Remarks on Mitochondrial Myopathies
Abstract
:1. Introduction
2. Epidemiology
3. Genetics
- a
- Each cell usually contains two copies of each autosome chromosome and a single copy of an X/Y chromosome (nDNA); however, each cell may contain hundreds to thousands copies of mtDNA, hence mitochondrial genoma is polyploid.
- b
- mtDNA is mainly maternally inherited.
- c
- mtDNA molecules are organized into discrete aggregates called nucleoids, which are probably linked to the internal mitochondrial membrane.
- d
- This DNA lacks introns, so genetic information is more packed.
- e
- Due to its intrinsic characteristics and particular location, mtDNA undergoes spontaneous mutations more easily than nDNA
4. Hints on Main Mitochondrial Myopathies
4.1. Kearns–Sayre Syndrome (KSS)
4.2. Chronic Progressive External Ophthalmoplegia (CPEO)
4.3. Leigh Syndrome
4.4. Mitochondrial DNA Depletion Syndrome (MDS)
- 1
- Myopathic, caused by mutations in the TK2 gene (hypotonia and muscle weakness, facial weakness, bulbar dysarthria and dysphagia, elevated serum creatine phosphokinase);
- 2
- Encephalomyopathic, caused by mutations in the SUCLA2, SUCLG1, or RRM2B genes, 2B, (hypotonia and pronounced neurological features);
- 3
- Hepatocerebral, caused by mutations in the DGUOK, MPV17, POLG, or C10orf2 genes, (liver dysfunction and neurological disorders); and
- 4
- Neurogastrointestinal, caused by TYMP mutations, (progressive disorders of gastrointestinal motility and peripheral neuropathy).
4.5. Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke like Episodes (MELAS)
4.6. Myoclonus Epilepsy with Ragged Red Fibers (MERRF)
4.7. Maternally Inherited Deafness and Diabetes (MIDD)
4.8. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE)
4.9. Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP)
4.10. Pearson Syndrome (PS)
4.11. Iatrogenic Mitochondrial Myopathies
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wallace, D.C.; Singh, G.; Lott, M.T.; Hodge, J.A.; Schurr, T.G.; Lezza, A.M.; Elsas, L.J., 2nd; Nikoskelainen, E.K. Mitochondrial DNA mutation associated with Leber’s hereditaryoptic neuropathy. Science 1988, 242, 1427–1430. [Google Scholar] [CrossRef] [PubMed]
- Arena, I.G.; Pugliese, A.; Volta, S.; Toscano, A.; Musumeci, O. Molecular Genetics Overview of Primary Mitochondrial Myopathies. J. Clin. Med. 2022, 11, 632. [Google Scholar] [CrossRef] [PubMed]
- Bargiela, D.; Yu-Wai-Man, P.; Keogh, M.; Horvath, R.; Chinnery, P.F. Prevalence of neurogenetic disorders in the North of England. Neurology 2015, 85, 1195–1201. [Google Scholar] [CrossRef] [Green Version]
- DiMauro, S.; Nishino, I.; Hirano, M. Mitochondrial Myopathies. In Neuromuscular Disorders in Clinical Practice; Katirji, B., Kaminski, H.J., Ruff, R.L., Eds.; Springer Science + Business Media: New York, NY, USA, 2014. [Google Scholar]
- Gayathri, N.; Deepha, S.; Sharma, S. Diagnosis of primary mitochondrial disorders—Emphasis on myopathological aspects. Mitochondrion 2021, 61, 69–84. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Schon, E.A.; Carelli, V.; Hirano, M. The clinical maze of mitochondrial neurology. Nat. Rev. Neurol. 2013, 9, 429–444. [Google Scholar] [CrossRef] [Green Version]
- Lightowlers, R.N.; Taylor, R.W.; Turnbull, D.M. Mutations causing mitochondrial disease: What is new and what challenges remain? Science 2015, 349, 1494–1499. [Google Scholar] [CrossRef]
- Li, D.; Liang, C.; Zhang, T.; Marley, J.L.; Zou, W.; Lian, M.; Ji, D. Pathogenic mitochondrial DNA 3243A>G mutation: From genetics to phenotype. Front. Genet. 2022, 13, 2915. [Google Scholar] [CrossRef]
- Shoop, W.K.; Gorsuch, C.L.; Bacman, S.R.; Moraes, C.T. Precise and Simultaneous Quantification of Mitochondrial DNA Heteroplasmy and Copy Number by Digital PCR. J. Biol. Chem. 2022, 298. [Google Scholar] [CrossRef]
- Chiaratti, M.R.; Chinnery, P.F. Modulating mitochondrial DNA mutations: Factors shaping heteroplasmy in the germ line and somatic cells. Pharmacol. Res. 2022, 185, 106466. [Google Scholar] [CrossRef]
- Tsang, S.H.; Aycinena, A.R.P.; Sharma, T. Mitochondrial Disorder: Kearns-Sayre Syndrome. Atlas Inherit. Retin. Dis. 2018, 1085, 161–162. [Google Scholar] [CrossRef]
- Shemesh, A.; Margolin, E. Kearns Sayre Syndrome; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Visuttijai, K.; Hedberg-Oldfors, C.; Lindgren, U.; Nordström, S.; Elíasdóttir, Ó.; Lindberg, C.; Oldfors, A. Progressive external ophthalmoplegia associated with novel MT-TN mutations. Acta Neurol. Scand. 2021, 143, 103–108. [Google Scholar] [CrossRef]
- Legro, N.R.; Kumar, A.; Aliu, E. Case report of atypical Leigh syndrome in an adolescent male with novel biallelic variants in NDUFAF5 and review of the natural history of NDUFAF5 -related disorders. Am. J. Med. Genet. Part. A 2021, 188, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Zeviani, M.; Viscomi, C. Mitochondrial Neurodegeneration. Cells 2022, 11, 637. [Google Scholar] [CrossRef]
- Young, M.J.; Copeland, W.C. Human mitochondrial DNA replication machinery and disease. Curr. Opin. Genet. Dev. 2016, 38, 52–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finsterer, J.; Ahting, U. Mitochondrial Depletion Syndromes in Children and Adults. Can. J. Neurol. Sci. J. Can. Des Sci. Neurol. 2013, 40, 635–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seed, L.M.; Dean, A.; Krishnakumar, D.; Phyu, P.; Horvath, R.; Harijan, P.D. Molecular and neurological features of MELAS syndrome in paediatric patients: A case series and review of the literature. Mol. Genet. Genom. Med. 2022, 10, e1955. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, M.; Ricciardi, G.; Giordo, L.; De Michele, M.; Toni, D.; Leuzzi, V. Stroke and stroke-like episodes in inborn errors of metabolism: Pathophysiological and clinical implications. Mol. Genet. Metab. 2021, 135, 3–14. [Google Scholar] [CrossRef]
- Finsterer, J.; Zarrouk-Mahjoub, S.; Shoffner, J.M. MERRF Classification: Implications for Diagnosis and Clinical Trials. Pediatr. Neurol. 2018, 80, 8–23. [Google Scholar] [CrossRef]
- Yang, M.; Xu, L.; Xu, C.; Cui, Y.; Jiang, S.; Dong, J.; Liao, L. The Mutations and Clinical Variability in Maternally Inherited Diabetes and Deafness: An Analysis of 161 Patients. Front. Endocrinol. 2021, 12, 728043. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.N.; Terrazas, S.; Giordano-Mooga, S.; Xavier, N.A. The Role of Heteroplasmy in the Diagnosis and Management of Maternally Inherited Diabetes and Deafness. Endocr. Pract. 2020, 26, 241–246. [Google Scholar] [CrossRef]
- Hirano, M.; Carelli, V.; De Giorgio, R.; Pironi, L.; Accarino, A.; Cenacchi, G.; D’Alessandro, R.; Filosto, M.; Martí, R.; Nonino, F.; et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Position paper on diagnosis, prognosis, and treatment by the MNGIE International Network. J. Inherit. Metab. Dis. 2020, 44, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, S.; Panaye, M.; Rabeyrin, M.; Errazuriz-Cerda, E.; de Camaret, B.M.; Petiot, P.; Juillard, L.; Guebre-Egziabher, F. Renal Involvement in Neuropathy, Ataxia, Retinitis Pigmentosa (NARP) Syndrome: A Case Report. Am. J. Kidney Dis. 2018, 71, 754–757. [Google Scholar] [CrossRef] [PubMed]
- Yoshimi, A.; Ishikawa, K.; Niemeyer, C.; Grünert, S.C. Pearson syndrome: A multisystem mitochondrial disease with bone marrow failure. Orphanet. J. Rare Dis. 2022, 17, 379. [Google Scholar] [CrossRef]
- Sato, T.; Muroya, K.; Hanakawa, J.; Iwano, R.; Asakura, Y.; Tanaka, Y.; Murayama, K.; Ohtake, A.; Hasegawa, T.; Adachi, M. Clinical manifestations and enzymatic activities of mitochondrial respiratory chain complexes in Pearson marrow-pancreas syndrome with 3-methylglutaconic aciduria: A case report and literature review. Eur. J. Pediatr. 2015, 174, 1593–1602. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Y.; Miller, S. Other Myopathies. Neurol. Clin. 2020, 38, 619–635. [Google Scholar] [CrossRef]
- Holder, K. Myalgias and Myopathies: Drug-Induced Myalgias and Myopathies. FP Essent. 2016, 440, 23–27. [Google Scholar]
- Scatena, R.; Bottoni, P.; Martorana, G.E.; Ferrari, F.; De Sole, P.; Rossi, C.; Giardina, B. Mitochondrial respiratory chain dysfunction, a non-receptor-mediated effect of synthetic PPAR-ligands: Biochemical and pharmacological implications. Biochem. Biophys. Res. Commun. 2004, 319, 967–973. [Google Scholar] [CrossRef]
- Bottoni, P.; Pontoglio, A.; Scarà, S.; Pieroni, L.; Urbani, A.; Scatena, R. Mitochondrial Respiratory Complexes as Targets of Drugs: The PPAR Agonist Example. Cells 2022, 11, 1169. [Google Scholar] [CrossRef] [PubMed]
- Brunmair, B.; Lest, A.; Staniek, K.; Gras, F.; Scharf, N.; Roden, M.; Nohl, H.; Waldhäusl, W.; Fürnsinn, C. Fenofibrate Impairs Rat Mitochondrial Function by Inhibition of Respiratory Complex I. J. Pharmacol. Exp. Ther. 2004, 311, 109–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunmair, B.; Staniek, K.; Gras, F.; Scharf, N.; Althaym, A.; Clara, R.; Roden, M.; Gnaiger, E.; Nohl, H.; Waldhausl, W.; et al. Thiazolidinediones, like metformin, inhibit respiratory complex I: A common mechanism contributing to their antidiabetic actions? Diabetes 2004, 53, 1052–1059. [Google Scholar] [CrossRef] [Green Version]
- Lewis, W.; Day, B.J.; Copeland, W. Mitochondrial toxicity of nrti antiviral drugs: An integrated cellular perspective. Nat. Rev. Drug Discov. 2003, 2, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Segall, L. Drugs interfering with mitochondrial disorders. Drug Chem. Toxicol. 2009, 33, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Morén, C.; Juárez-Flores, D.L.; Cardellach, F.; Garrabou, G. The Role of Therapeutic Drugs on Acquired Mitochondrial Toxicity. Curr. Drug Metab. 2016, 17, 648–662. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, I.P.; Al Shahrani, M.; Wainwright, L.; Heales, S.J.R. Drug-Induced Mitochondrial Toxicity. Drug Saf. 2016, 39, 661–674. [Google Scholar] [CrossRef] [PubMed]
- Wessels, B.B.; Ciapaite, J.; van den Broek, N.M.; Nicolay, K.; Prompers, J.J. Metformin Impairs Mitochondrial Function in Skeletal Muscle of Both Lean and Diabetic Rats in a Dose-Dependent Manner. PLoS ONE 2014, 9, e100525. [Google Scholar] [CrossRef] [Green Version]
- Nadanaciva, S.; Will, Y. Investigating mitochondrial dysfunction to increase drug safety in the pharmaceutical industry. Curr. Drug Targets 2011, 12, 774–782. [Google Scholar] [CrossRef]
- Riess, M.L.; Elorbany, R.; Weihrauch, D.; Stowe, D.F.; Camara, A.K. PPARγ-Independent Side Effects of Thiazolidinediones on Mitochondrial Redox State in Rat Isolated Hearts. Cells 2020, 9, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagasaka, S.; Abe, T.; Kawakami, A.; Kusaka, I.; Nakamura, T.; Ishikawa, S.; Saito, T.; Ishibashi, S. Pioglitazone-induced hepatic injury in a patient previously receiving troglitazone with success. Diabet. Med. 2002, 19, 347–348. [Google Scholar] [CrossRef] [PubMed]
- De Paepe, B. Sporadic Inclusion Body Myositis: An Acquired Mitochondrial Disease with Extras. Biomolecules 2019, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Varga, Z.V.; Ferdinandy, P.; Liaudet, L.; Pacher, P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Circ. Physiol. 2015, 309, H1453–H1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsui, T.; Azuma, H.; Nagasawa, M.; Iuchi, T.; Akaike, M.; Odomi, M.; Matsumoto, T. Chronic corticosteroid administration causes mitochondrial dysfunction in skeletal muscle. J. Neurol. 2002, 249, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Barajas, M.B.; Brunner, S.D.; Wang, A.; Griffiths, K.K.; Levy, R.J. Propofol toxicity in the developing mouse heart mitochondria. Pediatr. Res. 2022, 92, 1341–1349. [Google Scholar] [CrossRef]
- Law, M.; Rudnicka, A.R. Statin safety: A systematic review. Am. J. Cardiol. 2006, 97, 52C–60C. [Google Scholar] [CrossRef] [PubMed]
- Setoguchi, S.; Higgins, J.M.; Mogun, H.; Mootha, V.K.; Avorn, J. Propranolol and the risk of hospitalized myopathy: Translating chemical genomics findings into population-level hypotheses. Am. Hear. J. 2010, 159, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Scatena, R. Mitochondria and drugs. Adv. Exp. Med. Biol. 2012, 942, 329–346. [Google Scholar] [PubMed]
- Abramov, A.Y.; Angelova, P.R. Cellular mechanisms of complex I-associated pathology. Biochem. Soc. Trans. 2019, 47, 1963–1969. [Google Scholar] [CrossRef]
- Hernansanz-Agustín, P.; Enríquez, J.A. Sodium in Mitochondrial Redox Signaling. Antioxid Redox Signal. 2022, 37, 290–300. [Google Scholar] [CrossRef]
Myophathy | Pathogenesis | Inheritance | Age | Mitochondrial Target | Main Symptoms | Prognosis |
---|---|---|---|---|---|---|
Kearns-Sayre syndrome (KSS) | single large-scale deletions of mtDNA | generally, not inherited. (sporadic), rare case of mitochondrial, autosomal dominant, or autosomal recessive | before the age of 20 | Mainly cyt C oxidase | progressive external ophthalmoplegia, and pigmentary retinopathy. cardiac conduction block, cerebrospinal fluid protein greater than 100 mg/dL, cerebellar ataxia, short stature, deafness, dementia, and endocrine abnormalities | slowly progressive disorder. Prognosis related to level of organs involvment. arrythmias |
Chronic progressive external ophthalmoplegia (CPEO) | Deletion/mutation of mtDNA (i.e., tRNA at nucleotide 3243 in which there is an A to G), or nuclear genes: POLG, C10orf2, RRM2B, SLC25A4, POLG2, DGUOK, SPG7 | sporadic, mitochondrial, autosomal dominant, or autosomal recessive | Aroud 40s years | defective function of oxidative phosphorylation | Ptosis, Limited eye movements, and Hearing loss, Mild muscle weakness, dysphagia, cataracts | prognosis depends on the associated features, |
Leigh syndrome | Different pathogenic mutations identified in over 85 genes | nuclear or mtDNA mutations. | Generally, infancy and childhhod | Dysfunction of pyruvate dehydrogenase complex and oxidative phosphorylation | Mainly developmental delay or psychomotor regression failure to thrive, weakness/hypertonia, ataxia, oculomotor palsy, seizures, lactic acidosis | generally poor |
Mitochondrial DNA depletion syndrome (MDS) | Different mutations in the TK2,SUCLA2, SUCLG1, RRM2B, DGUOK, MPV17, POLG, C10orf2; TYMP genes | Maternal and autosomal recessive | newborns, infants, children, or adult | different subunits of mitochondrial respiratory chain complexes | Different clinical pictures: Myopathic; encephalomyopathic; hepatocerebral; neurogastrointestinal | generally poor |
Mitochondrial encephalomyopathy, lactic acidosis and stroke like episodes (MELAS) | mtDNA: m.3243A > G, gene MT-TL (80% of cases) and m.3271T > C tRNA mutation (10%) | maternally inherited | childhood | tRNA and NADH dehydrogenase | stroke-like episode, hemiparesis, hemianopia, or cortical blindness. focal or generalized seizures, recurrent migraine, vomiting, short stature, hearing loss, and muscle weakness. | poor |
Myoclonus epilepsy with ragged red fibers (MERRF) | A-to-G transition at nucleotide 8344 (m.8344A > G) of the MT-TK genetRNA (Lys) | Spontaneous mutations, maternally inherited | Childhood, adolescence or early adulthood | oxidative phosphorylation | myoclonus, epilepsy, ataxia, myopathy, dementia, optic atrophy, deafness, peripheral neuropathy, spasticity, cardiomyopathy with WPW syndrome. | Generally poor. It can depend on age, severity of symptoms, organs involved. |
Maternally inherited deafness and diabetes (MIDD) | mutation in mtDNA gene MT-TL1, encoding tRNA for leucine, and in rare cases in MT-TE and MT-TK genes, encoding tRNAs for glutamic acid, and lysine, respectively. | maternally inherited | mean age of onset is 30–40 years | defective function of oxidative phosphorylation | Diabetes, deafness, Chorioretinal abnormality, Dyschezia, Macular dystrophy, Malabsorption, Cerebellar hypoplasia, arrhythmias, heart failure, ophthalmoplegia, Muscular weakness, | prognosis for MIDD is better than that for MELAS |
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) | Mutations of TYMP gene (nDNA) | autosomal recessive | range from 5–60 years of age | defective function of oxidative phosphorylation | gastrointestinal disorders (dysphagia, cramping, vomiting, diarrhea, gastroparesis intestinal pseudo-obstruction) related to abnormal bowel motility. Neurological symptoms includes chronic progressive ophthalmoplegia, sensorimotor peripheral neuropathy | progressive degenerative disorder with a poor prognosis |
Neuropathy, ataxia, and retinitis pigmentosa (NARP) | More frequent: m.8993T > C/G subunit 6 of mt ATPase gene | maternally inherited | Childhood | defective function of oxidative phosphorylation | sensory neuropathy, muscle weakness; ataxia, retinitis pigmentosa, developmental delay, seizures, dementia, deafness, arrhythmias. | poor prognosis |
Mitochondrial Target | Mitochondrial Derangement | Clinical Disorders | References | |
---|---|---|---|---|
Nucleoside analogues | Mitochondrial polymerase | mtDNA synthesi inhibition | Hepatic steatosis, lactic acidosis, myophaty, neuropathy, nephrotoxicity | [33,34] |
Gentamicin, chloramphenicol, tetracycline | mtDNA | mtDNA synthesi inhibition | Deafness, renal failure, myopathy | [35,36] |
Metformin | Complex I | Inhibition of NADH-ubiquinone oxidoreductase | Lactic acidosis, myophathy | [35,37] |
Fibrates (clofibrate, gemfibrozil, fenofribate, etc) | Complex I | Inhibition of NADH-ubiquinone oxidoreductase I | Myopathy and rhabdomyolysis | [30,38] |
Thiazolidinediones (pioglitazone, troglitazone) | Complex I | Inhibition of NADH-ubiquinone oxidoreductase | Liver failure, rhabdomyolysisr | [30,39,40] |
doxorubicin | mtDNA | Mutations inducer | Cardiomyopathy | [41,42] |
Cisplatin | mtDNA | Mutations inducer | Cardiomyopathy | [34,35,36] |
Corticosteroids | Complex I | Inhibition of NADH-ubiquinone oxidoreductase | Myophathy | [34,43] |
Local anaesthetic (bupivicane, lidocaine) | ATP synthase | Inhibition of complex V and oxidative phosphorylation | Myophathy | [34,35,36] |
Propofol | Coenzyme Q | Inhibition of electron transport at CoQ level | rhabdomyolysis, heart failure, hepatomegaly, asystole | [36,44] |
Statins (simvastatin, cerivastatin, etc) | Coenzyme Q; complex I | Inhibition of electron transport at level of complex I and CoQ | myopathy, rhabdomyolysis | [34,45] |
Beta-blockers (metoprolol, propranol) | Complex I | Inhibition of NADH-ubiquinone oxidoreductase | myophathy | [46,47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottoni, P.; Gionta, G.; Scatena, R. Remarks on Mitochondrial Myopathies. Int. J. Mol. Sci. 2023, 24, 124. https://doi.org/10.3390/ijms24010124
Bottoni P, Gionta G, Scatena R. Remarks on Mitochondrial Myopathies. International Journal of Molecular Sciences. 2023; 24(1):124. https://doi.org/10.3390/ijms24010124
Chicago/Turabian StyleBottoni, Patrizia, Giulia Gionta, and Roberto Scatena. 2023. "Remarks on Mitochondrial Myopathies" International Journal of Molecular Sciences 24, no. 1: 124. https://doi.org/10.3390/ijms24010124
APA StyleBottoni, P., Gionta, G., & Scatena, R. (2023). Remarks on Mitochondrial Myopathies. International Journal of Molecular Sciences, 24(1), 124. https://doi.org/10.3390/ijms24010124