Next Article in Journal
Linoleic Acid Attenuates Denervation-Induced Skeletal Muscle Atrophy in Mice through Regulation of Reactive Oxygen Species-Dependent Signaling
Previous Article in Journal
Tetraspanin CD9 Expression Predicts Sentinel Node Status in Patients with Cutaneous Melanoma
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass

by
Mark F. McCarty
1,*,
Lidianys Lewis Lujan
2 and
Simon Iloki Assanga
3
1
Catalytic Longevity Foundation, San Diego, CA 92109, USA
2
Department of Research and Postgraduate in Food Science, Sonoran University, Hermosillo 83200, Mexico
3
Department of Biological Chemical Sciences, Sonoran University, Hermosillo 83200, Mexico
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2022, 23(9), 4776; https://doi.org/10.3390/ijms23094776
Submission received: 4 April 2022 / Revised: 19 April 2022 / Accepted: 25 April 2022 / Published: 26 April 2022
(This article belongs to the Section Molecular Biology)

Abstract

:
There is a vast pre-clinical literature suggesting that certain nutraceuticals have the potential to aid the preservation of bone mass in the context of estrogen withdrawal, glucocorticoid treatment, chronic inflammation, or aging. In an effort to bring some logical clarity to these findings, the signaling pathways regulating osteoblast, osteocyte, and osteoclast induction, activity, and survival are briefly reviewed in the present study. The focus is placed on the following factors: the mechanisms that induce and activate the RUNX2 transcription factor, a key driver of osteoblast differentiation and function; the promotion of autophagy and prevention of apoptosis in osteoblasts/osteoclasts; and the induction and activation of NFATc1, which promotes the expression of many proteins required for osteoclast-mediated osteolysis. This analysis suggests that the activation of sirtuin 1 (Sirt1), AMP-activated protein kinase (AMPK), the Nrf2 transcription factor, and soluble guanylate cyclase (sGC) can be expected to aid the maintenance of bone mass, whereas the inhibition of the serine kinase CK2 should also be protective in this regard. Fortuitously, nutraceuticals are available to address each of these targets. Sirt1 activation can be promoted with ferulic acid, N1-methylnicotinamide, melatonin, nicotinamide riboside, glucosamine, and thymoquinone. Berberine, such as the drug metformin, is a clinically useful activator of AMPK. Many agents, including lipoic acid, melatonin, thymoquinone, astaxanthin, and crucifera-derived sulforaphane, can promote Nrf2 activity. Pharmacological doses of biotin can directly stimulate sGC. Additionally, certain flavonols, notably quercetin, can inhibit CK2 in high nanomolar concentrations that may be clinically relevant. Many, though not all, of these agents have shown favorable effects on bone density and structure in rodent models of bone loss. Complex nutraceutical regimens providing a selection of these nutraceuticals in clinically meaningful doses may have an important potential for preserving bone health. Concurrent supplementation with taurine, N-acetylcysteine, vitamins D and K2, and minerals, including magnesium, zinc, and manganese, plus a diet naturally high in potassium, may also be helpful in this regard.

1. Determinates of Bone Loss Post-Menopausally and with Aging and Inflammation

The loss of bone mass associated with an increased fracture risk is observed post-menopausally, with prolonged glucocorticoid therapy, during chronic inflammatory disorders, and with advancing age (senile osteoporosis). Post-menopausal bone loss primarily reflects an increase in osteolytic osteoclast activity, reflecting a loss of ERα-mediated estrogen activity that functions to suppress the production of the receptor activator of the NF-kB ligand (RANKL) by bone-lining cells [1]. RANKL is an agonist for the receptor activator of NF-kB (RANK) expressed by osteoclasts; the pre-exposure of osteoclast precursors to the macrophage colony-stimulating factor (M-CSF) is required for the expression of RANK [2]. The stimulation of RANK via RANKL is a key mediator of osteoclast maturation and activation [3]. Hence, the loss of estrogen activity up-regulates bone osteolytic activity owing to RANKL overproduction. In contrast, senile osteoporosis reflects a loss of the bone-forming capacity, owing to the decreased differentiation of mesenchymal stem cells into osteoblasts, coupled with the decreased survival or senescence of osteoblasts and osteocytes [4]. Although a direct contribution of osteocytes to bone formation is unclear, they play a crucial role in regulating the competing functions of osteoblasts and osteoclasts, and mediate the positive impact of mechanical loading on bone density; their excessive loss by apoptosis during estrogen withdrawal, glucocorticoid treatment, or aging is a key factor in the development of osteoporosis [5,6,7]. Osteocyte senescence is also a factor of bone loss with advancing age [8].
To ward off the loss of bone mass, a logical strategy is to promote the differentiation, function, and survival of osteoblasts and osteocytes, while concurrently suppressing the osteolytic activity of osteoclasts; the latter will be of particular importance in the context of the onset of menopause. With respect to osteoblasts, the RUNX2 transcription factor is the master regulator of osteoblast formation and function, driving the transcription of a number of genes essential for the bone forming process [9]. Hence, up-regulating the signaling pathways driving RUNX2 expression and activation can be expected to promote increased bone formation. The loss of bone-forming capacity associated with senile osteoporosis—and also, in some measure, estrogen deficiency—is characterized by increased apoptosis in osteoblasts and osteocytes; measures which suppress this apoptosis should also be useful. Additionally, osteoblast autophagy plays a key role in bone mineral deposition—autophagic vacuoles in osteoblasts secrete apatite crystals—while helping to ward off apoptosis and senescence in osteoblasts and osteocytes; hence, the up-regulation of autophagy in these cells is another key goal [10,11,12].
With respect to osteoclasts, the transcription factor nuclear factor of activated T cells c1 (NFATc1) is the primary driver of osteoclast maturation and activity; the down-regulation of NFATc1 expression and activation is therefore a key goal in osteoporosis prevention [3,13,14].
Figure 1 and Figure 2 schematically depict some of the signaling pathways in osteoblasts and osteoclasts that promote the expression and activity of RUNX2 and NFATc1, respectively; Figure 1 also displays pathways that regulate apoptosis and autophagy in osteoblasts/osteocytes. An analysis of these pathways, and of the research literature on osteoporosis, suggests that activation of AMP-activated protein kinase (AMPK), sirtuin 1 (sirt1), soluble guanylate cyclase (sGC), and the Nrf2 transcription factor, and the inhibition of the kinase CK2 could be expected to enhance the expression and activation of RUNX2 in osteoblasts, while promoting autophagy and inhibiting apoptosis in osteoblasts/osteocytes. Importantly, nutraceuticals with the potential to achieve each of these aims are available—as depicted in Figure 1. Analogously, the activation of AMPK, Sirt1, and Nrf2, and the inhibition of CK2, may be useful for decreasing the expression and activity of NFATc1 in osteoclasts.

2. A Brief Review of the Molecular Biology Determining Osteoblast and Osteoclast Activity

2.1. Regulation of RUNX2 Activity, Apoptosis, and Autophagy in Osteoblasts and Osteocytes

The major signaling pathways driving the transcription of the RUNX2 gene are triggered by the agonists Wnt—the downstream target of which is β-catenin—and bone morphogenetic proteins 2 and 4 (BMP2/4), which activate Smads 1/5/8 [15]. β-catenin—bound to the LDF1/TCF1 transcription factor—and the activated Smads form complexes on the promoter of the RUNX2 gene, stimulating its transcription [16].
With respect to BMP2/4, AMPK activation promotes the expression of BMP2/4 in osteoblasts [17,18,19]. Conversely, CK2 diminishes BMP2/4 signaling by binding to the BMP type I receptor [20]. Curiously, certain drugs designed to inhibit CK2’s kinase activity have been shown to alleviate this inhibition [20].
Estrogen activity, on the other hand, promotes RUNX2 transcription by up-regulating β-catenin signaling. This effect is downstream from the estrogen-mediated activation of endothelial nitric oxide synthase, which is observed in osteoblasts and osteocytes [21,22]. The mechanism of this is likely comparable to that observed in endothelial cells—estrogen binding induces the translocation of an N-terminally truncated ERα to the plasma membrane, where it forms a protein complex with eNOS and promotes its phosphorylation and activation via a G-protein-mediated pathway [23]. Importantly, both AMPK and Sirt1 can also boost eNOS activity; AMPK confers an activating phosphorylation on Ser-1177, whereas SIRT1 performs a deacetylation on eNOS, which enhances its activity [24,25]. The resulting production of nitric oxide (NO) can activate soluble guanylate cyclase in osteocytes and osteoblasts, and the consequent generation of cyclic GMP (cGMP) can activate both forms of protein kinase G, PKGI and PKGII [22]. The latter, for reasons not yet clear, can enhance AKT activity in osteoblasts and osteocytes [22]. AKT, in turn, via an inhibitory phosphorylation of glycogen synthase kinase-3β (GSK-3β), suppresses the ubiquitination and degradation of β-catenin, and enables it to migrate to the nucleus where it can promote RUNX2 transcription [26]. Activated AMPK can also induce the inhibitory phosphorylation of GSK-3β in these cells [27]. Furthermore, PKGII activity aids the survival of osteocytes and osteoblasts, as AKT is a well-known inhibitor of apoptosis [28]. Moreover, PKGI activation also helps ward off apoptosis through an inhibitory phosphorylation of BAD [22]. The apoptosis of osteoblasts and osteocytes is also opposed by β-catenin activity [29].
An additional mechanism whereby estrogen can support sGC activation is by the induction of cystathionine γ-lyase, an enzyme that generates hydrogen sulfide (H2S) [30]. H2S has been shown to reverse the oxidative inhibition of sGC, preserving its sensitivity to stimulation by NO [31,32] Moreover, by inducing sulfhydration of 2 cysteines in RUNX2, H2S can boost the transactivational activity of this transcription factor [33].
The favorable impact of intermittent treatment with the parathyroid hormone (PTH) on bone density appears to reflect the ability of cAMP/protein kinase A (PKA) signaling to inhibit GSK-3β in osteoblasts and thereby up-regulate β-catenin activity [34]. On the other hand, PKA, via the activation of the cAMP response element-binding protein (CREB), drives the expression of RANKL and suppresses that of OPG, effects that promote osteoclastogenesis [35]. The latter effect predominates when PTH signaling is strong and sustained, as during hyperparathyroidism. Intermittent mechanical loading on the bone also aids bone health via the inhibition of GSK-3β by cAMP/PKA. Loading causes fluid sheer stress on osteocytes that evokes prostaglandin E2 production; consequent autocrine activation of the EP2 receptor induces cAMP production, while also promoting Akt activity, both of which inhibit GSK-3β [5,36].
RUNX2 activity is modulated by post-translational modifications. Deacetylation of RUNX2 by Sirt1 enhances its transactivational activity [37]. AMPK confers a phosphorylation on the DNA-binding domain of RUNX2 that protects it from ubiquitination and proteasomal degradation [38]. Additionally, as we have noted, an interaction with H2S can also boost the transactivational activity of this transcription factor [33].
In light of the role that osteoblast autophagy plays in promoting bone mineralization and warding off apoptosis, it is notable that both AMPK and Sirt1 are well known for their up-regulatory effects on autophagy [39,40,41]. A further way in which Sirt1 exerts an anabolic effect on bones is via the inhibition of sclerostin expression at the transcriptional level [42,43]. Sclerostin is a protein produced by osteocytes that interferes with Wnt/β-catenin signaling by competitive binding to the LRP5/6 receptors that mediate Wnt signaling [44].

2.2. Regulation of NFATc1 Expression and Activity in Osteoclasts

The regulation of NFATc1 activity in osteoclasts is complex, involving both a priming step and a calcium-catalyzed activation and amplification step [3]. The interaction of RANK with RANKL initiates the assembly of a signaling platform, featuring TRAF6, which activates both NF-kappaB and the MAP kinases JNK and p38. This signal is amplified by a concurrent increase in reactive oxygen species (ROS) attributable to the stimulation of NOX1 activity [45]. MAP-kinase activation, in turn, activates AP-1 transcription factors, and AP-1 and NF-kappaB interact on the promoter of the NFATc1 gene to induce its transcription. NFATc1, in turn, promotes the early expression of the protein estrogen-induced gene 1 (EEIG1), which, after priming by activated RANK, forms a complex of proteins—including Bruton’s tyrosine kinase (BTK)—that promotes activating tyrosine phosphorylation of phospholipase C-γ (PLC-γ) [46,47]. Activated PLC-γ, in turn, via the formation of inositol-triphosphate, releases calcium from the endoplasmic reticulum, inducing a surge in free intracellular calcium that enables the nuclear import of NFATc1 by activating the phosphatase calcineurin, as explained below [3].
The protein complex-mediated activation of PLC-γ activation is also contingent on the activation of the tyrosine protein kinase Syk [3,48]. This requires the interaction of Syk with a plasma membrane signaling complex involving DAP12 and FcRγ; these express the immunoreceptor tyrosine-based activating motifs (ITAMs) characteristic of immunoglobulin receptors [49]. The phosphorylation of these tyrosines—likely by Fyn [50]—enables them to interact with Syk via Syk’s SH2 domain. Syk is subsequently tyrosine phosphorylated and activated by c-Src, whose activation reflects an interaction with β3 integrin [51].
NFATc1 is readily susceptible to phosphorylation by GSK-3β; this causes it to be sequestered in the cytoplasm, preventing it from influencing transcription in the nucleus [52,53]. However, calcineurin, activated by an increase in free intracellular calcium, reverses this phosphorylation, enabling NFATc1’s transport to the nucleus [54]. Moreover, via the activation of phosphatidylinositol-3-kinase and subsequently AKT, activated RANK inhibits GSK-3β activity, reinforcing the ability of NFATc1 to migrate to the nucleus [55]. Within the nucleus, NFATc1 can bind to the promoter of its own gene, accelerating its transcription; this effect is contingent of the concurrent promoter binding of an AP-1 complex containing c-Fos [51]. Hence, NFATc1 activity is boosted by an auto-amplification mechanism. The highly active NFAT1c then promotes the expression of a number of proteins required for the effective osteoclast function [13].
AMPK, Sirt1, and Nrf2 have all been shown to diminish NFATc1 activation in RANKL-treated osteoclasts. Sirt1 and Nrf2 both oppose the ROS-mediated amplification of NF-kappaB and MAP kinase activation via antioxidant effects. Nrf2 does so via phase 2 induction of a range of antioxidant enzymes, and of the rate-limiting enzyme for glutathione synthesis [56,57]. Additionally, via the induction of heme oxygenase-1 (HO-1), Nrf2 induces the direct inhibition of NOX1; the carbon monoxide evolved by heme oxygenase activity has been shown to inhibit NOX1 [58]. Sirt1 promotes the induction of another set of antioxidant enzymes—including HO-1and catalase—that are transcribed in response to the FOXO1 transcription factor; Sirt1 enables this by removing an acetylation from FOXO1 that blocks its efficacy in this regard [59]. Importantly, Sirt1 also diminishes NF-kappaB transcriptional activity by deacetylating its p65 component [60].
AMPK has been shown to inhibit RANKL-mediated osteoclastogenesis [61,62,63]. Its mechanism in this regard has not been established, but one credible possibility is that it suppresses Syk activation by promoting its interaction with the tyrosine phosphatase SHP-1; this phenomenon has been reported in mast cells [64]. SHP-1 activity is known to oppose osteoclastogenesis by opposing Syk activity in osteoclasts [65].
In osteoclasts, CK2 has been shown to amplify RANK-mediated AKT activation, likely because CK2 can confer an inhibitory phosphorylation on PTEN, an antagonist of AKT activation [66,67]. This effect enhances RANK’s ability to inhibit GSK-3β, preventing the inhibitory phosphorylation of NFATc1 [66].
Inflammation-induced bone loss, such as that associated with rheumatoid arthritis or periodontis, involves cytokine-mediated osteoclast activation; tumor necrosis factor-α (TNFα) may be the primary mediator in this regard [68,69]. This effect is RANKL independent, though RANKL signaling can provide potentiation. RANKL and TNFα activate a common target, NF-kappaB, to promote the expression of NFATc1; hence, it is not surprising that the activation of Sirt1 or of AMPK (upstream from Sirt1) have the potential to suppress TNFα-mediated osteoclastogenesis [61,70,71,72]. Systemic inflammatory disorders often compromise bone health indirectly by necessitating the administration of clinical glucocorticoids. The initial response to supraphysiological glucocorticoid activity in bones is an up-regulation of osteoclastic activity—in part, reflecting a suppression of osteoblasts OPG production [73,74]. During longer term therapy, a suppression of osteoblast differentiation and an up-regulation of apoptosis in osteoblasts and osteocytes also contributes to the loss of bone mass associated with glucocorticoid treatment [74,75,76,77].

2.3. Modulation of RANKL and OPG Secretion by Osteoblasts and Osteocytes

The extent to which osteoblasts and osteocytes produce RANKL and its functional antagonist osteoprotegerin (OPG)—which serves as a decoy receptor for RANKL [78]—is also a key determinant of osteoclastogenesis.
While PKA activation in osteoblasts/osteocytes can exert an anabolic effect on bones by boosting the beta-catenin signal, PKA activity can also promote bone catabolism. PKA, via the activation of the cAMP response element-binding protein (CREB), drives the expression of RANKL and suppresses that of OPG, effects that promote osteoclastogenesis [35]. The latter effect predominates when PTH signaling is strong and sustained, as during hyperparathyroidism.
AMPKα2 acts on osteoblasts to diminish their production of RANKL, while boosting their production of the RANKL antagonist OPG; this effect might reflect an opposition to CREB signaling [79,80,81]. The ability of PTH to drive the expression of RANKL has been attributed to cAMP/PKA/CREB signaling that requires CTRC2 as a coactivator for CREB; notably, AMPK has been reported to antagonize CTRC2 activity by conferring a phosphorylation on it that causes its exclusion from the nucleus [82,83,84]. Whether CTRC2 participates in the PTH-mediated suppression of OPG should be investigated. Conceivably, AMPK agonists, such as berberine, could make the impact of PTH and mechanical loading on bones more uniformly positive. β-catenin activity, independent of its impact on RUNX2, also increases OPG production by osteoblasts and osteocytes, as the β-catenin/TCF complex binds the promoter of the OPG gene and drives its transcription [85,86].

3. Nutraceutical Measures for Bone Health

The preceding discussion enables us to predict that nutraceuticals that activate AMPK, Sirt1, Nrf2, and sGC, or that inhibit CK2, could favorably influence bone density by promoting RUNX2 activity and autophagy—while also suppressing apoptosis—in osteoblasts and osteocytes. Such agents could also be expected to oppose NFATc1 activity, thereby decreasing osteoclastogenesis and osteolysis.
With respect to AMPK, the prototypical pharmaceutical activator of AMPK, metformin, has been associated with a lower risk for fracture and higher bone density in diabetics using this drug, as opposed to not using it [87,88,89,90,91]. Analogously, metformin is protective in rodent models of bone loss [72,92,93,94,95]. The nutraceutical berberine, long used in China for treatment of type 2 diabetes and dyslipidemias, is known to activate AMPK in a manner similar to metformin [96,97,98,99,100,101]. Berberine has been reported to exert bone protective effects in a number of rodent models of bone loss [102,103,104,105,106,107].
With respect to Sirt1, there is a growing list of nutraceuticals—aside from resveratrol, whose pharmacokinetics in humans render it of dubious clinical utility [108,109]—which have been reported to increase Sirt1 expression or activity in various contexts. Berberine and other AMPK activators do so, owing to the induction of nicotinamide phosphoribosyltransferase (NAMPT), which is rate-limiting for the re-synthesis of Sirt1’s obligate substrate NAD+ [110,111,112,113,114,115]. Moreover, NAMPT induction not only boosts Sirt1 activity by increasing NAD+, but also by decreasing cellular levels of nicotinamide, a product of Sirt1 activity that acts as an end-protein inhibitor of this enzyme [116]. The nutraceutical nicotinamide riboside (NR) offers an alternative strategy for increasing cellular NAD+, as it can function as a substrate for biosynthesis of this compound [117]. Melatonin promotes Sirt1 expression at the transcriptional level, likely via the activation of the Bmal1 transcription factor [118,119,120,121]. Ferulic acid—likely a key mediator of the health benefits of dietary anthocyanins and whole grains—also increases Sirt1 expression at the mRNA level [122,123,124,125,126,127]. N1-methylnicotinamide (MNA), a natural metabolite of nicotinamide with anti-inflammatory activity, prolongs Sirt1 half-life, possibly by opposing a JNK-mediated phosphorylation of Sirt1 that promotes its proteasomal degradation [128,129,130]. Supplemental glucosamine may have the potential for activating Sirt1, as the O-GlcNAcylation of Sirt1 has been reported to boost Sirt’s deacetylase activity [131,132]. Additionally, the key active component of black cumin seed oil, thymoquinone, boosts Sirt1 activity, likely by promoting the conversion of NADH to NAD+ when reduced by NAD(P)H quinone oxidoreductase (NQO1) [133,134,135,136,137,138]. The favorable effects of melatonin, ferulic acid, NR, and glucosamine on bone density have been reported in rodent studies, while the effects of thymoquinone and MNA on bones have received minimal, if any, attention [125,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159].
A number of phytochemicals, as well as the physiologically essential cofactor lipoic acid, have shown utility for boosting Nrf2 activity. Lipoic acid, thymoquinone, and the sulforaphane generated from cruciferous vegetables do so by the covalent interaction with Keap1, the protein that retains Nrf2 in the cytoplasm and promotes its proteasomal degradation [160,161,162,163,164]. Melatonin boosts the expression of Nrf2 via the Bmal1 transcription factor [165,166]. The xanthophyll carotenoid astaxanthin can also enhance the expression of Nrf2, possibly via the interaction with the aryl hydrocarbon receptor [167,168,169,170,171,172,173,174]. Lipoic acid, astaxanthin, and—as noted—melatonin have shown utility in rodent models of bone loss [175,176,177,178,179,180,181,182,183].
Cinaciguat, a direct activator of the oxidized form of sGC, has been shown to protect bone density in ovariectomized mice [21]. In concentrations that are two orders of magnitude higher than the physiological level, the B vitamin biotin can directly activate the native form of sGC, promoting cGMP production [184]. In rodent studies, ample oral biotin intakes have been shown to boost cGMP levels [185,186,187]. Since high-dose biotin is clinically well tolerated, it might be considered as a strategy for aiding bone density [188]. It does not appear to have been studied in that regard in rodents, however. The one known clinical drawback of high-dose biotin is that it can interfere with certain lab assays that employ biotinylated reagents; hence, the discontinuation of biotin for at least several days may be prudent when lab tests are planned [189].
With respect to the inhibition of CK2, a range of flavonones—including quercetin, myricetin, fisetin, kaempferol, luteolin, and apigenin—have been shown to inhibit CK2’s kinase activity in high nanomolar concentrations that might be clinically relevant when high-absorption forms of these flavonols are ingested [190,191,192,193]. A number of studies have found that quercetin favorably influences bone density in rodent models of bone loss [194,195,196,197,198,199]. Derivatized or nanoparticulate preparations of quercetin designed for optimal absorption are available as nutraceuticals [200,201,202,203]. Whether quercetin can prevent the inhibitory interaction between CK2 and the BMP type-I receptor remains to be determined.
In addition to the nutraceuticals previously mentioned, taurine has shown positive effects on bone density in rodents [204,205,206,207,208,209]. In vitro, taurine has been reported to suppress sclerostin production by osteocytes—which can curiously synthesize their own taurine—and to decrease ROS levels in activated osteoclasts [210,211]; whether these effects are clinically relevant is unclear, as high concentrations of taurine were employed in these cell culture studies. Taurine promotes the induction of cystathionine γ-lyase (CSE) in vascular endothelial cells, and the possibility that it, similar to estrogen, does so in osteoblasts can be entertained [212,213,214]. As noted, the H2S that CSE produces has a favorable impact on osteoblastic activity. N-acetylcysteine (NAC), which generates the cysteine that serves as CSE’s substrate, could presumably enhance H2S production in osteoblasts, and has shown favorable effects on rodent models of bone loss [215,216,217,218]. NAC might also aid the maintenance of bone density by boosting osteoclast glutathione synthesis, and thereby opposing the up-regulatory effect of ROS on RANKL signaling. Indeed, in a very small pilot trial, the supplementation of recently post-menopausal women with 2 g of NAC daily, as an adjuvant to calcium/vitamin D supplementation, was associated with a trend toward a greater reduction in the marker of bone resorption serum C-telopeptide than in the placebo group; sadly, this lead has not been followed up [219].
In addition to the nutraceuticals discussed above, there are many other phytochemicals with the potential for boosting Sirt1, AMPK, or Nrf2 activities. As examples, urolithin A, a bacterial metabolite of pomegranate ellagitannins thought to mediate the protective properties of pomegranate juice, has recently been reported to increase Sirt1 expression and NAD+ levels [220,221,222,223]. Compounds in bitter melon (Momordica charantia), a food traditionally used in diabetes management in southeast Asia, have been found to boost AMPK activity by activating its upstream kinase Ca+2/calmodulin-dependent kinase kinase-β [224]. Additionally, a wide range of phytochemicals have some potential as Nrf2 activators [225]. The agents highlighted in this essay are distinguished by the fact that they are readily available in nutraceutical form and have, to some degree, been clinically employed.

4. Nutraceutical Control of Systemic Inflammation

With respect to the loss of bone mass associated with systemic inflammation, it stands to reason that nutraceuticals measures, which can quell inflammation, may be of clinical benefit—not only by decreasing the production of pro-inflammatory cytokines that boost osteoclasts activity, but also by decreasing the clinical need for glucocorticoid (GC) therapy. The joint activation of the transcription factors NF-kappaB and AP-1 plays a key role in promoting the macrophage and monocyte expression of TNF-α and other pro-inflammatory hormones at the transcriptional level [226]. Sub-optimal Sirt1 activity often collaborates with oxidative stress in boosting NF-kappaB and AP-1 activity; the oxidant-driven activation of JNK and p38 MAP kinases mediates AP-1 activation [226,227,228]. Hence, nutraceutical measures that boost Sirt1 activity and control oxidant stress—such as Nrf2 activators and NAC, a glutathione precursor– have the potential for the control of inflammation-driven bone loss. NOX2-dependent NADPH oxidase activity importantly contributes to oxidant production in macrophages, and the phycochemical phycocyanobilin, a chemical relative of bilirubin that functions as a light-harvesting chromophore in cynobacteria and some blue-green algae, has been found to inhibit this activity by mimicking the physiological antioxidant role of intracellular free bilirubin [229,230]. This may explain why spirulina, an exceptionally rich source of phycocyanobilin, was found to be highly protective in a P. gingivalis-driven rat model of periodontal inflammation and alveolar bone loss [229,231]. Analogously, the oral administration of spirulina or its chief protein phycocyanin (covalently linked to phycocyanobilin) have shown marked efficacy in rodent models of inflammatory arthritis and other inflammatory conditions [232,233,234,235].
Curiously, there is evidence that nutraceuticals capable of activating Sirt1 can oppose the ability of GCs to impede osteoblast maturation and induce bone loss in rodents; this has been demonstrated for ferulic acid, melatonin, berberine, and nicotinamide mononucleotide [125,155,236,237]. While these effects might be expected, owing to Sirt1’s ability to work in various ways to promote RUNX2 activity, it is conceivable that it works more proximally to interfere with GC signaling in osteoblasts and their precursors. In this regard, there is recent evidence that the negative impact of high-dose GCs on osteoblast maturation and function may be mediated, in large part, by the transcriptional induction of PPARγ, which, in turn, induces the expression of secreted frizzled-related protein 5 (SFRP5), an antagonist of the Wnt signaling crucial to osteoblast induction [238]. Moreover, Sirt1 activity has been shown to oppose PPARγ expression and activity in a pre-osteoblast cell line; it has previously been established that Sirt1 opposes PPARγ-driven transcription in adipocytes [239,240]. (These considerations are evidently pertinent to the adverse impact of thiazolidinedione therapy on bone, as these agents serve as PPARγ agonists [241].) Importantly, the anti-inflammatory effects of GCs do not appear to be mediated by PPARγ [242]. Importantly, the anti-inflammatory effects of GCs do not appear to be mediated by PPARg [Evidently, nutraceuticals that can exert anti-inflammatory effects, while reducing the toxicity of GCs to the bone, might prove to be valuable complements to the therapy of autoimmune disorders.

5. Optimal Intakes of Certain Essential Vitamins and Minerals also Aid the Maintenance of Bone Density

Insuring adequate or ample intakes of a number of vitamins and minerals could be expected to complement the benefits of the more novel strategies suggested in this essay. Vitamin D aids bone health not only by helping to prevent secondary hyperparathyroidism, but also because calcitriol, produced from circulating 25-hydroxyvitamin D by 25-hydroxyvitamin D 1-α-hydroxylase (CYP27B1) in osteoblasts, complements the transcriptional activity of RUNX2 when bound to the vitamin D receptor; most notably, it collaborates with RUNX2 in promoting the expression of osteocalcin (OC), a crucial mediator of hydroxyapatite deposition [243,244,245,246,247]. Hence, bioavailable plasma levels of 25-hydroxyvitamin D tend to positively correlate with bone density [248,249,250,251]. Vitamin K2 (the bacterially produced form found in fermented milk and soy milk products, which achieves greater systemic distribution than the more hepatotropic vitamin K1) is thought to promote bone health by inducing γ-carboxylations of the bone matrix proteins OC and periostin, thereby improving their function in the bone [252,253]. Curiously, the beneficial impact of supplemental vitamin K2 on fracture risks in post-menopausal women appears to be disproportionate to its modest effect on bone density—possibly reflecting a favorable impact of vitamin K2 on bone flexibility [254,255]. Ample dietary intakes or increased serum levels of magnesium and zinc have been associated with greater bone density or a lower risk of fractures [256,257,258]. (Perhaps, surprisingly, higher intakes of calcium, while associated with a modestly greater bone density post-menopausally, do not appear to influence fracture risks [259,260]). Rodent studies suggest that increased intakes of manganese or silicon may have a positive impact on bone density [261,262]. Diets habitually high in natural potassium also positively correlate with bone density, likely because the organic counteranions ingested with the potassium are metabolized to bicarbonate, and hence exert an alkalinizing effect that opposes osteolysis [263,264,265]. Conversely, dietary sulfhydryl amino acids are metabolized to generate sulfate, and hence are acidifying; this suggests that supplemental NAC might have its most favorable net impact on bone health in the context of a diet naturally high in potassium [266]. Comprehensive vitamin–mineral supplementation, particularly in the context of sub-optimally nutritious diets, could be expected to favorably impact bone density and fracture risks [267].

Author Contributions

Conception and original draft: M.F.M.; revisions and additions to manuscript: S.I.A., L.L.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

M.F.M. is the co-inventor and co-owner of a US patent covering the nutraceutical uses of phycocyanobilin oligopeptides derived from spirulina. The other authors have no conflict of interest.

References

  1. Streicher, C.; Heyny, A.; Andrukhova, O.; Haigl, B.; Slavic, S.; Schüler, C.; Kollmann, K.; Kantner, I.; Sexl, V.; Kleiter, M.; et al. Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
  2. Nakanishi, A.; Hie, M.; Iitsuka, N.; Tsukamoto, I. A crucial role for reactive oxygen species in macrophage colony-stimulating factor-induced RANK expression in osteoclastic differentiation. Int. J. Mol. Med. 2013, 31, 874–880. [Google Scholar] [CrossRef]
  3. Park, J.H.; Lee, N.K.; Lee, A.S.Y. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol. Cells 2017, 40, 706–713. [Google Scholar] [CrossRef] [Green Version]
  4. Tokuzawa, Y.; Yagi, K.; Yamashita, Y.; Nakachi, Y.; Nikaido, I.; Bono, H.; Ninomiya, Y.; Kanesaki-Yatsuka, Y.; Akita, M.; Motegi, H.; et al. Id4, a New Candidate Gene for Senile Osteoporosis, Acts as a Molecular Switch Promoting Osteoblast Differentiation. PLoS Genet. 2010, 6, e1001019. [Google Scholar] [CrossRef]
  5. Bonewald, L.F. The amazing osteocyte. J. Bone Miner. Res. 2011, 26, 229–238. [Google Scholar] [CrossRef]
  6. Ru, J.-Y.; Wang, Y.-F. Osteocyte apoptosis: The roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis. 2020, 11, 1–24. [Google Scholar] [CrossRef]
  7. Jilka, R.L.; O’Brien, C.A. The Role of Osteocytes in Age-Related Bone Loss. Curr. Osteoporos. Rep. 2016, 14, 16–25. [Google Scholar] [CrossRef]
  8. Farr, J.N.; Kaur, J.; Doolittle, M.L.; Khosla, S. Osteocyte Cellular Senescence. Curr. Osteoporos. Rep. 2020, 18, 559–567. [Google Scholar] [CrossRef]
  9. Meyer, M.B.; Benkusky, N.A.; Pike, J.W. The RUNX2 cistrome in osteoblasts: Characterization, down-regulation following differentiation, and relationship to gene expression. J. Biol. Chem. 2014, 289, 16016–16031. [Google Scholar] [CrossRef] [Green Version]
  10. Nollet, M.; Santucci-Darmanin, S.; Breuil, V.; Al-Sahlanee, R.; Cros, C.; Topi, M.; Momier, D.; Samson, M.; Pagnotta, S.; Cailleteau, L.; et al. Autophagy in osteoblasts is involved in mineralization and bone homeo-stasis. Autophagy 2014, 10, 1965–1977. [Google Scholar] [CrossRef]
  11. Chen, K.; Yang, Y.-H.; Jiang, S.-D.; Jiang, L.-S. Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population. Histochem. Cell Biol. 2014, 142, 285–295. [Google Scholar] [CrossRef]
  12. Luo, D.; Ren, H.; Li, T.; Lian, K.; Lin, D. Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy. Osteoporos. Int. 2015, 27, 1093–1101. [Google Scholar] [CrossRef]
  13. Zhao, Q.; Wang, X.; Liu, Y.; He, A.; Jia, R. NFATc1: Functions in osteoclasts. Int. J. Biochem. Cell Biol. 2010, 42, 576–579. [Google Scholar] [CrossRef]
  14. Kang, J.Y.; Kang, N.; Yang, Y.M.; Hong, J.H.; Shin, D.M. The Role of Ca(2+)-NFATc1 Signaling and Its Modulation on Oste-oclastogenesis. Int. J. Mol. Sci. 2020, 21, 3646. [Google Scholar] [CrossRef]
  15. Rutkovskiy, A.; Stensløkken, K.-O.; Vaage, I.J. Osteoblast Differentiation at a Glance. Med. Sci. Monit. Basic Res. 2016, 22, 95–106. [Google Scholar] [CrossRef] [Green Version]
  16. Rodríguez-Carballo, E.; Ulsamer, A.; Susperregui, A.R.; Manzanares-Céspedes, C.; Sánchez-García, E.; Bartrons, R.; Rosa, J.L.; Ventura, F. Conserved regulatory motifs in osteogenic gene promoters integrate cooperative effects of canonical Wnt and BMP pathways. J. Bone Miner. Res. 2010, 26, 718–729. [Google Scholar] [CrossRef]
  17. Kanazawa, I.; Yamaguchi, T.; Yano, S.; Yamauchi, M.; Sugimoto, T. Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem. Biophys. Res. Commun. 2008, 375, 414–419. [Google Scholar] [CrossRef]
  18. Kanazawa, I.; Yamaguchi, T.; Yano, S.; Yamauchi, M.; Sugimoto, T. Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression. Am. J. Physiol. Metab. 2009, 296, E139–E146. [Google Scholar] [CrossRef] [Green Version]
  19. Kanazawa, I.; Takeno, A.; Tanaka, K.-I.; Notsu, M.; Sugimoto, T. Osteoblast AMP-Activated Protein Kinase Regulates Postnatal Skeletal Development in Male Mice. Endocrinology 2017, 159, 597–608. [Google Scholar] [CrossRef]
  20. Moseychuk, O.; Akkiraju, H.; Dutta, J.; D’Angelo, A.; Bragdon, B.; Duncan, R.L.; Nohe, A. Inhibition of CK2 binding to BMPRIa induces C2C12 differentiation into osteo-blasts and adipocytes. J. Cell Commun. Signal. 2013, 7, 265–278. [Google Scholar] [CrossRef] [Green Version]
  21. Joshua, J.; Schwaerzer, G.K.; Kalyanaraman, H.; Cory, E.; Sah, R.L.; Li, M.; Vaida, F.; Boss, G.R.; Pilz, R.B. Soluble Guanylate Cyclase as a Novel Treatment Target for Osteoporosis. Endocrinology 2014, 155, 4720–4730. [Google Scholar] [CrossRef] [Green Version]
  22. Marathe, N.; Rangaswami, H.; Zhuang, S.; Boss, G.R.; Pilz, R.B. Pro-survival effects of 17β-estradiol on osteocytes are mediated by nitric oxide/cGMP via differential actions of cGMP-dependent protein kinases I and II. J. Biol. Chem. 2012, 287, 978–988. [Google Scholar] [CrossRef] [Green Version]
  23. Wyckoff, M.H.; Chambliss, K.L.; Mineo, C.; Yuhanna, I.S.; Mendelsohn, M.E.; Mumby, S.M.; Shaul, P.W. Plasma membrane estrogen receptors are coupled to endothelial nitric-oxide synthase through Galpha(i). J. Biol. Chem. 2001, 276, 27071–27076. [Google Scholar] [CrossRef] [Green Version]
  24. Morrow, V.A.; Foufelle, F.; Connell, J.M.C.; Petrie, J.R.; Gould, G.W.; Salt, I.P. Direct Activation of AMP-activated Protein Kinase Stimulates Nitric-oxide Synthesis in Human Aortic Endothelial Cells. J. Biol. Chem. 2003, 278, 31629–31639. [Google Scholar] [CrossRef] [Green Version]
  25. Mattagajasingh, I.; Kim, C.S.; Naqvi, A.; Yamamori, T.; Hoffman, T.A.; Jung, S.-B.; DeRicco, J.; Kasuno, K.; Irani, K. SIRT1 promotes endothelium-dependent vascular relaxation by activating en-dothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 2007, 104, 14855–14860. [Google Scholar] [CrossRef] [Green Version]
  26. Dong, J.; Xu, X.; Zhang, Q.; Yuan, Z.; Tan, B. The PI3K/AKT pathway promotes fracture healing through its crosstalk with Wnt/β-catenin. Exp. Cell Res. 2020, 394, 112137. [Google Scholar] [CrossRef]
  27. Ma, J.; Zhang, Z.-L.; Hu, X.-T.; Wang, X.-T.; Chen, A.-M. Metformin promotes differentiation of human bone marrow derived mesenchymal stem cells into osteoblast via GSK3β inhibition. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7962–7968. [Google Scholar]
  28. Marte, B.M.; Downward, J. PKB/Akt: Connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 1997, 22, 355–358. [Google Scholar] [CrossRef]
  29. Jähn, K.; Lara-Castillo, N.; Brotto, L.; Mo, C.; Johnson, M.; Brotto, M.; Bonewald, L. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin. Eur. Cells Mater. 2012, 24, 197–210. [Google Scholar] [CrossRef]
  30. Lambertini, E.; Penolazzi, L.; Angelozzi, M.; Grassi, F.; Gambari, L.; Lisignoli, G.; De Bonis, P.; Cavallo, M.; Piva, R. The expression of cystathionine gamma-lyase is regulated by estrogen re-ceptor alpha in human osteoblasts. Oncotarget 2017, 8, 101686–101696. [Google Scholar] [CrossRef] [Green Version]
  31. Zhou, Z.; Martin, E.; Sharina, I.; Esposito, I.; Szabo, C.; Bucci, M.; Cirino, G.; Papapetropoulos, A. Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Pharmacol. Res. 2016, 111, 556–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  32. Szabo, C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: Mechanisms and implications. Am. J. Physiol. Physiol. 2017, 312, C3–C15. [Google Scholar] [CrossRef] [PubMed]
  33. Zheng, Y.; Liao, F.; Lin, X.; Zheng, F.; Fan, J.; Cui, Q.; Yang, J.; Geng, B.; Cai, J. Cystathionine γ-Lyase-Hydrogen Sulfide Induces Runt-Related Transcription Factor 2 Sulfhydration, Thereby Increasing Osteoblast Activity to Promote Bone Fracture Healing. Antioxid. Redox Signal. 2017, 27, 742–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Suzuki, A.; Ozono, K.; Kubota, T.; Kondou, H.; Tachikawa, K.; Michigami, T. PTH/cAMP/PKA signaling facilitates canonical Wnt signaling via inactivation of glycogen synthase kinase-3beta in osteoblastic Saos-2 cells. J. Cell. Biochem. 2008, 104, 304–317. [Google Scholar] [CrossRef]
  35. Fu, Q.; Jilka, R.L.; Manolagas, S.C.; O’Brien, C.A. Parathyroid hormone stimulates receptor activator of NFkappa B ligand and inhibits osteoprotegerin expression via protein kinase A activation of cAMP-response element-binding protein. J. Biol. Chem. 2002, 277, 48868–48875. [Google Scholar] [CrossRef] [Green Version]
  36. Kitase, Y.; Barragan, L.; Qing, H.; Kondoh, S.; Jiang, J.X.; Johnson, M.L.; Bonewald, L.F. Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the β-catenin and PKA pathways. J. Bone Miner. Res. 2010, 25, 2657–2668. [Google Scholar] [CrossRef] [Green Version]
  37. Zainabadi, K.; Liu, C.J.; Guarente, L. SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2. PLoS ONE 2017, 12, e0178520. [Google Scholar] [CrossRef] [Green Version]
  38. Chava, S.; Chennakesavulu, S.; Gayatri, B.M.; Reddy, A.B.M. A novel phosphorylation by AMP-activated kinase regulates RUNX2 from ubiquitination in osteogenesis over adipogenesis. Cell Death Dis. 2018, 9, 754. [Google Scholar] [CrossRef]
  39. Cetrullo, S.; D’Adamo, S.; Tantini, B.; Borzì, R.M.; Flamigni, F. mTOR, AMPK, and Sirt1: Key Players in Metabolic Stress Management. Crit. Rev. Eukaryot. Gene Expr. 2015, 25, 59–75. [Google Scholar] [CrossRef]
  40. Ge, Y.; Zhou, M.; Chen, C.; Wu, X.; Wang, X. Role of AMPK mediated pathways in autophagy and aging. Biochimie 2021, 195, 100–113. [Google Scholar] [CrossRef]
  41. Salminen, A.; Kaarniranta, K. SIRT1: Regulation of longevity via autophagy. Cell. Signal. 2009, 21, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
  42. Artsi, H.; Cohen-Kfir, E.; Gurt, I. The Sirtuin1 activator SRT3025 down-regulates sclerostin and rescues ovariecto-my-induced bone loss and biomechanical deterioration in female mice. Endocrinology 2014, 155, 3508–3515. [Google Scholar] [CrossRef] [PubMed]
  43. Zeng, J.; Xiao, Q.; Li, X.; Chen, J. Advanced oxidation protein products aggravate age-related bone loss by increasing sclerostin expression in osteocytes via ROS-dependent downregulation of Sirt1. Int. J. Mol. Med. 2021, 47, 1–12. [Google Scholar] [CrossRef] [PubMed]
  44. Li, X.; Zhang, Y.; Kang, H.; Liu, W.; Liu, P.; Zhang, J.; Harris, S.E.; Wu, D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 2005, 280, 19883–19887. [Google Scholar] [CrossRef] [Green Version]
  45. Lee, N.K.; Choi, Y.G.; Baik, J.Y.; Han, S.Y.; Jeong, D.-W.; Bae, Y.S.; Kim, N.; Lee, S.Y. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 2005, 106, 852–859. [Google Scholar] [CrossRef] [Green Version]
  46. Choi, H.K.; Kang, H.R.; Jung, E.; Kim, T.E.; Lin, J.J.; Lee, S.Y. Early estrogen-induced gene 1, a novel RANK signaling component, is essential for osteoclastogenesis. Cell Res. 2013, 23, 524–536. [Google Scholar] [CrossRef] [Green Version]
  47. Shinohara, M.; Koga, T.; Okamoto, K.; Sakaguchi, S.; Arai, K.; Yasuda, H.; Takai, T.; Kodama, T.; Morio, T.; Geha, R.S.; et al. Tyrosine Kinases Btk and Tec Regulate Osteoclast Differentiation by Linking RANK and ITAM Signals. Cell 2008, 132, 794–806. [Google Scholar] [CrossRef] [Green Version]
  48. Kim, J.-Y.; Park, S.-H.; Baek, J.M.; Erkhembaatar, M.; Kim, M.S.; Yoon, K.-H.; Oh, J.; Lee, M.S. Harpagoside Inhibits RANKL-Induced Osteoclastogenesis via Syk-Btk-PLCγ2-Ca2+ Signaling Pathway and Prevents Inflammation-Mediated Bone Loss. J. Nat. Prod. 2015, 78, 2167–2174. [Google Scholar] [CrossRef] [Green Version]
  49. Mócsai, A.; Humphrey, M.B.; Van Ziffle, J.A.; Hu, Y.; Burghardt, A.; Spusta, S.C.; Majumdar, S.; Lanier, L.L.; Lowell, C.A.; Nakamura, M.C. The immunomodulatory adapter proteins DAP12 and Fc receptor gam-ma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl. Acad. Sci. USA 2004, 101, 6158–6163. [Google Scholar] [CrossRef] [Green Version]
  50. Kim, H.S.; Kim, D.K.; Kim, A.R.; Mun, S.H.; Lee, S.K.; Kim, J.H.; Kim, Y.M.; Choi, W.S. Fyn positively regulates the activation of DAP12 and FcRγ-mediated costimulatory signals by RANKL during osteoclastogenesis. Cell. Signal. 2012, 24, 1306–1314. [Google Scholar] [CrossRef]
  51. Asagiri, M.; Takayanagi, H. The molecular understanding of osteoclast differentiation. Bone 2007, 40, 251–264. [Google Scholar] [CrossRef] [PubMed]
  52. Sheridan, C.M.; Heist, E.K.; Beals, C.R.; Crabtree, G.R.; Gardner, P. Protein kinase A negatively modulates the nuclear accu-mulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J. Biol. Chem. 2002, 277, 48664–48676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Jang, H.D.; Shin, J.H.; Park, D.R.; Hong, J.H.; Yoon, K.; Ko, R.; Ko, C.-Y.; Kim, H.-S.; Jeong, D.; Kim, N.; et al. Inactivation of Glycogen Synthase Kinase-3β Is Required for Osteoclast Differentiation. J. Biol. Chem. 2011, 286, 39043–39050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Hirotani, H.; Tuohy, N.A.; Woo, J.-T.; Stern, P.H.; Clipstone, N.A. The Calcineurin/Nuclear Factor of Activated T Cells Signaling Pathway Regulates Osteoclastogenesis in RAW264.7 Cells. J. Biol. Chem. 2004, 279, 13984–13992. [Google Scholar] [CrossRef] [Green Version]
  55. Moon, J.B.; Kim, J.H.; Kim, K.; Youn, B.U.; Ko, A.; Lee, S.Y.; Kim, N. Akt Induces Osteoclast Differentiation through Regulating the GSK3β/NFATc1 Signaling Cascade. J. Immunol. 2011, 188, 163–169. [Google Scholar] [CrossRef] [Green Version]
  56. Sakai, E.; Shimada-Sugawara, M.; Yamaguchi, Y.; Sakamoto, H.; Fumimoto, R.; Fukuma, Y.; Nishishita, K.; Okamoto, K.; Tsukuba, T. Fisetin Inhibits Osteoclastogenesis Through Prevention of RANKL-Induced ROS Production by Nrf2-Mediated Up-regulation of Phase II Antioxidant Enzymes. J. Pharmacol. Sci. 2013, 121, 288–298. [Google Scholar] [CrossRef] [Green Version]
  57. Florczyk-Soluch, U.; Józefczuk, E.; Stępniewski, J.; Bukowska-Strakova, K.; Mendel, M.; Viscardi, M.; Nowak, W.N.; Józkowicz, A.; Dulak, J. Various roles of heme oxygenase-1 in response of bone marrow mac-rophages to RANKL and in the early stage of osteoclastogenesis. Sci. Rep. 2018, 8, 10797. [Google Scholar] [CrossRef] [Green Version]
  58. Rodriguez, A.I.; Gangopadhyay, A.; Kelley, E.E.; Pagano, P.J.; Zuckerbraun, B.S.; Bauer, P.M. HO-1 and CO decrease plate-let-derived growth factor-induced vascular smooth muscle cell migration via inhibition of Nox1. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 98–104. [Google Scholar] [CrossRef]
  59. Kim, H.-N.; Han, L.; Iyer, S.; de Cabo, R.; Zhao, H.; O–Brien, C.A.; Manolagas, S.C.; Almeida, M. Sirtuin1 Suppresses Osteoclastogenesis by Deacetylating FoxOs. Mol. Endocrinol. 2015, 29, 1498–1509. [Google Scholar] [CrossRef]
  60. Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23, 2369–2380. [Google Scholar] [CrossRef] [Green Version]
  61. Yamaguchi, N.; Kukita, T.; Li, Y.J.; Kamio, N.; Fukumoto, S.; Nonaka, K.; Ninomiya, Y.; Hanazawa, S.; Yamashita, Y. Adiponectin inhibits induction of TNF-alpha/RANKL-stimulated NFATc1 via the AMPK signaling. FEBS Lett. 2008, 582, 451–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  62. Lee, Y.-S.; Kim, Y.-S.; Lee, S.-Y.; Kim, G.-H.; Kim, B.-J.; Lee, S.-H.; Lee, K.-U.; Kim, G.-S.; Kim, S.-W.; Koh, J.-M. AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone 2010, 47, 926–937. [Google Scholar] [CrossRef] [PubMed]
  63. Kang, N.; Kim, K.W.; Shin, D.M. Humanin suppresses receptor activator of nuclear factor-κB ligand-induced osteoclast dif-ferentiation via AMP-activated protein kinase activation. Korean J. Physiol. Pharmacol. 2019, 23, 411–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Deng, Y.; Jin, F.; Li, X.; Park, S.J.; Chang, J.-H.; Kim, D.-Y.; Kim, J.-A.; Nam, J.-W.; Choi, H.; Lee, Y.J.; et al. Sauchinone suppresses FcεRI-mediated mast cell signaling and anaphylaxis through regulation of LKB1/AMPK axis and SHP-1-Syk signaling module. Int. Immunopharmacol. 2019, 74, 105702. [Google Scholar] [CrossRef]
  65. Kanegasaki, S.; Tsuchiya, T. A possible way to prevent the progression of bone lesions in multiple myeloma via Src-homology-region-2-domain-containing-phosphatase-1 activation. J. Cell. Biochem. 2021, 122, 1313–1325. [Google Scholar] [CrossRef]
  66. Son, Y.H.; Moon, S.H.; Kim, J. The protein kinase 2 inhibitor CX-4945 regulates osteoclast and osteoblast differentiation In Vitro. Mol. Cells 2013, 36, 417–423. [Google Scholar] [CrossRef] [Green Version]
  67. Miller, S.J.; Lou, D.Y.; Seldin, D.C.; Lane, W.S.; Neel, B.G. Direct identification of PTEN phosphorylation sites. FEBS Lett. 2002, 528, 145–153. [Google Scholar] [CrossRef] [Green Version]
  68. Adami, G. Regulation of bone mass in inflammatory diseases. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 36, 101611. [Google Scholar] [CrossRef]
  69. Yao, Z.; Getting, S.J.; Locke, I.C. Regulation of TNF-Induced Osteoclast Differentiation. Cells 2021, 11, 132. [Google Scholar] [CrossRef]
  70. Yan, S.; Miao, L.; Lu, Y.; Wang, L. MicroRNA-506 upregulation contributes to sirtuin 1 inhibition of osteoclastogenesis in bone marrow stromal cells induced by TNF-α treatment. Cell Biochem. Funct. 2019, 37, 598–607. [Google Scholar] [CrossRef]
  71. Yan, S.; Miao, L.; Lu, Y.; Wang, L. Sirtuin 1 inhibits TNF-α-mediated osteoclastogenesis of bone marrow-derived macrophages through both ROS generation and TRPV1 activation. Mol. Cell. Biochem. 2018, 455, 135–145. [Google Scholar] [CrossRef] [PubMed]
  72. Araújo, A.A.D.; Pereira, A.D.S.B.F.; Medeiros, C.A.C.X.; Brito, G.A.D.C.; Leitão, R.F.D.C.; Araújo, L.D.S.; Guedes, P.M.M.; Hiyari, S.; Pirih, F.Q.; Júnior, R.F.D.A. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS ONE 2017, 12, e0183506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  73. Vidal, N.; Brandstrom, H.; Jonsson, K.B.; Ohlsson, C. Osteoprotegerin mRNA is expressed in primary human osteoblast-like cells: Down-regulation by glucocorticoids. J. Endocrinol. 1998, 159, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  74. Chotiyarnwong, P.; McCloskey, E.V. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat. Rev. Endocrinol. 2020, 16, 437–447. [Google Scholar] [CrossRef]
  75. Xing, Q.; Feng, J.; Zhang, X. Glucocorticoids suppressed osteoblast differentiation by decreasing Sema3A expression via the PIK3/Akt pathway. Exp. Cell Res. 2021, 403, 112595. [Google Scholar] [CrossRef]
  76. Hatano, M.; Kitajima, I.; Nakamura, M.; Isawa, K.; Suwabe, T.; Hoshino, J.; Kinowaki, K.; Ohashi, K.; Sawa, N.; Yamamoto, S.; et al. Long-term use of glucocorticoid exacerbates bone lesions in postmenopausal women with rheumatoid arthritis. Mod. Rheumatol. Case Rep. 2021, 6, 14–18. [Google Scholar] [CrossRef]
  77. Chen, J.H.; Shen, C.; Oh, H.R.; Park, J.H. Glucocorticoids inhibit the maturation of committed osteoblasts via SOX2. J. Mol. Endocrinol. 2022, 68, 195–207. [Google Scholar] [CrossRef]
  78. Yasuda, H.; Shima, N.; Nakagawa, N.; Yamaguchi, K.; Kinosaki, M.; Mochizuki, S.; Tomoyasu, A.; Yano, K.; Goto, M.; Murakami, A.; et al. Osteoclast differentiation factor is a ligand for osteopro-tegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 1998, 95, 3597–3602. [Google Scholar] [CrossRef] [Green Version]
  79. Wang, Y.G.; Han, X.G.; Yang, Y.; Qiao, H.; Dai, K.; Fan, Q.; Tang, T. Functional differences between AMPK α1 and α2 subunits in osteogenesis, osteo-blast-associated induction of osteoclastogenesis, and adipogenesis. Sci. Rep. 2016, 6, 32771. [Google Scholar] [CrossRef] [Green Version]
  80. Mai, Q.-G.; Zhang, Z.-M.; Xu, S.; Lu, M.; Zhou, R.-P.; Zhao, L.; Jia, C.-H.; Wen, Z.-H.; Jin, D.-D.; Bai, X.-C. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J. Cell. Biochem. 2011, 112, 2902–2909. [Google Scholar] [CrossRef]
  81. Kainuma, S.; Otsuka, T.; Kuroyanagi, G.; Yamamoto, N.; Matsushima-Nishiwaki, R.; Kozawa, O.; Tokuda, H. Possible involvement of AMP-activated protein kinase in PGE1-induced synthesis of osteoprotegerin in osteoblasts. Exp. Ther. Med. 2016, 11, 2042–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  82. Wein, M.N.; Liang, Y.; Göransson, O.; Sundberg, T.B.; Wang, J.; Williams, E.A.; O’Meara, M.J.; Govea, N.; Beqo, B.; Nishimori, S.; et al. SIKs control osteocyte responses to parathyroid hormone. Nat. Commun. 2016, 7, 13176. [Google Scholar] [CrossRef] [PubMed]
  83. Yoon, Y.-S.; Ryu, N.; Lee, M.-W.; Hong, S.; Koo, S.-H. Adiponectin and thiazolidinedione targets CRTC2 to regulate hepatic gluconeogenesis. Exp. Mol. Med. 2009, 41, 577–583. [Google Scholar] [CrossRef] [PubMed]
  84. Koo, S.-H.; Flechner, L.; Qi, L.; Zhang, X.; Screaton, R.A.; Jeffries, S.; Hedrick, S.; Xu, W.; Boussouar, F.; Brindle, P.; et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005, 437, 1109–1114. [Google Scholar] [CrossRef]
  85. Glass, D.A., 2nd; Bialek, P.; Ahn, J.D.; Starbuck, M.; Patel, M.S.; Clevers, H.; Taketo, M.M.; Long, F.; McMahon, A.P.; Lang, R.A.; et al. Canonical Wnt Signaling in Differentiated Osteoblasts Controls Osteoclast Differentiation. Dev. Cell 2005, 8, 751–764. [Google Scholar] [CrossRef] [Green Version]
  86. Kramer, I.; Halleux, C.; Keller, H.; Pegurri, M.; Gooi, J.H.; Weber, P.B.; Feng, J.Q.; Bonewald, L.F.; Kneissel, M. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol. Cell. Biol. 2010, 30, 3071–3085. [Google Scholar] [CrossRef] [Green Version]
  87. Salari-Moghaddam, A.; Sadeghi, O.; Keshteli, A.H.; Larijani, B.; Esmaillzadeh, A. Metformin use and risk of fracture: A sys-tematic review and meta-analysis of observational studies. Osteoporos. Int. 2019, 30, 1167–1173. [Google Scholar] [CrossRef]
  88. Hidayat, K.; Du, X.; Wu, M.J.; Shi, B.M. The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: Systematic review and meta-analysis of observational studies. Obes. Rev. 2019, 20, 1494–1503. [Google Scholar] [CrossRef]
  89. Wang, L.X.; Wang, G.Y.; Su, N.; Ma, J.; Li, Y.K. Effects of different doses of metformin on bone mineral density and bone me-tabolism in elderly male patients with type 2 diabetes mellitus. World J. Clin. Cases 2020, 8, 4010–4016. [Google Scholar] [CrossRef]
  90. Shaik, A.R.; Singh, P.; Shaik, C.; Kohli, S.; Vohora, D.; Ferrari, S.L. Metformin: Is It the Well Wisher of Bone Beyond Glycemic Control in Diabetes Mellitus? Calcif. Tissue Int. 2021, 108, 693–707. [Google Scholar] [CrossRef]
  91. Tseng, C.-H. Metformin use is associated with a lower risk of osteoporosis/vertebral fracture in Taiwanese patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 2021, 184, 299–310. [Google Scholar] [CrossRef] [PubMed]
  92. Gao, Y.; Li, Y.; Xue, J.; Jia, Y.; Hu, J. Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur. J. Pharmacol. 2010, 635, 231–236. [Google Scholar] [CrossRef] [PubMed]
  93. Zhou, Q.; Guan, Z.; Liu, S.; Xuan, Y.; Han, G.; Chen, H.; Jin, X.; Tao, K.; Guan, Z. The effects of metformin and alendronate in attenuating bone loss and improving glucose metabolism in diabetes mellitus mice. Aging 2022, 14, 272–285. [Google Scholar] [CrossRef]
  94. Liu, Q.; Xu, X.; Yang, Z.; Liu, Y.; Wu, X.; Huang, Z.; Liu, J.; Huang, Z.; Kong, G.; Ding, J.; et al. Metformin Alleviates the Bone Loss Induced by Ketogenic Diet: An In Vivo Study in Mice. Calcif. Tissue Res. 2018, 104, 59–69. [Google Scholar] [CrossRef] [PubMed]
  95. Marycz, K.; Tomaszewski, K.A.; Kornicka, K.; Henry, B.M.; Wroński, S.; Tarasiuk, J.; Maredziak, M. Corrigendum to “Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo”. Oxidative Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
  96. Hawley, S.A.; Ross, F.A.; Chevtzoff, C.; Green, K.A.; Evans, A.; Fogarty, S.; Towler, M.C.; Brown, L.J.; Ogunbayo, O.A.; Evans, A.M.; et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 2010, 11, 554–565. [Google Scholar] [CrossRef] [Green Version]
  97. Lee, Y.S.; Kim, W.S.; Kim, K.H.; Yoon, M.J.; Cho, H.J.; Shen, Y.; Ye, J.-M.; Lee, C.H.; Oh, W.K.; Kim, C.T.; et al. Berberine, a Natural Plant Product, Activates AMP-Activated Protein Kinase With Beneficial Metabolic Effects in Diabetic and Insulin-Resistant States. Diabetes 2006, 55, 2256–2264. [Google Scholar] [CrossRef] [Green Version]
  98. Kim, W.S.; Lee, Y.S.; Cha, S.H.; Jeong, H.W.; Choe, S.S.; Lee, M.-R.; Oh, G.T.; Park, H.-S.; Lee, K.-U.; Lane, M.D.; et al. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E812–E819. [Google Scholar] [CrossRef] [Green Version]
  99. Turner, N.; Li, J.Y.; Gosby, A.; To, S.W.C.; Cheng, Z.; Miyoshi, H.; Taketo, M.M.; Cooney, G.J.; Kraegen, E.W.; James, D.E.; et al. Berberine and its more biologically available derivative, dihydroberberine, inhibit mito-chondrial respiratory complex I: A mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 2008, 57, 1414–1418. [Google Scholar] [CrossRef] [Green Version]
  100. Dong, H.; Wang, N.; Zhao, L.; Lu, F. Berberine in the Treatment of Type 2 Diabetes Mellitus: A Systemic Review and Meta-Analysis. Evid.-Based Complement. Altern. Med. 2012, 2012, 591654. [Google Scholar] [CrossRef] [Green Version]
  101. Liang, Y.; Xu, X.; Yin, M.; Zhang, Y.; Huang, L.; Chen, R.; Ni, J. Effects of berberine on blood glucose in patients with type 2 diabetes mellitus: A systematic literature review and a meta-analysis. Endocr. J. 2019, 66, 51–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  102. Li, H.; Miyahara, T.; Tezuka, Y.; Le Tran, Q.; Seto, H.; Kadota, S. Effect of Berberine on Bone Mineral Density in SAMP6 as a Senile Osteoporosis Model. Biol. Pharm. Bull. 2003, 26, 110–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  103. Chen, Q.-C.; Pu, Y.-L.; Bi, J.; Zhang, Y. Protective effects of berberine on senile osteoporosis in mice. J. Bone Miner. Metab. 2021, 39, 748–756. [Google Scholar] [CrossRef] [PubMed]
  104. Xu, D.; Yang, W.; Zhou, C.; Liu, Y.; Xu, B. Preventive Effects of Berberine on Glucocorticoid-Induced Osteoporosis in Rats. Planta Med. 2010, 76, 1809–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  105. Adil, M.; Mansoori, M.N.; Singh, D.; Kandhare, A.; Sharma, M. Pioglitazone-induced bone loss in diabetic rats and its amelioration by berberine: A portrait of molecular crosstalk. Biomed. Pharmacother. 2017, 94, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
  106. Xie, H.; Wang, Q.; Zhang, X.; Wang, T.; Hu, W.; Manicum, T.; Chen, H.; Sun, L. Possible therapeutic potential of berberine in the treatment of STZ plus HFD-induced diabetic osteoporosis. Biomed. Pharmacother. 2018, 108, 280–287. [Google Scholar] [CrossRef]
  107. Gu, L.; Ke, Y.; Gan, J.; Li, X. Berberine suppresses bone loss and inflammation in ligature-induced periodontitis through pro-motion of the G protein-coupled estrogen receptor-mediated inactivation of the p38MAPK/NF-κB pathway. Arch. Oral Biol. 2021, 122, 104992. [Google Scholar] [CrossRef]
  108. Williams, C.B.; Hughes, M.C.; Edgett, B.; Scribbans, T.D.; Simpson, C.A.; Perry, C.G.R.; Gurd, B.J. An Examination of Resveratrol–s Mechanisms of Action in Human Tissue: Impact of a Single Dose In Vivo and Dose Responses in Skeletal Muscle Ex Vivo. PLoS ONE 2014, 9, e102406. [Google Scholar] [CrossRef]
  109. Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int. J. Mol. Sci. 2019, 20, 1381. [Google Scholar] [CrossRef] [Green Version]
  110. Zheng, Y.; Kou, J.; Wang, P.; Ye, T.; Wang, Z.; Gao, Z.; Cong, L.; Li, M.; Dong, B.; Yang, W.; et al. Berberine-induced TFEB deacetylation by SIRT1 promotes autophagy in peritoneal mac-rophages. Aging 2021, 13, 7096–7119. [Google Scholar] [CrossRef]
  111. Wu, Y.Z.; Zhang, L.; Wu, Z.X.; Shan, T.T.; Xiong, C. Berberine Ameliorates Doxorubicin-Induced Cardiotoxicity via a SIRT1/p66Shc-Mediated Pathway. Oxid. Med. Cell. Longev. 2019, 2019, 2150394. [Google Scholar] [CrossRef] [PubMed]
  112. Yu, Y.; Zhao, Y.; Teng, F.; Li, J.; Guan, Y.; Xu, J.; Lv, X.; Guan, F.; Zhang, M.; Chen, L. Berberine Improves Cognitive Deficiency and Muscular Dysfunction via Activation of the AMPK/SIRT1/PGC-1a Pathway in Skeletal Muscle from Naturally Aging Rats. J. Nutr. Health Aging 2018, 22, 710–717. [Google Scholar] [CrossRef] [PubMed]
  113. Fulco, M.; Cen, Y.; Zhao, P.; Hoffman, E.P.; McBurney, M.W.; Sauve, A.A.; Sartorelli, V. Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 through AMPK-Mediated Regulation of Nampt. Dev. Cell 2008, 14, 661–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  114. Costford, S.R.; Bajpeyi, S.; Pasarica, M.; Albarado, D.C.; Thomas, S.C.; Xie, H.; Church, T.S.; Jubrias, S.A.; Conley, K.E.; Smith, S.R. Skeletal muscle NAMPT is induced by exercise in humans. Am. J. Physiol.-Endocrinol. Metab. 2010, 298, E117–E126. [Google Scholar] [CrossRef] [Green Version]
  115. Revollo, J.R.; Grimm, A.A.; Imai, S.-I. The NAD Biosynthesis Pathway Mediated by Nicotinamide Phosphoribosyltransferase Regulates Sir2 Activity in Mammalian Cells. J. Biol. Chem. 2004, 279, 50754–50763. [Google Scholar] [CrossRef] [Green Version]
  116. Bitterman, K.J.; Anderson, R.M.; Cohen, H.Y.; Latorre-Esteves, M.; Sinclair, D.A. Inhibition of Silencing and Accelerated Aging by Nicotinamide, a Putative Negative Regulator of Yeast Sir2 and Human SIRT1. J. Biol. Chem. 2002, 277, 45099–45107. [Google Scholar] [CrossRef] [Green Version]
  117. Canto, C.; Houtkooper, R.H.; Pirinen, E.; Youn, D.Y.; Oosterveer, M.H.; Cen, Y.; Fernandez-Marcos, P.J.; Yamamoto, H.; Andreux, P.A.; Cettour-Rose, P.; et al. The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity. Cell Metab. 2012, 15, 838–847. [Google Scholar] [CrossRef] [Green Version]
  118. Cristòfol, R.; Porquet, D.; Corpas, R.; Coto-Montes, A.; Serret, J.; Camins, A.; Pallàs, M.; Sanfeliu, C. Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. J. Pineal Res. 2012, 52, 271–281. [Google Scholar] [CrossRef] [Green Version]
  119. Yu, L.; Sun, Y.; Cheng, L.; Jin, Z.; Yang, Y.; Zhai, M.; Pei, H.; Wang, X.; Zhang, H.; Meng, Q.; et al. Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: Role of SIRT1. J. Pineal Res. 2014, 57, 228–238. [Google Scholar] [CrossRef]
  120. Yang, Y.; Jiang, S.; Dong, Y.; Fan, C.; Zhao, L.; Yang, X.; Li, J.; Di, S.; Yue, L.; Liang, G.; et al. Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J. Pineal Res. 2015, 58, 61–70. [Google Scholar] [CrossRef]
  121. Zhou, B.; Zhang, Y.; Zhang, F.; Xia, Y.; Liu, J.; Huang, R.; Wang, Y.; Hu, Y.; Wu, J.; Dai, C.; et al. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1. Hepatology 2014, 59, 2196–2206. [Google Scholar] [CrossRef] [PubMed]
  122. McCarty, M.F.; Assanga, S.B.I. Ferulic acid may target MyD88-mediated pro-inflammatory signaling—Implications for the health protection afforded by whole grains, anthocyanins, and coffee. Med. Hypotheses 2018, 118, 114–120. [Google Scholar] [CrossRef] [PubMed]
  123. El-Mesallamy, H.O.; Gawish, R.; Sallam, A.-A.M.; Fahmy, H.A.; Nada, A.S. Ferulic acid protects against radiation-induced testicular damage in male rats: Impact on SIRT1 and PARP1. Environ. Sci. Pollut. Res. 2017, 25, 6218–6227. [Google Scholar] [CrossRef] [PubMed]
  124. Moghadam, F.H.; Mesbah-Ardakani, M.; Nasr-Esfahani, M.-H. Ferulic Acid exerts concentration-dependent anti-apoptotic and neuronal differentiation-inducing effects in PC12 and mouse neural stem cells. Eur. J. Pharmacol. 2018, 841, 104–112. [Google Scholar] [CrossRef] [PubMed]
  125. Hou, T.; Zhang, L.; Yang, X. Ferulic acid, a natural polyphenol, protects against osteoporosis by activating SIRT1 and NF-κB in neonatal rats with glucocorticoid-induced osteoporosis. Biomed. Pharmacother. 2019, 120, 109205. [Google Scholar] [CrossRef] [PubMed]
  126. Xu, T.; Song, Q.; Zhou, L.; Yang, W.; Wu, X.; Qian, Q.; Chai, H.; Han, Q.; Pan, H.; Dou, X.; et al. Ferulic acid alleviates lipotoxicity-induced hepatocellular death through the SIRT1-regulated autophagy pathway and independently of AMPK and Akt in AML-12 hepatocytes. Nutr. Metab. 2021, 18, 1–13. [Google Scholar] [CrossRef] [PubMed]
  127. Du, K.; Fang, X.; Li, Z. Ferulic acid suppresses interleukin-1β-induced degeneration of chondrocytes isolated from patients with osteoarthritis through the SIRT1/AMPK/PGC-1α signaling pathway. Immun. Inflamm. Dis. 2021, 9, 710–720. [Google Scholar] [CrossRef]
  128. Gebicki, J.; Sysa-Jedrzejowska, A.; Adamus, J.; Woźniacka, A.; Rybak, M.; Zielonka, J. 1-Methylnicotinamide: A potent an-ti-inflammatory agent of vitamin origin. Pol. J. Pharmacol. 2003, 55, 109–112. [Google Scholar]
  129. Hong, S.; Moreno-Navarrete, J.M.; Wei, X.; Kikukawa, Y.; Tzameli, I.; Prasad, D.; Lee, Y.; Asara, J.M.; Fernández-Real, J.M.; Maratos-Flier, E.; et al. Nicotinamide N-methyltransferase regulates hepatic nutrient metabolism through Sirt1 protein stabilization. Nat. Med. 2015, 21, 887–894. [Google Scholar] [CrossRef] [Green Version]
  130. Campagna, R.; Mateuszuk, Ł.; Wojnar-Lason, K.; Kaczara, P.; Tworzydło, A.; Kij, A.; Bujok, R.; Mlynarski, J.; Wang, Y.; Sartini, D.; et al. Nicotinamide N-methyltransferase in endothelium protects against oxidant stress-induced endothelial injury. Biochim. Et Biophys. Acta 2021, 1868, 119082. [Google Scholar] [CrossRef]
  131. Han, C.; Gu, Y.; Shan, H.; Mi, W.; Sun, J.; Shi, M.; Zhang, X.; Lu, X.; Han, F.; Gong, Q.; et al. O-GlcNAcylation of SIRT1 enhances its deacetylase activity and promotes cytoprotection under stress. Nat. Commun. 2017, 8, 1491. [Google Scholar] [CrossRef] [PubMed]
  132. Mccarty, M.F.; O’Keefe, J.H.; DiNicolantonio, J.J. Glucosamine for the Treatment of Osteoarthritis: The Time Has Come for Higher-Dose Trials. J. Diet. Suppl. 2018, 16, 179–192. [Google Scholar] [CrossRef] [PubMed]
  133. Yang, Y.; Bai, T.; Yao, Y.-L.; Zhang, D.-Q.; Wu, Y.-L.; Lian, L.-H.; Nan, J.-X. Upregulation of SIRT1-AMPK by thymoquinone in hepatic stellate cells ameliorates liver injury. Toxicol. Lett. 2016, 262, 80–91. [Google Scholar] [CrossRef] [PubMed]
  134. Velagapudi, R.; El-Bakoush, A.; Lepiarz-Raba, I.; Ogunrinade, F.; Olajide, O.A. AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Mol. Cell. Biochem. 2017, 435, 149–162. [Google Scholar] [CrossRef] [PubMed]
  135. Karandrea, S.; Yin, H.; Liang, X.; Slitt, A.L.; Heart, E.A. Thymoquinone ameliorates diabetic phenotype in Diet-Induced Obesity mice via activation of SIRT-1-dependent pathways. PLoS ONE 2017, 12, e0185374. [Google Scholar] [CrossRef] [Green Version]
  136. Lu, Y.; Feng, Y.; Liu, D.; Zhang, Z.; Gao, K.; Zhang, W.; Tang, H. Thymoquinone Attenuates Myocardial Ischemia/Reperfusion Injury Through Activation of SIRT1 Signaling. Cell. Physiol. Biochem. 2018, 47, 1193–1206. [Google Scholar] [CrossRef] [Green Version]
  137. Salam, S.A.; Mostafa, F.; Alnamshan, M.M.; Elshewemi, S.S.; Sorour, J.M. Thymoquinone ameliorates age-related hearing loss in C57BL/6J mice by modulating Sirt1 activity and Bak1 expression. Biomed. Pharmacother. 2021, 143, 112149. [Google Scholar] [CrossRef]
  138. Sutton, K.M.; Doucette, C.D.; Hoskin, D.W. NADPH quinone oxidoreductase 1 mediates breast cancer cell resistance to thy-moquinone-induced apoptosis. Biochem. Biophys. Res. Commun. 2012, 426, 421–426. [Google Scholar]
  139. Tao, Z.-S.; Lu, H.-L.; Ma, N.-F.; Zhang, R.-T.; Li, Y.; Yang, M.; Xu, H.-G. Rapamycin could increase the effects of melatonin against age-dependent bone loss. Z. Für Gerontol. Und Geriatr. 2019, 53, 671–678. [Google Scholar] [CrossRef]
  140. Gürler, E.B.; Çilingir-Kaya, T.; Eyüboglu, I.P.; Ercan, F.; Akkiprik, M.; Reiter, R.J.; Yegen, B. Melatonin supports alendronate in preserving bone matrix and prevents gastric inflammation in ovariectomized rats. Cell Biochem. Funct. 2019, 37, 102–112. [Google Scholar] [CrossRef]
  141. Chu, Z.-M.; Li, H.-B.; Sun, S.-X.; Jiang, Y.-C.; Wang, B.; Dong, Y.-F. Melatonin promotes osteoblast differentiation of bone marrow mesenchymal stem cells in aged rats. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4446–4456. [Google Scholar] [PubMed]
  142. Arabacı, T.; Kermen, E.; Özkanlar, S.; Köse, O.; Kara, A.; Kızıldağ, A.; Duman, B.; Ibişoğlu, E. Therapeutic Effects of Melatonin on Alveolar Bone Resorption After Experimental Periodontitis in Rats: A Biochemical and Immunohistochemical Study. J. Periodontol. 2015, 86, 874–881. [Google Scholar] [CrossRef] [PubMed]
  143. Maria, S.; Witt-Enderby, P.A. Melatonin effects on bone: Potential use for the prevention and treatment for osteopenia, oste-oporosis, and periodontal disease and for use in bone-grafting procedures. J. Pineal Res. 2014, 56, 115–125. [Google Scholar] [CrossRef] [PubMed]
  144. Tresguerres, I.F.; Tamimi, F.; Eimar, H.; Barralet, J.E.; Prieto, S.; Torres, J.; Calvo-Guirado, J.L.; Tresguerres, J.A. Melatonin Dietary Supplement as an Anti-Aging Therapy for Age-Related Bone Loss. Rejuvenation Res. 2014, 17, 341–346. [Google Scholar] [CrossRef]
  145. Uslu, S.; Uysal, A.; Oktem, G.; Yurtseven, M.; Tanyalçin, T.; Başdemir, G. Constructive effect of exogenous melatonin against osteoporosis after ovariectomy in rats. Anal. Quant. Cytol. Histol. 2007, 29, 317–325. [Google Scholar]
  146. Ladizesky, M.G.; Boggio, V.; Albornoz, L.E.; Castrillón, P.O.; Mautalen, C.; Cardinali, D.P. Melatonin increases oestradi-ol-induced bone formation in ovariectomized rats. J. Pineal Res. 2003, 34, 143–151. [Google Scholar] [CrossRef]
  147. Choi, J.-H.; Jang, A.-R.; Park, M.-J.; Kim, D.-I.; Park, J.-H. Melatonin Inhibits Osteoclastogenesis and Bone Loss in Ovariectomized Mice by Regulating PRMT1-Mediated Signaling. Endocrinology 2021, 162, bqab057. [Google Scholar] [CrossRef]
  148. Igarashi-Migitaka, J.; Seki, A.; Ikegame, M.; Honda, M.; Sekiguchi, T.; Mishima, H.; Shimizu, N.; Matsubara, H.; Srivastav, A.K.; Hirayama, J.; et al. Oral administration of melatonin contained in drinking water increased bone strength in naturally aged mice. Acta Histochem. 2020, 122, 151596. [Google Scholar] [CrossRef]
  149. Wang, X.; Liang, T.; Zhu, Y.; Qiu, J.; Qiu, X.; Lian, C.; Gao, B.; Peng, Y.; Liang, A.; Zhou, H.; et al. Melatonin prevents bone destruction in mice with retinoic acid–induced osteoporosis. Mol. Med. 2019, 25, 1–14. [Google Scholar] [CrossRef]
  150. Xu, L.; Zhang, L.; Wang, Z.; Li, C.; Li, S.; Li, L.; Fan, Q.; Zheng, L. Melatonin Suppresses Estrogen Deficiency-Induced Osteoporosis and Promotes Osteoblas-togenesis by Inactivating the NLRP3 Inflammasome. Calcif. Tissue Int. 2018, 103, 400–410. [Google Scholar] [CrossRef]
  151. Ghareghani, M.; Scavo, L.; Arnoult, D.; Zibara, K.; Farhadi, N. Melatonin therapy reduces the risk of osteoporosis and nor-malizes bone formation in multiple sclerosis. Fundam. Clin. Pharmacol. 2018, 32, 181–187. [Google Scholar] [CrossRef] [PubMed]
  152. Sharan, K.; Lewis, K.; Furukawa, T.; Yadav, V.K. Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway. J. Pineal Res. 2017, 63, e12423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  153. Satomura, K.; Tobiume, S.; Tokuyama, R.; Yamasaki, Y.; Kudoh, K.; Maeda, E.; Nagayama, M. Melatonin at pharmacological doses enhances human osteoblastic differentia-tion in vitro and promotes mouse cortical bone formation in vivo. J. Pineal Res. 2007, 42, 231–239. [Google Scholar] [CrossRef]
  154. Koyama, H.; Nakade, O.; Takada, Y.; Kaku, T.; Lau, K.H. Melatonin at pharmacologic doses increases bone mass by sup-pressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J. Bone Miner. Res. 2002, 17, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
  155. Zhou, W.; Chen, B.; Shang, J.; Li, R. Ferulic acid attenuates osteoporosis induced by glucocorticoid through regulating the GSK-3β/Lrp-5/ERK signalling pathways. Physiol. Int. 2021, 108, 317–341. [Google Scholar] [CrossRef] [PubMed]
  156. Sassa, S.; Kikuchi, T.; Shinoda, H.; Suzuki, S.; Kudo, H.; Sakamoto, S. Preventive effect of ferulic acid on bone loss in ovari-ectomized rats. In Vivo 2003, 17, 277–280. [Google Scholar]
  157. Kim, H.-N.; Ponte, F.; Warren, A.; Ring, R.; Iyer, S.; Han, L.; Almeida, M. A decrease in NAD+ contributes to the loss of osteoprogenitors and bone mass with aging. NPJ Aging Mech. Dis. 2021, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
  158. Asai, H.; Nakatani, S.; Kato, T.; Shimizu, T.; Mano, H.; Kobata, K.; Wada, M. Glucosamines Attenuate Bone Loss Due to Menopause by Regulating Osteoclast Function in Ovariectomized Mice. Biol. Pharm. Bull. 2016, 39, 1035–1041. [Google Scholar] [CrossRef] [Green Version]
  159. Wang, S.X.; Laverty, S.; Dumitriu, M.; Plaas, A.; Grynpas, M.D. The effects of glucosamine hydrochloride on subchondral bone changes in an animal model of osteoarthritis. Arthritis Care Res. 2007, 56, 1537–1548. [Google Scholar] [CrossRef]
  160. Fratantonio, D.; Speciale, A.; Molonia, M.S.; Bashllari, R.; Palumbo, M.; Saija, A.; Cimino, F. Alpha-lipoic acid, but not di-hydrolipoic acid, activates Nrf2 response in primary human umbilical-vein endothelial cells and protects against TNF-α induced endothelium dysfunction. Arch. Biochem. Biophys. 2018, 655, 18–25. [Google Scholar] [CrossRef]
  161. Kyung, S.; Lim, J.W.; Kim, H. α-Lipoic Acid Inhibits IL-8 Expression by Activating Nrf2 Signaling in Helicobacter pylo-ri-infected Gastric Epithelial Cells. Nutrients 2019, 11, 2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  162. Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signaling pathway. Phytother. Res. 2021, 35, 1739–1753. [Google Scholar] [CrossRef] [PubMed]
  163. Dinkova-Kostova, A.T.; Holtzclaw, W.D.; Cole, R.N.; Itoh, K.; Wakabayashi, N.; Katoh, Y.; Yamamoto, M.; Talalay, P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 2002, 99, 11908–11913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  164. Hong, F.; Freeman, M.L.; Liebler, D.C. Identification of sensor cysteines in human Keap1 modified by the cancer chemopre-ventive agent sulforaphane. Chem. Res. Toxicol. 2005, 18, 1917–1926. [Google Scholar] [CrossRef]
  165. Fang, J.; Yan, Y.; Teng, X.; Wen, X.; Li, N.; Peng, S.; Liu, W.; Donadeu, F.X.; Zhao, S.; Hua, J. Melatonin prevents senescence of canine adipose-derived mesenchymal stem cells through activating NRF2 and inhibiting ER stress. Aging 2018, 10, 2954–2972. [Google Scholar] [CrossRef]
  166. Early, J.O.; Menon, D.; Wyse, C.A.; Cervantes-Silva, M.P.; Zaslona, Z.; Carroll, R.G.; Palsson-McDermott, E.M.; Angiari, S.; Ryan, D.G.; Corcoran, S.E.; et al. Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2. Proc. Natl. Acad. Sci. USA 2018, 115, E8460–E8468. [Google Scholar] [CrossRef] [Green Version]
  167. Xue, Y.; Sun, C.; Hao, Q.; Cheng, J. Astaxanthin ameliorates cardiomyocyte apoptosis after coronary microembolization by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats. Naunyn-Schmiedeberg–s Arch. Pharmacol. 2019, 392, 341–348. [Google Scholar] [CrossRef]
  168. Li, Y.; Wang, Q.; Chu, C.; Liu, S. Astaxanthin protects retinal ganglion cells from acute glaucoma via the Nrf2/HO-1 pathway. J. Chem. Neuroanat. 2020, 110, 101876. [Google Scholar] [CrossRef]
  169. Shatoor, A.S.; Al, H.S.; Almohiy, H.M. Astaxanthin attenuates hepatic steatosis in high-fat diet-fed rats by suppressing mi-croRNA-21 via transactivation of nuclear factor erythroid 2-related factor 2. J. Physiol. Biochem. 2021, 78, 151–168. [Google Scholar] [CrossRef]
  170. Wu, Q.; Zhang, X.-S.; Wang, H.-D.; Zhang, X.; Yu, Q.; Li, W.; Zhou, M.-L.; Wang, X.-L. Astaxanthin Activates Nuclear Factor Erythroid-Related Factor 2 and the Antioxidant Responsive Element (Nrf2-ARE) Pathway in the Brain after Subarachnoid Hemorrhage in Rats and Attenuates Early Brain Injury. Mar. Drugs 2014, 12, 6125–6141. [Google Scholar] [CrossRef]
  171. Montazeri-Najafabady, N.; Dabbaghmanesh, M.H.; Chatrabnous, N.; Arabnezhad, M.R. The Effects of Astaxanthin on Pro-liferation and Differentiation of MG-63 Osteosarcoma Cells via Aryl Hydrocarbon Receptor (AhR) Pathway: A Comparison with AhR Endogenous Ligand. Nutr. Cancer 2020, 72, 1400–1410. [Google Scholar] [CrossRef] [PubMed]
  172. Montazeri-Najafabady, N.; Chatrabnous, N.; Arabnezhad, M.; Azarpira, N. Anti-androgenic effect of astaxanthin in LNCaP cells is mediated through the aryl hydrocarbon-androgen receptors cross talk. J. Food Biochem. 2021, 45, e13702. [Google Scholar] [CrossRef] [PubMed]
  173. Miao, W.; Hu, L.; Scrivens, P.J.; Batist, G. Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: Direct cross-talk between phase I and II drug-metabolizing enzymes. J. Biol. Chem. 2005, 280, 20340–20348. [Google Scholar] [CrossRef] [Green Version]
  174. Yeager, R.L.; Reisman, S.A.; Aleksunes, L.M.; Klaassen, C.D. Introducing the “TCDD-inducible AhR-Nrf2 gene battery”. Toxicol. Sci. 2009, 111, 238–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  175. Kim, H.J.; Chang, E.J.; Kim, H.M.; Lee, S.B.; Kim, H.D.; Kim, G.S.; Kim, H.H. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic. Biol. Med. 2006, 40, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
  176. Xiao, Y.; Cui, J.; Shi, Y.; Le, G. Lipoic acid increases the expression of genes involved in bone formation in mice fed a high-fat diet. Nutr. Res. 2011, 31, 309–317. [Google Scholar] [CrossRef]
  177. Polat, B.; Halici, Z.; Cadirci, E.; Albayrak, A.; Karakus, E.; Bayir, Y.; Bilen, H.; Sahin, A.; Yuksel, T.N. The effect of alpha-lipoic acid in ovariectomy and inflammation-mediated osteoporosis on the skeletal status of rat bone. Eur. J. Pharmacol. 2013, 718, 469–474. [Google Scholar] [CrossRef]
  178. Fu, C.; Xu, D.; Wang, C.-Y.; Jin, Y.; Liu, Q.; Meng, Q.; Liu, K.-X.; Sun, H.-J.; Liu, M.-Z. Alpha-Lipoic Acid Promotes Osteoblastic Formation in H2O2 -Treated MC3T3-E1 Cells and Prevents Bone Loss in Ovariectomized Rats. J. Cell. Physiol. 2015, 230, 2184–2201. [Google Scholar] [CrossRef]
  179. Radzki, R.; Bieńko, M.; Wolski, D.; Lis, A.; Radzka, A. Lipoic acid stimulates bone formation in ovariectomized rats in a dose-dependent manner. Can. J. Physiol. Pharmacol. 2016, 94, 947–954. [Google Scholar] [CrossRef]
  180. Zhan, J.; Jiang, Y.; Zhu, N.; Fang, W.; Wang, G. Administration of alpha-lipoic acid could maintain bone mass and bone strength in senile female rats with alcohol consumption. Z. Für Gerontol. Und Geriatr. 2019, 53, 679–686. [Google Scholar] [CrossRef]
  181. Radzki, R.P.; Bienko, M.; Wolski, D.; Oniszczuk, T.; Radzka-Pogoda, A.; Polak, P.; Borzecki, A.; Stasiak, M. Lipoic acid (LA) dose-dependently protects bone losses in the mandible of rats during the development of osteopenia by inhibiting oxidative stress and promoting bone formation. Biomed. Pharmacother. 2021, 146, 112467. [Google Scholar] [CrossRef]
  182. Hwang, Y.-H.; Kim, K.-J.; Kim, S.-J.; Mun, S.-K.; Hong, S.-G.; Son, Y.-J.; Yee, S.-T. Suppression Effect of Astaxanthin on Osteoclast Formation In Vitro and Bone Loss In Vivo. Int. J. Mol. Sci. 2018, 19, 912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  183. Balci, Y.H.; Lektemur, A.A.; Gevrek, F.; Toker, H. Investigation of the effect of astaxanthin on alveolar bone loss in experimental periodontitis. J. Periodontal. Res. 2018, 53, 131–138. [Google Scholar] [CrossRef] [PubMed]
  184. Vesely, D.L. Biotin Enhances Guanylate Cyclase Activity. Science 1982, 216, 1329–1330. [Google Scholar] [CrossRef] [PubMed]
  185. Riverón-Negrete, L.; Fernandez-Mejia, C. Pharmacological Effects of Biotin in Animals. Mini Rev. Med. Chem. 2017, 17, 529–540. [Google Scholar] [CrossRef] [PubMed]
  186. Vilches-Flores, A.; Tovar, A.R.; Marín-Hernández, A.; Rojas-Ochoa, A.; Fernandez-Mejia, C. Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat islets. J. Nutr. Biochem. 2010, 21, 606–612. [Google Scholar] [CrossRef]
  187. Watanabe-Kamiyama, M.; Kamiyama, S.; Horiuchi, K.; Ohinata, K.; Shirakawa, H.; Furukawa, Y.; Komai, M. Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats. Br. J. Nutr. 2008, 99, 756–763. [Google Scholar] [CrossRef] [Green Version]
  188. Espiritu, A.I.; Remalante-Rayco, P.P.M. High-dose biotin for multiple sclerosis: A systematic review and meta-analyses of randomized controlled trials. Mult. Scler. Relat. Disord. 2021, 55, 103159. [Google Scholar] [CrossRef]
  189. Mock, D.M. Biotin: From Nutrition to Therapeutics. J. Nutr. 2017, 147, 1487–1492. [Google Scholar] [CrossRef] [Green Version]
  190. Lolli, G.; Cozza, G.; Mazzorana, M.; Tibaldi, E.; Cesaro, L.; Donella-Deana, A.; Meggio, F.; Venerando, A.; Franchin, C.; Sarno, S.; et al. Inhibition of Protein Kinase CK2 by Flavonoids and Tyrphostins. A Structural Insight. Biochemistry 2012, 51, 6097–6107. [Google Scholar] [CrossRef]
  191. Russo, M.; Milito, A.; Spagnuolo, C.; Carbone, V.; Rosén, A.; Minasi, P.; Lauria, F.; Russo, G.L. CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia. Oncotarget 2017, 8, 42571–42587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  192. McCarty, M.F.; Assanga, S.I.; Lujan, L.L. Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med. Hypotheses 2020, 141, 109723. [Google Scholar] [CrossRef] [PubMed]
  193. DiNicolantonio, J.J.; McCarty, M.F. Targeting Casein kinase 2 with quercetin or enzymatically modified isoquercitrin as a strategy for boosting the type 1 interferon response to viruses and promoting cardiovascular health. Med. Hypotheses 2020, 142, 109800. [Google Scholar] [CrossRef] [PubMed]
  194. Derakhshanian, H.; Djalali, M.; Djazayery, A.; Nourijelyani, K.; Ghadbeigi, S.; Pishva, H.; Saedisomeolia, A.; Bahremand, A.; Dehpour, A.R. Quercetin prevents experimental glucocorticoid-induced osteoporosis: A comparative study with alendronate. Can. J. Physiol. Pharmacol. 2013, 91, 380–385. [Google Scholar] [CrossRef] [PubMed]
  195. Liang, W.; Luo, Z.; Ge, S.; Li, M.; Du, J.; Yang, M.; Yan, M.; Ye, Z.; Luo, Z. Oral administration of quercetin inhibits bone loss in rat model of diabetic osteopenia. Eur. J. Pharmacol. 2011, 670, 317–324. [Google Scholar] [CrossRef]
  196. Li, M.; Zhang, C.; Li, X.; Lv, Z.; Chen, Y.; Zhao, J. Isoquercitrin promotes the osteogenic differentiation of osteoblasts and BMSCs via the RUNX2 or BMP pathway. Connect. Tissue Res. 2018, 60, 189–199. [Google Scholar] [CrossRef]
  197. Wong, S.K.; Chin, K.-Y.; Ima-Nirwana, S. Quercetin as an Agent for Protecting the Bone: A Review of the Current Evidence. Int. J. Mol. Sci. 2020, 21, 6448. [Google Scholar] [CrossRef]
  198. Vakili, S.; Zal, F.; Mostafavi-Pour, Z.; Savardashtaki, A.; Koohpeyma, F. Quercetin and vitamin E alleviate ovariecto-my-induced osteoporosis by modulating autophagy and apoptosis in rat bone cells. J. Cell. Physiol. 2021, 236, 3495–3509. [Google Scholar] [CrossRef]
  199. Huang, Y.-Y.; Wang, Z.-H.; Deng, L.-H.; Wang, H.; Zheng, Q. Oral Administration of Quercetin or Its Derivatives Inhibit Bone Loss in Animal Model of Osteoporosis. Oxid. Med. Cell. Longev. 2020, 2020, 1–21. [Google Scholar] [CrossRef]
  200. Motoyama, K.; Koyama, H.; Moriwaki, M.; Emura, K.; Okuyama, S.; Sato, E.; Inoue, M.; Shioi, A.; Nishizawa, Y. Atheroprotective and plaque-stabilizing effects of enzymatically modified isoquercitrin in atherogenic apoE-deficient mice. Nutrition 2009, 25, 421–427. [Google Scholar] [CrossRef]
  201. Valentová, K.; Vrba, J.; Bancířová, M.; Ulrichová, J.; Křen, V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. [Google Scholar] [CrossRef] [PubMed]
  202. Omi, N.; Shiba, H.; Nishimura, E.; Tsukamoto, S.; Maruki-Uchida, H.; Oda, M.; Morita, M. Effects of enzymatically modified isoquercitrin in supplementary protein powder on athlete body composition: A randomized, placebo-controlled, double-blind trial. J. Int. Soc. Sports Nutr. 2019, 16, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  203. Pechanova, O.; Dayar, E.; Cebova, M. Therapeutic Potential of Polyphenols-Loaded Polymeric Nanoparticles in Cardiovascular System. Molecules 2020, 25, 3322. [Google Scholar] [CrossRef] [PubMed]
  204. Koide, M.; Okahashi, N.; Tanaka, R.; Kazuno, K.; Shibasaki, K.-I.; Yamazaki, Y.; Kaneko, K.; Ueda, N.; Ohguchi, M.; Ishihara, Y.; et al. Inhibition of experimental bone resorption and osteoclast formation and survival by 2-aminoethanesulphonic acid. Arch. Oral Biol. 1999, 44, 711–719. [Google Scholar] [CrossRef]
  205. Choi, M.-J.; DiMarco, N.M. The Effects of Dietary Taurine Supplementation on Bone Mineral Density in Ovariectomized Rats. Adv. Exp. Med. Biol. 2009, 643, 341–349. [Google Scholar] [CrossRef]
  206. Choi, M.-J.; Chang, K.J. Effect of Dietary Taurine and Arginine Supplementation on Bone Mineral Density in Growing Female Rats. Adv. Exp. Med. Biol. 2013, 776, 335–345. [Google Scholar] [CrossRef]
  207. Choi, M.-J.; Seo, J.-N. Effect of Taurine Feeding on Bone Mineral Density and Bone Markers in Rats. Adv. Exp. Med. Biol. 2013, 776, 51–58. [Google Scholar] [CrossRef]
  208. Choi, M.-J.; Chang, K.-J.; Lee, J.-W.; Jung, Y.-J. Beneficial Function of Taurine on Bone Metabolism in Alcohol-Fed OVX Rat Model. Adv. Exp. Med. Biol. 2017, 975, 1059–1069. [Google Scholar] [CrossRef]
  209. Choi, M.-J. Taurine May Modulate Bone in Cholesterol Fed Estrogen Deficiency-Induced Rats. Adv. Exp. Med. Biol. 2017, 975, 1093–1102. [Google Scholar] [CrossRef]
  210. Prideaux, M.; Kitase, Y.; Kimble, M.; O’Connell, T.M.; Bonewald, L.F. Taurine, an osteocyte metabolite, protects against oxi-dative stress-induced cell death and decreases inhibitors of the Wnt/β-catenin signaling pathway. Bone 2020, 137, 115374. [Google Scholar] [CrossRef]
  211. Jang, H.J.; Kim, S.-J. Taurine exerts anti-osteoclastogenesis activity via inhibiting ROS generation, JNK phosphorylation and COX-2 expression in RAW264.7 cells. J. Recept. Signal Transduct. 2013, 33, 387–391. [Google Scholar] [CrossRef] [PubMed]
  212. Sun, Q.; Wang, B.; Li, Y.; Sun, F.; Li, P.; Xia, W.; Zhou, X.; Li, Q.; Wang, X.; Chen, J.; et al. Taurine Supplementation Lowers Blood Pressure and Improves Vascular Function in Prehy-pertension: Randomized, Double-Blind, Placebo-Controlled Study. Hypertension 2016, 67, 541–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  213. Zhao, H.; Qu, J.; Li, Q.; Cui, M.; Wang, J.; Zhang, K.; Liu, X.; Feng, H.; Chen, Y. Taurine supplementation reduces neuroinflammation and protects against white matter injury after intracerebral hemorrhage in rats. Amino Acids 2017, 50, 439–451. [Google Scholar] [CrossRef] [PubMed]
  214. Guizoni, D.M.; Freitas, I.N.; Victorio, J.A.; Possebom, I.R.; Araujo, T.R.; Carneiro, E.M.; Davel, A.P. Taurine treatment reverses protein malnutrition-induced endothelial dys-function of the pancreatic vasculature: The role of hydrogen sulfide. Metabolism 2021, 116, 154701. [Google Scholar] [CrossRef] [PubMed]
  215. DiNicolantonio, J.J.; Okeefe, J.H.; Mccarty, M.F. Boosting endogenous production of vasoprotective hydrogen sulfide via supplementation with taurine and N-acetylcysteine: A novel way to promote cardiovascular health. Open Heart 2017, 4, e000600. [Google Scholar] [CrossRef] [PubMed]
  216. Chen, L.; Wang, G.; Wang, Q.; Liu, Q.; Sun, Q.; Chen, L. N-acetylcysteine prevents orchiectomy-induced osteoporosis by in-hibiting oxidative stress and osteocyte senescence. Am. J. Transl. Res. 2019, 11, 4337–4347. [Google Scholar] [PubMed]
  217. Toker, H.; Ozdemir, H.; Eren, K.; Ozer, H.; Şahin, G.; Sahın, G. N-Acetylcysteine, a Thiol Antioxidant, Decreases Alveolar Bone Loss in Experimental Periodontitis in Rats. J. Periodontol. 2009, 80, 672–678. [Google Scholar] [CrossRef]
  218. Toker, H.; Ozdemir, H.; Balci, H.; Ozer, H. N-acetylcysteine decreases alveolar bone loss on experimental periodontitis in streptozotocin-induced diabetic rats. J. Periodontal Res. 2012, 47, 793–799. [Google Scholar] [CrossRef]
  219. Sanders, K.M.; Kotowicz, M.A.; Nicholson, G.C. Potential role of the antioxidant N-acetylcysteine in slowing bone resorption in early post-menopausal women: A pilot study. Transl. Res. 2007, 150, 215. [Google Scholar] [CrossRef]
  220. Ghosh, N.; Das, A.; Biswas, N.; Gnyawali, S.; Singh, K.; Gorain, M.; Polcyn, C.; Khanna, S.; Roy, S.; Sen, C.K. Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD+ and SIRT1. Sci. Rep. 2020, 10, 20184. [Google Scholar] [CrossRef]
  221. Liu, C.-L.; Zhao, D.; Li, J.-J.; Liu, S.; An, J.-J.; Wang, D.; Hu, F.-A.; Qiu, C.-Y.; Cui, M.-H. Inhibition of glioblastoma progression by Urolithin A in vitro and in vivo by regulating Sirt1-FOXO1 axis via ERK/AKT signaling pathways. Neoplasma 2022, 69, 80–94. [Google Scholar] [CrossRef] [PubMed]
  222. Shi, P.Z.; Wang, J.W.; Wang, P.C.; Han, B.; Lu, X.H.; Ren, Y.X.; Feng, X.M.; Cheng, X.F.; Zhang, L. Urolithin a alleviates oxidative stress-induced senescence in nucleus pulposus-derived mesenchymal stem cells through SIRT1/PGC-1α pathway. World J. Stem Cells 2021, 13, 1928–1946. [Google Scholar] [CrossRef] [PubMed]
  223. Liu, J.; Jiang, J.; Qiu, J.; Wang, L.; Zhuo, J.; Wang, B.; Sun, D.; Yu, S.; Lou, H. Urolithin A protects dopaminergic neurons in experimental models of Parkinson’s disease by promoting mitochondrial biogenesis through the SIRT1/PGC-1α signaling pathway. Food Funct. 2022, 13, 375–385. [Google Scholar] [CrossRef] [PubMed]
  224. Iseli, T.J.; Turner, N.; Zeng, X.-Y.; Cooney, G.J.; Kraegen, E.W.; Yao, S.; Ye, Y.; James, D.E.; Ye, J.-M. Activation of AMPK by Bitter Melon Triterpenoids Involves CaMKKβ. PLoS ONE 2013, 8, e62309. [Google Scholar] [CrossRef] [PubMed]
  225. Jayasuriya, R.; Dhamodharan, U.; Ali, D.; Ganesan, K.; Xu, B.; Ramkumar, K.M. Targeting Nrf2/Keap1 signaling pathway by bioactive natural agents: Possible therapeutic strategy to combat liver disease. Phytomedicine 2021, 92, 153755. [Google Scholar] [CrossRef]
  226. Guha, M.; Bai, W.; Nadler, J.L.; Natarajan, R. Molecular mechanisms of tumor necrosis factor alpha gene expression in mon-ocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. J. Biol. Chem. 2000, 275, 17728–17739. [Google Scholar] [CrossRef] [Green Version]
  227. Tobiume, K.; Matsuzawa, A.; Takahashi, T.; Nishitoh, H.; Morita, K.I.; Takeda, K.; Minowa, O.; Miyazono, K.; Noda, T.; Ichijo, H. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2001, 2, 222–228. [Google Scholar] [CrossRef]
  228. Matsukawa, J.; Matsuzawa, A.; Takeda, K.; Ichijo, H. The ASK1-MAP Kinase Cascades in Mammalian Stress Response. J. Biochem. 2004, 136, 261–265. [Google Scholar] [CrossRef]
  229. McCarty, M.F. Clinical potential of Spirulina as a source of phycocyanobilin. J. Med. Food 2007, 10, 566–570. [Google Scholar] [CrossRef]
  230. Zheng, J.; Inoguchi, T.; Sasaki, S.; Maeda, Y.; McCarty, M.F.; Fujii, M.; Ikeda, N.; Kobayashi, K.; Sonoda, N.; Takayanagi, R. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R110–R120. [Google Scholar] [CrossRef] [Green Version]
  231. Kang, M.S.; Moon, J.-H.; Park, S.C.; Jang, Y.P.; Choung, S.Y. Spirulina maxima reduces inflammation and alveolar bone loss in Porphyromonas gingivalis-induced periodontitis. Phytomedicine 2020, 81, 153420. [Google Scholar] [CrossRef] [PubMed]
  232. Remirez, D.; González, R.; Merino, N.; Rodriguez, S.; Ancheta, O. Inhibitory effects of Spirulina in zymosan-induced arthritis in mice. Mediat. Inflamm. 2002, 11, 75–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  233. Rasool, M.; Sabina, E.P.; Lavanya, B. Anti-inflammatory Effect of Spirulina fusiformis on Adjuvant-Induced Arthritis in Mice. Biol. Pharm. Bull. 2006, 29, 2483–2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  234. Kumar, N.; Singh, S.; Patro, N.; Patro, I. Evaluation of protective efficacy of Spirulina platensis against collagen-induced ar-thritis in rats. Inflammopharmacology 2009, 17, 181–190. [Google Scholar] [CrossRef]
  235. Romay, C.H.; Gonzalez, R.; Ledon, N.; Remirez, D.; Rimbau, V. C-phycocyanin: A biliprotein with antioxidant, an-ti-inflammatory and neuroprotective effects. Curr. Protein Pept. Sci. 2003, 4, 207–216. [Google Scholar] [CrossRef]
  236. Zhao, R.; Tao, L.; Qiu, S.; Shen, L.; Tian, Y.; Gong, Z.; Tao, Z.B.; Zhu, Y. Melatonin rescues glucocorticoid-induced inhibition of osteoblast differentiation in MC3T3-E1 cells via the PI3K/AKT and BMP/Smad signalling pathways. Life Sci. 2020, 257, 118044. [Google Scholar] [CrossRef]
  237. Huang, R.X.; Tao, J. Nicotinamide mononucleotide attenuates glucocorticoid-induced osteogenic inhibition by regulating the SIRT1/PGC-1α signaling pathway. Mol. Med. Rep. 2020, 22, 145–154. [Google Scholar] [CrossRef]
  238. He, H.-P.; Gu, S. The PPAR-γ/SFRP5/Wnt/β-catenin signal axis regulates the dexamethasone-induced osteoporosis. Cytokine 2021, 143, 155488. [Google Scholar] [CrossRef]
  239. Qu, B.; Ma, Y.; Yan, M.; Gong, K.; Liang, F.; Deng, S.; Jiang, K.; Ma, Z.; Pan, X. Sirtuin1 promotes osteogenic differentiation through downregulation of peroxisome prolifera-tor-activated receptor γ in MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 2016, 478, 439–445. [Google Scholar] [CrossRef]
  240. Picard, F.; Kurtev, M.; Chung, N.; Topark-Ngarm, A.; Senawong, T.; Oliveira, R.M.D.; Leid, M.; McBurney, M.W.; Guarente, L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004, 429, 771–776. [Google Scholar] [CrossRef]
  241. Schwarz, A.B. TZDs and bone: A review of recent clinical evidence. PPAR Res. 2008, 2008, 297893. [Google Scholar] [CrossRef] [Green Version]
  242. Smoak, K.A.; Cidlowski, J.A. Mechanisms of glucocorticoid receptor signaling during inflammation. Mech. Ageing Dev. 2004, 125, 697–706. [Google Scholar] [CrossRef]
  243. Somjen, D.; Katzburg, S.; Stern, N.; Kohen, F.; Sharon, O.; Limor, R.; Jaccard, N.; Hendel, D.; Weisman, Y. 25 hydroxy-vitamin D(3)-1alpha hydroxylase expression and activity in cultured human osteoblasts and their modulation by parathyroid hormone, estrogenic compounds and dihydrotestosterone. J. Steroid Biochem. Mol. Biol. 2007, 107, 238–244. [Google Scholar] [CrossRef]
  244. Paredes, R.; Arriagada, G.; Cruzat, F.; Villagra, A.; Olate, J.; Zaidi, K.; van Wijnen, A.; Lian, J.B.; Stein, G.S.; Stein, J.L.; et al. Bone-specific transcription factor Runx2 interacts with the 1alpha,25-dihydroxyvitamin D3 receptor to up-regulate rat osteocalcin gene expression in osteoblastic cells. Mol. Cell. Biol. 2004, 24, 8847–8861. [Google Scholar] [CrossRef] [Green Version]
  245. Shen, Q.; Christakos, S. The Vitamin D Receptor, Runx2, and the Notch Signaling Pathway Cooperate in the Transcriptional Regulation of Osteopontin. J. Biol. Chem. 2005, 280, 40589–40598. [Google Scholar] [CrossRef] [Green Version]
  246. Marcellini, S.; Bruna, C.; Henríquez, J.P.; Albistur, M.; Reyes, A.E.; Barriga, E.H.; Henríquez, B.; Montecino, M. Evolution of the interaction between Runx2 and VDR, two transcription factors involved in osteoblastogenesis. BMC Evol. Biol. 2010, 10, 78. [Google Scholar] [CrossRef] [Green Version]
  247. Stephens, A.S.; Morrison, N.A. Novel Target Genes of RUNX2 Transcription Factor and 1,25-Dihydroxyvitamin D3. J. Cell. Biochem. 2014, 115, 1594–1608. [Google Scholar] [CrossRef]
  248. Johnsen, M.S.; Grimnes, G.; Figenschau, Y.; Torjesen, P.A.; Almås, B.; Jorde, R. Serum free and bio-available 25-hydroxyvitamin D correlate better with bone density than serum total 25-hydroxyvitamin D. Scand. J. Clin. Lab. Investig. 2014, 74, 177–183. [Google Scholar] [CrossRef] [Green Version]
  249. Li, C.; Chen, P.; Duan, X.; Wang, J.; Shu, B.; Li, X.; Ba, Q.; Li, J.; Wang, Y.; Wang, H. Bioavailable 25(OH)D but Not Total 25(OH)D Is an Independent Determinant for Bone Mineral Density in Chinese Postmenopausal Women. EBioMedicine 2016, 15, 184–192. [Google Scholar] [CrossRef] [Green Version]
  250. El Sabeh, M.; Ghanem, P.; Al-Shaar, L.; Rahme, M.; Baddoura, R.; Halaby, G.; Singh, R.J.; Vanderschueren, D.; Bouillon, R.; Fuleihan, G.E.-H. Total, Bioavailable, and Free 25(OH)D Relationship with Indices of Bone Health in Elderly: A Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2020, 106, e990–e1001. [Google Scholar] [CrossRef]
  251. Rockwell, M.S.; Kostelnik, S.B.; Mcmillan, R.P.; Lancaster, M.; Larson-Meyer, D.E.; Hulver, M.W. An Association between Bioavailable 25-Hydroxyvitamin D and Bone Mineral Density in a Diverse Cohort of Collegiate Athletes. Med. Sci. Sports Exerc. 2021, 54, 371–376. [Google Scholar] [CrossRef] [PubMed]
  252. Vermeer, C. The vitamin K-dependent carboxylation reaction. Mol. Cell. Biochem. 1984, 61, 17–35. [Google Scholar] [CrossRef] [PubMed]
  253. Gröber, U.; Reichrath, J.; Holick, M.; Kisters, K. Vitamin K: An old vitamin in a new perspective. Derm. -Endocrinol. 2014, 6, e968490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  254. Rodríguez-Olleros Rodríguez, C.; Díaz Curiel, M. Vitamin K and Bone Health: A Review on the Effects of Vitamin K Deficiency and Supplementation and the Effect of Non-Vitamin K Antagonist Oral Anticoagulants on Different Bone Parameters. J. Os-teoporos. 2019, 2019, 2069176. [Google Scholar] [CrossRef] [PubMed]
  255. Schröder, M.; Riksen, E.A.; He, J.; Skallerud, B.H.; Møller, M.E.; Lian, A.M.; Syversen, U.; Reseland, J.E. Vitamin K2 Modulates Vitamin D-Induced Mechanical Properties of Human 3D Bone Spheroids In Vitro. JBMR Plus 2020, 4, e10394. [Google Scholar] [CrossRef] [PubMed]
  256. Farsinejad-Marj, M.; Saneei, P.; Esmaillzadeh, A. Dietary magnesium intake, bone mineral density and risk of fracture: A systematic review and meta-analysis. Osteoporos. Int. 2015, 27, 1389–1399. [Google Scholar] [CrossRef]
  257. Ceylan, M.N.; Akdas, S.; Yazihan, N. Is Zinc an Important Trace Element on Bone-Related Diseases and Complications? A Meta-analysis and Systematic Review from Serum Level, Dietary Intake, and Supplementation Aspects. Biol. Trace Elem. Res. 2020, 199, 535–549. [Google Scholar] [CrossRef]
  258. Rondanelli, M.; Faliva, M.A.; Tartara, A.; Gasparri, C.; Perna, S.; Infantino, V.; Riva, A.; Petrangolini, G.; Peroni, G. An update on magnesium and bone health. BioMetals 2021, 34, 715–736. [Google Scholar] [CrossRef]
  259. Shea, B.; A Wells, G.; Cranney, A.; Zytaruk, N.; Griffith, L.; Hamel, C.; Ortiz, Z.; Peterson, J.; Tugwell, P.; Welch, V. Calcium supplementation on bone loss in postmenopausal women. Cochrane Database Syst. Rev. 2006, 1, CD004526. [Google Scholar] [CrossRef]
  260. Bolland, M.J.; Leung, W.; Tai, V.; Bastin, S.; Gamble, G.; Grey, A.; Reid, I. Calcium intake and risk of fracture: Systematic review. BMJ 2015, 351, h4580. [Google Scholar] [CrossRef] [Green Version]
  261. Bae, Y.-J.; Kim, M.-H. Manganese Supplementation Improves Mineral Density of the Spine and Femur and Serum Osteocalcin in Rats. Biol. Trace Element Res. 2008, 124, 28–34. [Google Scholar] [CrossRef] [PubMed]
  262. Bae, Y.-J.; Kim, J.-Y.; Choi, M.-K.; Chung, Y.-S.; Kim, M.-H. Short-term Administration of Water-soluble Silicon Improves Mineral Density of the Femur and Tibia in Ovariectomized Rats. Biol. Trace Element Res. 2008, 124, 157–163. [Google Scholar] [CrossRef] [PubMed]
  263. De Jonge, E.A.L.; Koromani, F.; Hofman, A.; Uitterlinden, A.G.; Franco, O.H.; Rivadeneira, F.; Jong, J.C.K.-D. Dietary acid load, trabecular bone integrity, and mineral density in an ageing population: The Rotterdam study. Osteoporos. Int. 2017, 28, 2357–2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  264. Sebastian, A.; Frassetto, L.A. A neglected requirement for optimizing treatment of age-related osteoporosis: Replenishing the skeleton’s base reservoir with net base-producing diets. Med. Hypotheses 2016, 91, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  265. Burckhardt, P. The role of low acid load in vegetarian diet on bone health: A narrative review. Swiss Med. Wkly. 2016, 146, w14277. [Google Scholar] [CrossRef] [Green Version]
  266. Thorpe, M.; Mojtahedi, M.C.; Chapman-Novakofski, K.; McAuley, E.; Evans, E.M. A Positive Association of Lumbar Spine Bone Mineral Density with Dietary Protein Is Suppressed by a Negative Association with Protein Sulfur. J. Nutr. 2008, 138, 80–85. [Google Scholar] [CrossRef] [Green Version]
  267. Strause, L.; Saltman, P.; Smith, K.T.; Bracker, M.; Andon, M.B. Spinal Bone Loss in Postmenopausal Women Supplemented with Calcium and Trace Minerals. J. Nutr. 1994, 124, 1060–1064. [Google Scholar] [CrossRef] [Green Version]
Figure 1. Nutraceutical mechanisms for the support of RUNX2 activity, promotion of autophagy, and inhibition of apoptosis in osteoblasts/osteocytes. NAC = N-acetylcysteine; FA = ferulic acid; MNA = N1-methylnicotinamide; MLT = melatonin; NR = nicotinamide riboside; and GCA = glucosamine.
Figure 1. Nutraceutical mechanisms for the support of RUNX2 activity, promotion of autophagy, and inhibition of apoptosis in osteoblasts/osteocytes. NAC = N-acetylcysteine; FA = ferulic acid; MNA = N1-methylnicotinamide; MLT = melatonin; NR = nicotinamide riboside; and GCA = glucosamine.
Ijms 23 04776 g001
Figure 2. Nutraceutical modulation of osteoclast expression and activity of NFATc1, a key driver of osteolysis. LA = lipoic acid; MLT = melatonin; TMQ = thymoquinone; ASX = astaxanthin; SFP = sulforaphane; NAC = N-acetylcysteine; QCT = quercetin; FA = ferulic acid; MNA = N1-methylnicotinamide; NR = nicotinamide riboside; and GCA = glucosamine.
Figure 2. Nutraceutical modulation of osteoclast expression and activity of NFATc1, a key driver of osteolysis. LA = lipoic acid; MLT = melatonin; TMQ = thymoquinone; ASX = astaxanthin; SFP = sulforaphane; NAC = N-acetylcysteine; QCT = quercetin; FA = ferulic acid; MNA = N1-methylnicotinamide; NR = nicotinamide riboside; and GCA = glucosamine.
Ijms 23 04776 g002
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

McCarty, M.F.; Lewis Lujan, L.; Iloki Assanga, S. Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass. Int. J. Mol. Sci. 2022, 23, 4776. https://doi.org/10.3390/ijms23094776

AMA Style

McCarty MF, Lewis Lujan L, Iloki Assanga S. Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass. International Journal of Molecular Sciences. 2022; 23(9):4776. https://doi.org/10.3390/ijms23094776

Chicago/Turabian Style

McCarty, Mark F., Lidianys Lewis Lujan, and Simon Iloki Assanga. 2022. "Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass" International Journal of Molecular Sciences 23, no. 9: 4776. https://doi.org/10.3390/ijms23094776

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop