The Role of Fibrinolytic System in Health and Disease
Abstract
:Funding
Conflicts of Interest
References
- Astrup, T. Blood coagulation and fibrinolysis in tissue culture and tissue repair. Biochem. Pharmacol. 1968, 17, 241–257. [Google Scholar] [CrossRef]
- Sherry, S. Fibrinolysis and Clinical Medicine. Triangle 1964, 7, 294–300. Available online: https://www.ncbi.nlm.nih.gov/pubmed/14251104 (accessed on 1 May 2022).
- Sherry, S. Fibrinolysis in health and disease. Med. Times 1967, 95, 945–956. Available online: https://www.ncbi.nlm.nih.gov/pubmed/6074071 (accessed on 1 May 2022).
- Sherry, S. Fibrinolysis. Annu. Rev. Med. 1968, 19, 247–268. [Google Scholar] [CrossRef]
- Kwaan, H.C. Disorders of fibrinolysis. Med. Clin. N. Am. 1972, 56, 163–176. [Google Scholar] [CrossRef]
- Kwaan, H.C. Fibrinolysis–A perspective. Prog. Cardiovasc. Dis. 1979, 21, 397–403. [Google Scholar] [CrossRef]
- Kwaan, H.C. The role of fibrinolysis in disease processes. Semin. Thromb. Hemost. 1984, 10, 71–79. [Google Scholar] [CrossRef]
- Miles, L.A.; Parmer, R.J. Plasminogen receptors: The first quarter century. Semin. Thromb. Hemost. 2013, 39, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Cesarman, G.M.; Guevara, C.A.; Hajjar, K.A. An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA). II. Annexin II-mediated enhancement of t-PA-dependent plasminogen activation. J. Biol. Chem. 1994, 269, 21198–21203. Available online: https://www.ncbi.nlm.nih.gov/pubmed/8063741 (accessed on 1 May 2022). [CrossRef]
- Hajjar, K.A.; Jacovina, A.T.; Chacko, J. An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J. Biol. Chem. 1994, 269, 21191–21197. Available online: https://www.ncbi.nlm.nih.gov/pubmed/8063740 (accessed on 1 May 2022). [CrossRef]
- Hajjar, K.A.; Menell, J.S. Annexin II: A novel mediator of cell surface plasmin generation. Ann. N. Y. Acad. Sci. 1997, 811, 337–349. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, P.A.; Madureira, P.A.; Berman, J.N.; Liwski, R.S.; Waisman, D.M. Regulation of S100A10 by the PML-RAR-alpha oncoprotein. Blood 2011, 117, 4095–4105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploug, M.; Ronne, E.; Behrendt, N.; Jensen, A.L.; Blasi, F.; Dano, K. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J. Biol. Chem. 1991, 266, 1926–1933. Available online: https://www.ncbi.nlm.nih.gov/pubmed/1846368 (accessed on 1 May 2022). [CrossRef]
- Ny, T.; Liu, Y.X.; Ohlsson, M.; Jones, P.B.; Hsueh, A.J. Regulation of tissue-type plasminogen activator activity and messenger RNA levels by gonadotropin-releasing hormone in cultured rat granulosa cells and cumulus-oocyte complexes. J. Biol. Chem. 1987, 262, 11790–11793. Available online: https://www.ncbi.nlm.nih.gov/pubmed/3114254 (accessed on 1 May 2022). [CrossRef]
- Seeds, N.W.; Williams, B.L.; Bickford, P.C. Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science 1995, 270, 1992–1994. [Google Scholar] [CrossRef]
- Medcalf, R.L. Fibrinolysis: From blood to the brain. J. Thromb. Haemost. 2017, 15, 2089–2098. [Google Scholar] [CrossRef]
- Niego, B.; Lee, N.; Larsson, P.; De Silva, T.M.; Au, A.E.; McCutcheon, F.; Medcalf, R.L. Selective inhibition of brain endothelial Rho-kinase-2 provides optimal protection of an in vitro blood-brain barrier from tissue-type plasminogen activator and plasmin. PLoS ONE 2017, 12, e0177332. [Google Scholar] [CrossRef]
- Yepes, M.; Sandkvist, M.; Moore, E.G.; Bugge, T.H.; Strickland, D.K.; Lawrence, D.A. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J. Clin. Investig. 2003, 112, 1533–1540. [Google Scholar] [CrossRef]
- Fredriksson, L.; Lawrence, D.A.; Medcalf, R.L. tPA Modulation of the Blood-Brain Barrier: A Unifying Explanation for the Pleiotropic Effects of tPA in the CNS. Semin. Thromb. Hemost. 2017, 43, 154–168. [Google Scholar] [CrossRef] [Green Version]
- Parcq, J.; Bertrand, T.; Montagne, A.; Baron, A.F.; Macrez, R.; Billard, J.M.; Briens, A.; Hommet, Y.; Wu, J.; Yepes, M.; et al. Unveiling an exceptional zymogen: The single-chain form of tPA is a selective activator of NMDA receptor-dependent signaling and neurotoxicity. Cell Death Differ. 2012, 19, 1983–1991. [Google Scholar] [CrossRef] [Green Version]
- Hastings, S.; Myles, P.S.; Medcalf, R.L. Plasmin, Immunity, and Surgical Site Infection. J. Clin. Med. 2021, 10, 2070. [Google Scholar] [CrossRef] [PubMed]
- Keragala, C.B.; Draxler, D.F.; McQuilten, Z.K.; Medcalf, R.L. Haemostasis and innate immunity-a complementary relationship: A review of the intricate relationship between coagulation and complement pathways. Br. J. Haematol. 2018, 180, 782–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolev, K.; Medcalf, R.L. Editorial: Fibrinolysis in Immunity. Front. Immunol. 2020, 11, 582. [Google Scholar] [CrossRef] [PubMed]
- Eren, M.; Boe, A.E.; Klyachko, E.A.; Vaughan, D.E. Role of plasminogen activator inhibitor-1 in senescence and aging. Semin. Thromb. Hemost. 2014, 40, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Aillaud, M.F.; Pignol, F.; Alessi, M.C.; Harle, J.R.; Escande, M.; Mongin, M.; Juhan-Vague, I. Increase in plasma concentration of plasminogen activator inhibitor, fibrinogen, von Willebrand factor, factor VIII:C and in erythrocyte sedimentation rate with age. Thromb. Haemost. 1986, 55, 330–332. Available online: https://www.ncbi.nlm.nih.gov/pubmed/3092390 (accessed on 1 May 2022). [PubMed]
- Romer, J.; Bugge, T.H.; Pyke, C.; Lund, L.R.; Flick, M.J.; Degen, J.L.; Dano, K. Plasminogen and wound healing. Nat. Med. 1996, 2, 725. [Google Scholar] [CrossRef]
- Creemers, E.; Cleutjens, J.; Smits, J.; Heymans, S.; Moons, L.; Collen, D.; Daemen, M.; Carmeliet, P. Disruption of the plasminogen gene in mice abolishes wound healing after myocardial infarction. Am. J. Pathol. 2000, 156, 1865–1873. [Google Scholar] [CrossRef] [Green Version]
- Duffy, M.J.; Duggan, C. Re: Urokinase and urokinase receptor: Association with in vitro invasiveness of human bladder cancer cell lines. J. Natl. Cancer Inst. 1997, 89, 1628–1630. [Google Scholar] [CrossRef]
- Duffy, M.J.; Duggan, C.; Maguire, T.; Mulcahy, K.; Elvin, P.; McDermott, E.; Fennelly, J.J.; O’Higgins, N. Urokinase plasminogen activator as a predictor of aggressive disease in breast cancer. Enzym. Protein 1996, 49, 85–93. [Google Scholar] [CrossRef]
- Duffy, M.J.; Duggan, C.; Mulcahy, H.E.; McDermott, E.W.; O’Higgins, N.J. Urokinase plasminogen activator: A prognostic marker in breast cancer including patients with axillary node-negative disease. Clin. Chem. 1998, 44, 1177–1183. Available online: https://www.ncbi.nlm.nih.gov/pubmed/9625040 (accessed on 1 May 2022). [CrossRef] [Green Version]
- Duffy, M.J.; O’Grady, P.; Devaney, D.; O’Siorain, L.; Fennelly, J.J.; Lijnen, H.J. Urokinase-plasminogen activator, a marker for aggressive breast carcinomas. Preliminary report. Cancer 1988, 62, 531–533. [Google Scholar] [CrossRef]
- Duffy, M.J.; Reilly, D.; O’Sullivan, C.; O’Higgins, N.; Fennelly, J.J.; Andreasen, P. Urokinase-plasminogen activator, a new and independent prognostic marker in breast cancer. Cancer Res. 1990, 50, 6827–6829. Available online: https://www.ncbi.nlm.nih.gov/pubmed/2119883 (accessed on 1 May 2022). [PubMed]
- Skelly, M.M.; Troy, A.; Duffy, M.J.; Mulcahy, H.E.; Duggan, C.; Connell, T.G.; O’Donoghue, D.P.; Sheahan, K. Urokinase-type plasminogen activator in colorectal cancer: Relationship with clinicopathological features and patient outcome. Clin. Cancer Res. 1997, 3, 1837–1840. Available online: https://www.ncbi.nlm.nih.gov/pubmed/9815571 (accessed on 1 May 2022). [PubMed]
- Look, M.; van Putten, W.; Duffy, M.; Harbeck, N.; Christensen, I.J.; Thomssen, C.; Kates, R.; Spyratos, F.; Ferno, M.; Eppenberger-Castori, S.; et al. Pooled analysis of prognostic impact of uPA and PAI-1 in breast cancer patients. Thromb. Haemost. 2003, 90, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Harbeck, N.; Alt, U.; Berger, U.; Kruger, A.; Thomssen, C.; Janicke, F.; Hofler, H.; Kates, R.E.; Schmitt, M. Prognostic impact of proteolytic factors (urokinase-type plasminogen activator, plasminogen activator inhibitor 1, and cathepsins B, D, and L) in primary breast cancer reflects effects of adjuvant systemic therapy. Clin. Cancer Res. 2001, 7, 2757–2764. Available online: https://www.ncbi.nlm.nih.gov/pubmed/11555589 (accessed on 1 May 2022). [PubMed]
- Janicke, F.; Prechtl, A.; Thomssen, C.; Harbeck, N.; Meisner, C.; Untch, M.; Sweep, C.G.; Selbmann, H.K.; Graeff, H.; Schmitt, M.; et al. Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J. Natl. Cancer Inst. 2001, 93, 913–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantero, D.; Friess, H.; Deflorin, J.; Zimmermann, A.; Brundler, M.A.; Riesle, E.; Korc, M.; Buchler, M.W. Enhanced expression of urokinase plasminogen activator and its receptor in pancreatic carcinoma. Br. J. Cancer 1997, 75, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Gutova, M.; Najbauer, J.; Gevorgyan, A.; Metz, M.Z.; Weng, Y.; Shih, C.C.; Aboody, K.S. Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS ONE 2007, 2, e243. [Google Scholar] [CrossRef]
- Soff, G.A.; Sanderowitz, J.; Gately, S.; Verrusio, E.; Weiss, I.; Brem, S.; Kwaan, H.C. Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J. Clin. Investig. 1995, 96, 2593–2600. [Google Scholar] [CrossRef]
- Kwaan, H.C. The Central Role of Fibrinolytic Response in Trauma-Induced Coagulopathy: A Hematologist’s Perspective. Semin. Thromb. Hemost. 2020, 46, 116–124. [Google Scholar] [CrossRef]
- Moore, H.B.; Cohen, M.J.; Moore, E.E. Comment on “The S100A10 Pathway Mediates an Occult Hyperfibrinolytic Subtype in Trauma Patients”. Ann. Surg. 2020, 271, e110–e111. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.B.; Moore, E.E. TEG Lysis Shutdown Represents Coagulopathy in Bleeding Trauma Patients: Analysis of the PROPPR Cohort. Shock 2019, 52, 639–640. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.B.; Moore, E.E.; Neal, M.D.; Sheppard, F.R.; Kornblith, L.Z.; Draxler, D.F.; Walsh, M.; Medcalf, R.L.; Cohen, M.J.; Cotton, B.A.; et al. Fibrinolysis Shutdown in Trauma: Historical Review and Clinical Implications. Anesth. Analg. 2019, 129, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.B.; Neeves, K.B. Tranexamic acid for trauma: Repackaged and redelivered. J. Thromb. Haemost. 2019, 17, 1626–1628. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.B.; Walsh, M.; Kwaan, H.C.; Medcalf, R.L. The Complexity of Trauma-Induced Coagulopathy. Semin. Thromb. Hemost. 2020, 46, 114–115. [Google Scholar] [CrossRef] [Green Version]
- Walsh, M.; Fries, D.; Moore, E.; Moore, H.; Thomas, S.; Kwaan, H.C.; Marsee, M.K.; Grisoli, A.; McCauley, R.; Vande Lune, S.; et al. Whole Blood for Civilian Urban Trauma Resuscitation: Historical, Present, and Future Considerations. Semin. Thromb. Hemost. 2020, 46, 221–234. [Google Scholar] [CrossRef]
- Meizoso, J.P.; Karcutskie, C.A.; Ray, J.J.; Namias, N.; Schulman, C.I.; Proctor, K.G. Persistent Fibrinolysis Shutdown Is Associated with Increased Mortality in Severely Injured Trauma Patients. J. Am. Coll. Surg. 2017, 224, 575–582. [Google Scholar] [CrossRef]
- Roberts, D.J.; Kalkwarf, K.J.; Moore, H.B.; Cohen, M.J.; Fox, E.E.; Wade, C.E.; Cotton, B.A. Time course and outcomes associated with transient versus persistent fibrinolytic phenotypes after injury: A nested, prospective, multicenter cohort study. J. Trauma Acute Care Surg. 2019, 86, 206–213. [Google Scholar] [CrossRef]
- Sandrini, L.; Ieraci, A.; Amadio, P.; Zara, M.; Barbieri, S.S. Impact of Acute and Chronic Stress on Thrombosis in Healthy Individuals and Cardiovascular Disease Patients. Int. J. Mol. Sci. 2020, 21, 7818. [Google Scholar] [CrossRef]
- Hoirisch-Clapauch, S. Mechanisms affecting brain remodeling in depression: Do all roads lead to impaired fibrinolysis? Mol. Psychiatry 2022, 27, 525–533. [Google Scholar] [CrossRef]
- Malemud, C.J. Matrix metalloproteinases (MMPs) in health and disease: An overview. Front. Biosci. 2006, 11, 1696–1701. [Google Scholar] [CrossRef] [PubMed]
- Strickland, S.; Beers, W.H. Studies on the role of plasminogen activator in ovulation. In vitro response of granulosa cells to gonadotropins, cyclic nucleotides, and prostaglandins. J. Biol. Chem. 1976, 251, 5694–5702. Available online: https://www.ncbi.nlm.nih.gov/pubmed/965386 (accessed on 1 May 2022). [CrossRef]
- Ohlsson, R.; Pfeifer-Ohlsson, S. [Hereditary memory: Genomic imprinting and its importance for embryonal development and carcinogenesis]. Lakartidningen 1991, 88, 1087–1090. Available online: https://www.ncbi.nlm.nih.gov/pubmed/2016942 (accessed on 1 May 2022). [PubMed]
- Seeds, N.W.; Basham, M.E.; Haffke, S.P. Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene. Proc. Natl. Acad. Sci. USA 1999, 96, 14118–14123. [Google Scholar] [CrossRef] [Green Version]
- Melchor, J.P.; Strickland, S. Tissue plasminogen activator in central nervous system physiology and pathology. Thromb. Haemost. 2005, 93, 655–660. [Google Scholar] [CrossRef]
- Bennur, S.; Shankaranarayana Rao, B.S.; Pawlak, R.; Strickland, S.; McEwen, B.S.; Chattarji, S. Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience 2007, 144, 8–16. [Google Scholar] [CrossRef]
- Su, E.J.; Fredriksson, L.; Geyer, M.; Folestad, E.; Cale, J.; Andrae, J.; Gao, Y.; Pietras, K.; Mann, K.; Yepes, M.; et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat. Med. 2008, 14, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Boyd, B.J.; Galle, A.; Daglas, M.; Rosenfeld, J.V.; Medcalf, R. Traumatic brain injury opens blood-brain barrier to stealth liposomes via an enhanced permeability and retention (EPR)-like effect. J. Drug Target. 2015, 23, 847–853. [Google Scholar] [CrossRef]
- Lees, K.R.; Emberson, J.; Blackwell, L.; Bluhmki, E.; Davis, S.M.; Donnan, G.A.; Grotta, J.C.; Kaste, M.; von Kummer, R.; Lansberg, M.G.; et al. Effects of Alteplase for Acute Stroke on the Distribution of Functional Outcomes: A Pooled Analysis of 9 Trials. Stroke 2016, 47, 2373–2379. [Google Scholar] [CrossRef]
- Whiteley, W.N.; Emberson, J.; Lees, K.R.; Blackwell, L.; Albers, G.; Bluhmki, E.; Brott, T.; Cohen, G.; Davis, S.; Donnan, G.; et al. Risk of intracerebral haemorrhage with alteplase after acute ischaemic stroke: A secondary analysis of an individual patient data meta-analysis. Lancet Neurol. 2016, 15, 925–933. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Stewart, P.W.; Ginsberg, H.N.; Tracy, R.P.; Lefevre, M.; Elmer, P.J.; Berglund, L.; Ershow, A.G.; Pearson, T.A.; Ramakrishnan, R.; et al. The Type and Amount of Dietary Fat Affect Plasma Factor VIIc, Fibrinogen, and PAI-1 in Healthy Individuals and Individuals at High Cardiovascular Disease Risk: 2 Randomized Controlled Trials. J. Nutr. 2020, 150, 2089–2100. [Google Scholar] [CrossRef] [PubMed]
- Sillen, M.; Declerck, P.J. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front. Cardiovasc. Med. 2020, 7, 622473. [Google Scholar] [CrossRef] [PubMed]
- Iacoviello, L.; Agnoli, C.; De Curtis, A.; di Castelnuovo, A.; Giurdanella, M.C.; Krogh, V.; Mattiello, A.; Matullo, G.; Sacerdote, C.; Tumino, R.; et al. Type 1 plasminogen activator inhibitor as a common risk factor for cancer and ischaemic vascular disease: The EPICOR study. BMJ Open 2013, 3, e003725. [Google Scholar] [CrossRef] [PubMed]
- Alessi, M.C.; Juhan-Vague, I. PAI-1 and the metabolic syndrome: Links, causes, and consequences. Arter. Thromb. Vasc. Biol. 2006, 26, 2200–2207. [Google Scholar] [CrossRef]
- Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.K.; Quaggin, S.E.; Vaughan, D.E. Molecular basis of organ fibrosis: Potential therapeutic approaches. Exp. Biol. Med. 2013, 238, 461–481. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Vaughan, D.E. PAI-1 in tissue fibrosis. J. Cell. Physiol. 2012, 227, 493–507. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.S.; Shah, S.J.; Strande, J.L.; Baldridge, A.S.; Flevaris, P.; Puckelwartz, M.J.; McNally, E.M.; Rasmussen-Torvik, L.J.; Lee, D.C.; Carr, J.C.; et al. Identification of Cardiac Fibrosis in Young Adults With a Homozygous Frameshift Variant in SERPINE1. JAMA Cardiol. 2021, 6, 841–846. [Google Scholar] [CrossRef]
- Kwaan, H.C.; Lindholm, P.F. The Central Role of Fibrinolytic Response in COVID-19-A Hematologist’s Perspective. Int. J. Mol. Sci. 2021, 22, 1283. [Google Scholar] [CrossRef]
- Kwaan, H.C.; Mazar, A.P. More on the Source of D-Dimer in COVID-19. Thromb. Haemost. 2022, 122, 158–159. [Google Scholar] [CrossRef]
- Walsh, M.M.; Khan, R.; Kwaan, H.C.; Neal, M.D. Fibrinolysis Shutdown in COVID-19-Associated Coagulopathy: A Crosstalk among Immunity, Coagulation, and Specialists in Medicine and Surgery. J. Am. Coll. Surg. 2021, 232, 1003–1006. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, D.E.; Lazos, S.A.; Tong, K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J. Clin. Investig. 1995, 95, 995–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Idell, S.; Kueppers, F.; Lippmann, M.; Rosen, H.; Niederman, M.; Fein, A. Angiotensin converting enzyme in bronchoalveolar lavage in ARDS. Chest 1987, 91, 52–56. [Google Scholar] [CrossRef]
- Bhandary, Y.P.; Shetty, S.K.; Marudamuthu, A.S.; Ji, H.L.; Neuenschwander, P.F.; Boggaram, V.; Morris, G.F.; Fu, J.; Idell, S.; Shetty, S. Regulation of lung injury and fibrosis by p53-mediated changes in urokinase and plasminogen activator inhibitor-1. Am. J. Pathol. 2013, 183, 131–143. [Google Scholar] [CrossRef] [Green Version]
Embryogenesis Ovulation, menstruation |
Pregnancy |
Neuron growth |
Brain function |
Regulation of blood–brain barrier |
Immunity |
Wound healing |
Senescence |
Fibrosis |
Neurologic disorders |
Stroke/Hemorrhagic transformation |
Degenerative disorders |
Cancer proliferation, invasion/metastasis, angiogenesis |
Vascular diseases |
Atherosclerosis, myocardial infarction |
Metabolic syndrome |
Trauma |
Fibrosis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwaan, H.C. The Role of Fibrinolytic System in Health and Disease. Int. J. Mol. Sci. 2022, 23, 5262. https://doi.org/10.3390/ijms23095262
Kwaan HC. The Role of Fibrinolytic System in Health and Disease. International Journal of Molecular Sciences. 2022; 23(9):5262. https://doi.org/10.3390/ijms23095262
Chicago/Turabian StyleKwaan, Hau C. 2022. "The Role of Fibrinolytic System in Health and Disease" International Journal of Molecular Sciences 23, no. 9: 5262. https://doi.org/10.3390/ijms23095262
APA StyleKwaan, H. C. (2022). The Role of Fibrinolytic System in Health and Disease. International Journal of Molecular Sciences, 23(9), 5262. https://doi.org/10.3390/ijms23095262