Timing of ICSI with Respect to Meiotic Spindle Status
Abstract
:1. Introduction
2. Results
2.1. MS Used as an Indicator of Oocyte Maturation
2.1.1. MS Used as an Indicator of Oocyte Maturation for Patients Younger Than 35 Years
2.1.2. MS Used as an Indicator of Oocyte Maturation for Patients Older Than 35 Years
2.2. Correlations between Relevant Parameters
3. Discussion
4. Materials and Methods
4.1. Patients and Collection of Oocytes
4.2. Sperm Quality
4.3. Oocytes Treatment
4.4. Embryo Cultivation
4.5. IVF Outputs under Consideration
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevenson, E.L.; Gispanski, L.; Fields, K.; Cappadora, M.; Hurt, M. Knowledge and decision making about future fertility and oocyte cryopreservation among young women. Hum. Fertil. 2021, 24, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Reinzi, L.; Ubaldi, F.; Martinez, F.; Iacobelli, M.; Minasi, M.G.; Ferrero, S.; Tesarik, J.; Greco, E. Relationship between meiotic spindle location with regard to the polar body position and oocyte developmental potential after ICSI. Hum. Reprod. 2003, 18, 1289–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artini, P.G.; Obino, M.E.R.; Carletti, E.; Pinelli, S.; Ruggiero, M.; Di Emidio, G.; Cela, V.; Tatone, C. Conventional IVF as a laboratory strategy to rescue fertility potential in severe poor responder patients: The impact of reproductive aging. Gynecol. Endocrinol. 2013, 29, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Plancha, C.E.; Kovacic, B. From glass to life: A commentary on the assessment of the reproductive potential of cryopreserved human oocytes. J. Assist. Reprod. Genet. 2022, 39, 1993–1996. [Google Scholar] [CrossRef] [PubMed]
- Pujol, A.; Garcia, D.; Obradors, A.; Rodriguez, A.; Vassena, R. Is there a relation between the time to ICSI and the reproductive outcomes? Hum. Reprod. 2018, 33, 797–806. [Google Scholar] [CrossRef]
- Ferraretti, A.P.; Goossens, V.; Kupka, M.; Bhattacharya, S.; de Mouzon, J.; Castilla, J.A.; Erb, K.; Korsak, V.; Andersen, A.N.; The European IVF-monitoring (EIM); et al. Assisted reproductive technology in Europe, 2009: Results generated from European registers by ESHRE. Hum. Reprod. 2013, 28, 2318–2331. [Google Scholar] [CrossRef]
- Smith, A.; Tilling, K.; Nelson, S.M.; Lawlor, D.A. Live-Birth Rate Associated With Repeat In Vitro Fertilization Treatment Cycles. JAMA J. Am. Med. Assoc. 2015, 314, 2654–2662. [Google Scholar] [CrossRef] [Green Version]
- Peinado, I.; Moya, I.; Saez-Espinosa, P.; Barrera, M.; Garcia-Valverde, L.; Frances, R.; Torres, P.; Gomez-Torres, M.J. Impact of Maturation and Vitrification Time of Human GV Oocytes on the Metaphase Plate Configuration. Int. J. Mol. Sci. 2021, 22, 1125. [Google Scholar] [CrossRef]
- Petersen, C.G.; Oliveira, J.B.A.; Mauri, A.L.; Massaro, F.C.; Baruffi, R.L.R.; Pontes, A.; Franco, J.G. Relationship between visualization of meiotic spindle in human oocytes and ICSI outcomes: A meta-analysis. Reprod. Biomed. Online 2009, 18, 235–243. [Google Scholar] [CrossRef]
- Rienzi, L.; Ubaldi, F.; Iacobelli, M.; Minasi, M.G.; Romano, S.; Greco, E. Meiotic spindle visualization in living human oocytes. Reprod. Biomed. Online 2005, 10, 192–198. [Google Scholar] [CrossRef]
- Jo, Y.J.; Jang, W.I.; Kim, N.H.; Namgoong, S. Tropomodulin-3 is essential in asymmetric division during mouse oocyte maturation. Sci. Rep. 2016, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Fauser, B. Towards the global coverage of a unified registry of IVF outcomes. Reprod. Biomed. Online 2019, 38, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Rienzi, L.; Balaban, B.; Ebner, T.; Mandelbaum, J. The oocyte. Hum. Reprod. 2012, 27, 2–21. [Google Scholar] [CrossRef] [Green Version]
- Rienzi, L.; Martinez, F.; Ubaldi, F.; Minasi, M.G.; Iacobelli, M.; Tesarik, J.; Greco, E. Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Hum. Reprod. 2004, 19, 655–659. [Google Scholar] [CrossRef] [Green Version]
- Rienzi, L.; Vajta, G.; Ubaldi, F. Predictive value of oocyte morphology in human IVF: A systematic review of the literature. Hum. Reprod. Update 2011, 17, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Montag, M.; Koster, M.; van der Ven, K.; van der Ven, H. Gamete competence assessment by polarizing optics in assisted reproduction. Hum. Reprod. Update 2011, 17, 654–666. [Google Scholar] [CrossRef] [Green Version]
- Swain, J.E.; Pool, T.B. ART failure: Oocyte contributions to unsuccessful fertilization. Hum. Reprod. Update 2008, 14, 431–446. [Google Scholar] [CrossRef] [Green Version]
- Albertini, D.; Hu, J.; Gleicher, N.; Kushnir, A.V.; Ohara, Y.; De Grand, A.; Barad, H.D. Pilot study of novel noninvasive imaging approach for determination of meiotic status in intact human cumulus-oocyte-complexes. Hum. Reprod. 2019, 34, 244. [Google Scholar]
- Tilia, L.; Chapman, M.; Kilani, S.; Cooke, S.; Venetis, C. Oocyte meiotic spindle morphology is a predictive marker of blastocyst ploidy-a prospective cohort study. Fertil. Steril. 2020, 113, 105. [Google Scholar] [CrossRef]
- Holubcová, Z.; Blayney, M.; Elder, K.; Schuh, M. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 2015, 348, 1143–1147. [Google Scholar] [CrossRef] [Green Version]
- Holubcova, Z.; Kyjovska, D.; Martonova, M.; Paralova, D.; Klenkova, T.; Kloudova, S. Human Egg Maturity Assessment and Its Clinical Application. J. Vis. Exp. 2019, 150, e60058. [Google Scholar] [CrossRef] [PubMed]
- Montag, M.; Schimming, T.; van der Ven, H. Spindle imaging in human oocytes: The impact of the meiotic cell cycle. Reprod. Biomed. Online 2006, 12, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Tepla, O.; Topurko, Z.; Masata, J.; Jirsova, S.; Frolikova, M.; Komrskova, K.; Minks, A.; Turanek, J.; Lynnyk, A.; Kratochvilova, I. Important parameters affecting quality of vitrified donor oocytes. Cryobiology 2021, 100, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Tomari, H.; Honjo, K.; Kunitake, K.; Aramaki, N.; Kuhara, S.; Hidaka, N.; Nishimura, K.; Nagata, Y.; Horiuchi, T. Meiotic spindle size is a strong indicator of human oocyte quality. Reprod. Med. Biol. 2018, 17, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Tomari, H.; Honjou, K.; Kunitake, K.; Hidaka, N.; Nishimura, K.; Nagata, Y. Relationship Between the Meiotic Spindle Size in Human Oocytes and Embryo Developmental Potential After Intracytoplasmic Sperm Injection. Fertil. Steril. 2014, 102, E341. [Google Scholar] [CrossRef]
- Ducheyne, K.D.; Rizzo, M.; Daels, P.F.; Stout, T.A.E.; de Ruijter-Villani, M. Vitrifying immature equine oocytes impairs their ability to correctly align the chromosomes on the MII spindle. Reprod. Fertil. Dev. 2019, 31, 1330–1338. [Google Scholar] [CrossRef]
- Namgoong, S.; Kim, N.H. Meiotic spindle formation in mammalian oocytes: Implications for human infertility. Biol. Reprod. 2018, 98, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Trebichalská, Z.; Javůrek, J.; Tatíčková, M.; Kyjovská, D.; Kloudová, S.; Otevřel, P.; Hampl, A.; Holubcová, Z. High-Resolution 3D Reconstruction of Human Oocytes Using Focused Ion Beam Scanning Electron Microscopy. Front. Cell Dev. Biol. 2021, 9, 755740. [Google Scholar] [CrossRef]
- Isachenko, E.; Isachenko, V.; Katkov, I.I.; Rahimi, G.; Schondorf, T.; Mallmann, P.; Dessole, S.; Nawroth, F. DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectant-free vitrification. Hum. Reprod. 2004, 19, 932–939. [Google Scholar] [CrossRef] [Green Version]
- Bjorndahl, L.; Brown, J.K.; Editorial Board Members of the WHO Laboratory Manual for the Examination and Processing of Human Semen. The sixth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen: Ensuring quality and standardization in basic examination of human ejaculates. Fertil. Steril. 2022, 117, 246–251. [Google Scholar] [CrossRef]
- Machtinger, R.; Combelles, C.M.H.; Missmer, S.A.; Correia, K.F.; Williams, P.; Hauser, R.; Racowsky, C. Bisphenol-A and human oocyte maturation in vitro. Hum. Reprod. 2013, 28, 2735–2745. [Google Scholar] [CrossRef]
- Gardner, D.K.; Schoolcraft, W.B. Culture and transfer of human blastocysts. Curr. Opin. Obstet. Gynecol. 1999, 11, 307–311. [Google Scholar] [CrossRef]
- Gardner, D.K.; Lane, M.; Stevens, J.; Schlenker, T.; Schoolcraft, W.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil. Steril. 2000, 73, 1155–1158. [Google Scholar] [CrossRef]
- Gardner, D.K. In vitro culture of human blastocyst. In Towards Reproductive Certainty: Infertility and Genetics Beyond; Jansen, R., Mortimer, D., Eds.; Carnforth Parthenon Press: Lancashire, UK, 1999; pp. 377–388. [Google Scholar]
- Gardner, D.K.; Kelley, R.L. Impact of the IVF laboratory environment on human preimplantation embryo phenotype. J. Dev. Orig. Health Dis. 2017, 8, 418–435. [Google Scholar] [CrossRef]
- Stangroom, J. Pearson Correlation Coefficient Calculator. 2020. Available online: https://www.socscistatistics.com/tests/pearson/default2.aspx (accessed on 11 December 2022).
- Kupka, M.S.; Ferraretti, A.P.; de Mouzon, J.; Erb, K.; D’Hooghe, T.; Castilla, J.A.; Calhaz-Jorge, C.; De Geyter, C.; Goossens, V.; The European IVF-monitoring (EIM); et al. Assisted reproductive technology in Europe, 2010: Results generated from European registers by ESHRE. Hum. Reprod. 2014, 29, 2099–2113. [Google Scholar] [CrossRef]
- Van der Gaast, M.H.; Eijkemans, M.J.C.; van der Net, J.B.; de Boer, E.J.; Burger, C.W.; van Leeuwen, F.E.; Fauser, B.; Macklon, N.S. Optimum number of oocytes for a successful first IVF treatment cycle. Reprod. Biomed. Online 2006, 13, 476–480. [Google Scholar] [CrossRef]
- Nelson, S.M.; Larsson, P.; Mannaerts, B.; Andersen, A.N.; Fauser, B. Anti-Mullerian hormone variability and its implications for the number of oocytes retrieved following individualized dosing with follitropin delta. Clin. Endocrinol. 2019, 90, 719–726. [Google Scholar] [CrossRef]
Group | Age (Years) Treatment | Pregnancy Rate | Number of Oocytes | Number of Patients | Related Group | p Value | Average Age (Years) |
---|---|---|---|---|---|---|---|
1 | <35 years MS evaluation | 41% | 681 | 140 | 2 | >0.1 | 32.1 |
2 | <35 years without MS evaluation | 41% | 530 | 162 | 1 | >0.1 | 31.7 |
3 | ≥35 and <40 years MS evaluation | 32% | 699 | 182 | 4 | <0.1 | 36.2 |
4 | ≥35 and <40 years without MS evaluation | 24% | 719 | 195 | 3 | <0.1 | 37.2 |
5 | <40 years MS evaluation | 36% | 1380 | 322 | 6 | >0.1 | 34.4 |
6 | <40 years without MS evaluation | 32% | 1249 | 357 | 5 | >0.1 | 34.7 |
Group | Age (Years) Treatment | Pregnancy Rate | Number of Oocytes | Number of Patients | Related Group | p Value |
---|---|---|---|---|---|---|
1 | ≥35 and <40 years ICSI 5–6 h after OPU | 37% | 370 | 86 | 2 | <0.1 |
2 | ≥35 and <40 years ICSI 7 h after OPU | 27% | 329 | 96 | 1 | <0.1 |
3 | <35 years ICSI 5–6 h after OPU | 43% | 331 | 67 | 4 | >0.1 |
4 | <35 years ICSI 7–8 h after OPU | 40% | 350 | 73 | 3 | >0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tepla, O.; Topurko, Z.; Jirsova, S.; Moosova, M.; Fajmonova, E.; Cabela, R.; Komrskova, K.; Kratochvilova, I.; Masata, J. Timing of ICSI with Respect to Meiotic Spindle Status. Int. J. Mol. Sci. 2023, 24, 105. https://doi.org/10.3390/ijms24010105
Tepla O, Topurko Z, Jirsova S, Moosova M, Fajmonova E, Cabela R, Komrskova K, Kratochvilova I, Masata J. Timing of ICSI with Respect to Meiotic Spindle Status. International Journal of Molecular Sciences. 2023; 24(1):105. https://doi.org/10.3390/ijms24010105
Chicago/Turabian StyleTepla, Olga, Zinovij Topurko, Simona Jirsova, Martina Moosova, Eva Fajmonova, Radek Cabela, Katerina Komrskova, Irena Kratochvilova, and Jaromir Masata. 2023. "Timing of ICSI with Respect to Meiotic Spindle Status" International Journal of Molecular Sciences 24, no. 1: 105. https://doi.org/10.3390/ijms24010105
APA StyleTepla, O., Topurko, Z., Jirsova, S., Moosova, M., Fajmonova, E., Cabela, R., Komrskova, K., Kratochvilova, I., & Masata, J. (2023). Timing of ICSI with Respect to Meiotic Spindle Status. International Journal of Molecular Sciences, 24(1), 105. https://doi.org/10.3390/ijms24010105