-negative effects on wild type Cx26. Mol. Cell Neurosci. 2011, 47, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrowolski, R.; Sommershof, A.; Willecke, K. Some oculodentodigital dysplasia-associated cx43 mutations cause increased hemichannel activity in addition to deficient gap junction channels. J. Membr. Biol. 2007, 219, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Essenfelder, G.M.; Bruzzone, R.; Lamartine, J.; Charollais, A.; Blanchet-Bardon, C.; Barbe, M.T.; Meda, P.; Waksman, G. Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum. Mol. Genet. 2004, 13, 1703–1714. [Google Scholar] [CrossRef] [PubMed]
- Gerido, D.A.; DeRosa, A.M.; Richard, G.; White, T.W. Aberrant hemichannel properties of Cx26 mutations causing skin disease and deafness. Am. J. Physiol. Cell Physiol. 2007, 293, C337–C345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mhaske, P.V.; Levit, N.A.; Li, L.; Wang, H.Z.; Lee, J.R.; Shuja, Z.; Brink, P.R.; White, T.W. The human Cx26-D50A and Cx26-A88V mutations causing keratitis-ichthyosis-deafness syndrome display increased hemichannel activity. Am. J. Physiol. Cell Physiol. 2013, 304, C1150–C1158. [Google Scholar] [CrossRef] [PubMed]
- Minogue, P.J.; Tong, J.J.; Arora, A.; Russell-Eggitt, I.; Hunt, D.M.; Moore, A.T.; Ebihara, L.; Beyer, E.C.; Berthoud, V.M. A mutant connexin50 with enhanced hemichannel function leads to cell death. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5837–5845. [Google Scholar] [CrossRef]
- Stong, B.C.; Chang, Q.; Ahmad, S.; Lin, X. A novel mechanism for connexin 26 mutation linked deafness: Cell death caused by leaky gap junction hemichannels. Laryngoscope 2006, 116, 2205–2210. [Google Scholar] [CrossRef]
- Sun, Y.; Hills, M.D.; Ye, W.G.; Tong, X.; Bai, D. Atrial fibrillation-linked germline GJA5/connexin40 mutants showed an increased hemichannel function. PLoS ONE 2014, 9, e95125. [Google Scholar] [CrossRef] [Green Version]
- Tong, J.J.; Minogue, P.J.; Kobeszko, M.; Beyer, E.C.; Berthoud, V.M.; Ebihara, L. The connexin46 mutant, Cx46T19M, causes loss of gap junction function and alters hemi-channel gating. J. Membr. Biol. 2015, 248, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Shuja, Z.; Li, L.P.; Gupta, S.; Mese, G.; White, T.W. Connexin26 Mutations Causing Palmoplantar Keratoderma and Deafness Interact with Connexin43, Modifying Gap Junction and Hemichannel Properties. J. Investig. Dermatol. 2016, 136, 225–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, J.J.; Minogue, P.J.; Guo, W.J.; Chen, T.L.; Beyer, E.C.; Berthoud, V.M.; Ebihara, L. Different consequences of cataract-associated mutations at adjacent positions in the first extracellular boundary of connexin50. Am. J. Physiol. Cell Physiol. 2011, 300, C1055–C1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Qiao, C.; Wei, T.; Zheng, F.; Guo, S.; Chen, Q.; Yan, M.; Zhou, X. Mutant connexin 50 (S276F) inhibits channel and hemichannel functions inducing cataract. J. Genet. 2015, 94, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Wang, W.; Zhu, Y.; Jin, C.; Shentu, X.; Jiang, J.; Zhang, Y.; Ni, S. A novel GJA3 mutation associated with congenital nuclear pulverulent and posterior polar cataract in a Chinese family. Hum. Mutat. 2011, 32, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yu, H.; Wang, W.; Gong, X.; Yao, K. A novel GJA8 mutation (p.V44A) causing autosomal dominant congenital cataract. PLoS ONE 2014, 9, e115406. [Google Scholar] [CrossRef]
- Sellitto, C.; Li, L.; White, T.W. Connexin hemichannel inhibition ameliorates epidermal pathology in a mouse model of keratitis ichthyosis deafness syndrome. Sci. Rep. 2021, 11, 24118. [Google Scholar] [CrossRef]
Human | Hereditary Diseases | Mice | ||
---|---|---|---|---|
Gene Name | Protein Name | Gene Name | Protein Name | |
GJA1 | CX43 | ODDD; Congenital heart diseases; SIDS; Hereditary deafness. | Gja1 | Cx43 |
GJA3 | CX46 | Congenital cataract | Gja3 | Cx46 |
GJA4 | CX37 | Gja4 | Cx37 | |
GJA5 | CX40 | Atrial fibrillation; Congenital heart diseases | Gja5 | Cx40 |
- | - | Gja6 | Cx33 | |
GJA8 | CX50 | Congenital cataract | Gja8 | Cx50 |
GJA9 | CX59 | - | - | |
GJA10 | CX62 | Gja10 | Cx57 | |
GJB1 | CX32 | Hereditary deafness | Gjb1 | Cx32 |
GJB2 | CX26 | Hereditary deafness; KID syndrome; HID syndrome; BPS; Vohwinkel syndrome | Gjb2 | Cx26 |
GJB3 | CX31 | EKV; Hereditary deafness | Gjb3 | Cx31 |
GJB4 | CX30.3 | EKV | Gjb4 | Cx30.3 |
GJB5 | CX31.1 | Gjb5 | Cx31.1 | |
GJB6 | CX30 | Hereditary deafness; Clouston syndrome | Gjb6 | Cx30 |
GJB7 | CX25 | - | - | |
GJC1 | CX45 | Heart disease | Gjc1 | Cx45 |
GJC2 | CX47 | Gjc2 | Cx47 | |
GJC3 | CX30.2/CX31.3 | Hereditary deafness | Gjc3 | Cx29 |
GJD2 | CX36 | Gjd2 | Cx36 | |
GJD3 | CX31.9 | Gjd3 | Cx30.2 | |
GJD4 | CX40.1 | Gjd4 | Cx39 | |
GJE1 | CX23 | Gje1 | Cx23 |
Mouse Model | Symptom | Pathophysiological Changes | Reference |
---|---|---|---|
Cx43−/− | heart disease | obstruction of right ventricular outflow tract and abnormal coronary deployment | [15] |
CMV43 | heart disease | malformation of the conotruncus | [16] |
α-MHC-Cre;Cx43flox/flox | sudden arrhythmic death | spontaneous ventricular arrhythmias, reduced ventricular conduction velocity | [17] |
MLC2v-Cre;Cx43flox/flox | sudden arrhythmic death | spontaneous ventricular arrhythmias | [17] |
Wnt1-Cre;Cx43flox/flox | heart disease | abnormal development of coronary, normal formation of OFT | [18] |
P3pro-Cre;Cx43flox/flox | heart disease | infundibular bulging and coronary anomalies | [18] |
Cx43KI32 | spontaneous ventricular arrhythmias | morphological defects, Spontaneous ventricular arrhythmias | [19] |
Cx43KI40 | spontaneous ventricular arrhythmias | mild hypertrophy of heart | [19] |
Cx43KI31 | heart disease | Malformation in the subpulmonary outlet of the right ventricle, low voltage of the QRS complex | [20] |
Cx43KI26 | heart disease | slowed ventricular conduction | [21] |
Cx43+/I130T | heart disease | Reduced Cx43 protein level, conduction velocity, and junctional conductance | [22] |
Gja1W45X | heart disease | Conotruncal malformation, coronary aneurysms. | [23] |
Cx43K258stop | defect of the heart and the epidermal barrier | Impaired differentiation of keratinocytes, dilatation of the right ventricular outflow tract | [24] |
α-MHC-Cre;Cx43floxD378stop/floxD378stop | severe ventricular arrhythmias | impaired cardiac sodium and potassium currents | [25] |
α-MHC-Cre;Cx43+/floxG138R | Spontaneous arrhythmias | loss of the phosphorylated forms of Cx43 | [26] |
Cx43+/jrt | ODDD | dominant-negative effect, syndactyly, enamel hypoplasia, craniofacial anomalies, cardiac dysfunction. | [27] |
pgk-Cre;Cx43+/floxG138R | ODDD | Syndactyly, enamel hypoplasia, craniofacial, bone and heart anomalies, increased activity of ATP-releasing | [26] |
α3−/− | late-onset nuclear cataract | proteolysis of crystallins | [28] |
α3−/−α8−/− | cataracts | cell swelling and degeneration of inner fibers, reduction of gamma-crystallin proteins | [29] |
Cx46fs380 | progressive cataract | Reduced Cx46 protein level, decreased immunoactivity of Cx50 | [30] |
Cx40−/− | atrial arrhythmias | cardiac conduction abnormalities, cardiac malformations | [31,32,33] |
Cx40KI45 | arrhythmia | increased duration of the P wave, a prolonged and fractionated QRS complex. | [34] |
Cx50+/V64A | cataract | clefts in the embryonic lens nucleus, abnormal remnants of the fiber cell nuclei | [35] |
Cx50+/G22R | cataract | a loss-of-function mutant, disruption of the phosphorylated forms of Cx46 | [36] |
Cx50+/R205G | cataracts and microphthalmia | disruption of the phosphorylated forms of Cx46 | [37] |
Cx50+/D47A | cataract | / | [38] |
Cx50+/S50P | cataract | primary lens fiber cells failed to fully elongate | [39] |
Cx50-null | nuclear cataract | microphthalmia, small lenses, | [40] |
α8−/− | nuclear cataract | microphthalmia, small lenses, | [41] |
Cx50KI46 | normal lens | microphthalmia | [42] |
CAG-Cre;Cx26+/floxR75W | deafness | malformation of supporting cells, collapse of tunnel of Corti, degeneration of hair cell | [43] |
pgk-Cre;Cx26+/floxS17F | deafness, hyperplasia of tail and foot epidermis, wounded tails, annular tail restrictions | reduction of the endocochlear potential | [44] |
Otog-Cre;Cx26LoxP/LoxP | deafness | cell death of supporting cells and hair cells | [45] |
Sox10-Cre;Cx26LoxP/LoxP | deafness | degeneration of organ of Corti and SGN | [46] |
Pax2-Cre;Cx26LoxP/LoxP | deafness | arrested development of the inner ear | [47] |
Foxg1-Cre;Cx26LoxP/LoxP | deafness | arrested development of the inner ear | [47] |
Rosa26-CreER;Cx26LoxP/LoxP | deafness | arrested development of the inner ear | [47] |
Prox1-CreER;Cx26LoxP/LoxP | deafness | reduces active cochlear amplification | [48] |
Lgr5-CreER;Cx26LoxP/LoxP | late-onset hearing loss | hair cells loss, morphological change of Deiters’ cells | [49] |
K10 Connexin 26 (D66H) | keratoderma | marked thickening of the epidermal cornified layers, premature keratinocyte programmed cell death | [50] |
Cx26-G45E | hyperkeratosis, scaling, skin folds, and hair loss | hyperplasia, acanthosis, papillomatosis, increased cell size, and osteal plugging, increased hemichannel currents | [51] |
Gjb3−/− | embryonic lethality | no abnormalities of skin and inner ear in surviving mice | [52] |
pgk-Cre;Cx31+/floxF137L | skin disease | hyperproliferation of the stratum germinativum | [53] |
Cx30T5M/T5M | mild hearing loss | Reduced protein levels of Cx30 and Cx26 | [54] |
BACCx26;Cx30−/− | normal hearing | no cell death of hair cells | [55] |
Cx30−/− | severe deafness | disappeared endocochlear potential, degeneration of sensory epithelium, reduced protein levels of Cx26 | [56] |
pgk-Cre;Cx30flox/flox | normal hearing | reduced protein levels of Cx26 | [57] |
pgk-Cre;Cx30+/floxA88V | palmoplantar hyperkeratosis, altered hearing profile | hyperproliferative and enlarged sebaceous glands | [58] |
Cx26+/−/Cx30+/− | hearing loss | reduced endocochlear potential | [59] |
Cx45−/− | heart disease | endocardial cushion defect, conduction block | [60] |
α-actin-Cre;Cx45 flox/flox | heart disease | conduction block | [61] |
Cx45KI36 | heart disease | defects in cardiac morphogenesis and conduction | [62] |
Cx45OE | increased susceptibility of ventricular arrhythmias | remodeling of intercellular coupling | [63] |
α-MHC-CreER;Cx45flox/flox | arrhythmias | Decreased atrioventricular nodal conductivity and Cx30.2 protein level, | [64] |
Cx29−/− | high-frequency hearing loss | prolonged latency of ABR, severe demyelination of spiral ganglion neurons | [65] |
Cx29lacZ/lacZ | normal hearing | no abnormalities of myelin sheaths, normal nerve conduction | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Zheng, J.; Chen, S.; Sun, Y. Connexin Mutations and Hereditary Diseases. Int. J. Mol. Sci. 2022, 23, 4255. https://doi.org/10.3390/ijms23084255
Qiu Y, Zheng J, Chen S, Sun Y. Connexin Mutations and Hereditary Diseases. International Journal of Molecular Sciences. 2022; 23(8):4255. https://doi.org/10.3390/ijms23084255
Chicago/Turabian StyleQiu, Yue, Jianglin Zheng, Sen Chen, and Yu Sun. 2022. "Connexin Mutations and Hereditary Diseases" International Journal of Molecular Sciences 23, no. 8: 4255. https://doi.org/10.3390/ijms23084255
APA StyleQiu, Y., Zheng, J., Chen, S., & Sun, Y. (2022). Connexin Mutations and Hereditary Diseases. International Journal of Molecular Sciences, 23(8), 4255. https://doi.org/10.3390/ijms23084255