Structural Characterization, Antioxidant and Antitumor Activities of the Two Novel Exopolysaccharides Produced by Debaryomyces hansenii DH-1
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Identification of the Strain
2.2. Purification and Composition Analysis of EPS
2.3. NMR Spectroscopy Analysis
2.4. SEM Analysis
2.5. Thermal Analysis
2.6. Antioxidant Activity In Vitro
2.7. Antitumor Activity In Vitro
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Screening and Identification of the Strain
3.3. Microbial Fermentation and Medium
3.4. Extraction and Purification of EPS
3.5. Monosaccharide Composition
3.6. Molecular Weight Determination
3.7. Fourier-Transform Infrared Spectroscopy (FT-IR)
3.8. Congo Red Test
3.9. Nuclear Magnetic Resonance (NMR)
3.10. Thermal Properties
3.11. Scanning Electron Microscopy (SEM)
3.12. Antioxidant Activity Analysis
3.12.1. DPPH Radical Scavenging Activity
3.12.2. Hydroxyl Radical Scavenging Activity
3.12.3. Superoxide Scavenging Assay
3.12.4. Reducing Power Assay
3.13. Tumor Cell Viability Assay In Vitro
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, I.S.; Ko, S.H.; Lee, M.E.; Kim, H.M.; Yang, J.E.; Jeong, S.G.; Lee, K.H.; Chang, J.Y.; Kim, J.C.; Park, H.W. Production, characterization, and antioxidant activities of an exopolysaccharide extracted from spent media wastewater after Leuconostoc mesenteroides WiKim32 fermentation. Acs Omega 2021, 6, 8171–8178. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Li, G.; Zhang, X.F.; Wang, Y.Q.; Qiang, Y.; Wang, B.L.; Zou, J.B.; Niu, J.F.; Wang, Z.Z. Structural characterization and antioxidant activity of Polygonatum sibiricum polysaccharides. Carbohydr. Polym. 2022, 291, 119524. [Google Scholar] [CrossRef] [PubMed]
- Son, S.H.; Yang, S.J.; Jeon, H.L.; Yu, H.S.; Lee, N.K.; Park, Y.S.; Paik, H.D. Antioxidant and immunostimulatory effect of potential probiotic Lactobacillus paraplantarum SC61 isolated from Korean traditional fermented food, jangajji. Microb. Pathog. 2018, 125, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.Y.; Li, J.; Zhang, J.H.; Liu, H.L.; Ye, Q.S.; Wang, Z.H. Structural characterization and antitumor activity of a polysaccharide from Dendrobium wardianum. Carbohydr. Polym. 2021, 269, 118253. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xia, X.D.; Tang, W.Z.; Ji, J.; Rui, X.; Chen, X.H.; Jiang, M.; Zhou, J.Z.; Zhang, Q.Q.; Dong, M.S. Structural Characterization and Anticancer Activity of Cell-Bound Exopolysaccharide from Lactobacillus helveticus MB2-1. J. Agric. Food. Chem. 2015, 63, 3454–3463. [Google Scholar] [CrossRef]
- Henley, S.J.; Thomas, C.C.; Lewis, D.R.; Ward, E.M.; Islami, F.; Wu, M.; Weir, H.K.; Scott, S.; Sherman, R.L.; Ma, J.; et al. Annual report to the nation on the status of cancer, part II: Progress toward Healthy People 2020 objectives for 4 common cancers. Cancer 2020, 126, 2250–2266. [Google Scholar] [CrossRef] [Green Version]
- Amit, L.; Ben-Aharon, I.; Vidal, L.; Leibovici, L.; Stemmer, S. The Impact of Bevacizumab (Avastin) on Survival in Metastatic Solid Tumors—A Meta-Analysis and Systematic Review. PLoS ONE 2013, 8, e51780. [Google Scholar] [CrossRef]
- Zhang, S.J.; Li, Y.L.; Li, Z.G.; Liu, W.H.; Zhang, H.; Ohizumi, Y.; Nakajima, A.; Xu, J.; Guo, Y. Structure, anti-tumor activity, and potential anti-tumor mechanism of a fungus polysaccharide from Fomes officinalis. Carbohydr. Polym. 2022, 295, 119794. [Google Scholar] [CrossRef]
- Hu, S.M.; Zhou, J.M.; Zhou, Q.Q.; Li, P.; Xie, Y.Y.; Zhou, T.; Gu, Q. Purification, characterization and biological activities of exopolysaccharides from Lactobacillus rhamnosus ZFM231 isolated from milk. LWT Food Sci. Technol. 2021, 147, 111561. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, J.; Chen, Y.; Ma, Y.; Yang, Q.; Fan, Y.; Fu, C.; Limsila, B.; Li, R.; Liao, W. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides. LWT Food Sci. Technol. 2022, 154, 112805. [Google Scholar] [CrossRef]
- Hu, X.Y.; Pang, X.; Wang, P.G.; Chen, M. Isolation and characterization of an antioxidant exopolysaccharide produced by Bacillus sp. S-1 from Sichuan Pickles. Carbohydr. Polym. 2019, 204, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.L.; Rahi, D.K.; Soni, S.K. An indigenous hyperproductive species of Aureobasidium pullulans RYLF-10: Influence of fermentation conditions on exopolysaccharide (EPS) production. Appl. Biochem. Biotechnol. 2014, 172, 1898–1908. [Google Scholar] [CrossRef] [PubMed]
- Saadat, Y.R.; Khosroushahi, A.Y.; Gargari, B.P. Yeast exopolysaccharides and their physiological functions. Folia Microbiol. 2021, 66, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.J.; Chen, X.F.; Wang, B.; Lou, W.J.; Chen, X.; Hua, J.L.; Sun, Y.J.; Zhao, Y.; Peng, T. Characterization, antioxidativity, and anti-carcinoma activity of exopolysaccharide extract from Rhodotorula mucilaginosa CICC 33013. Carbohydr. Polym. 2018, 181, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, M.; Gholipour, A.R.; Delattre, C.; Sesdighi, F.; Seveiri, R.M.; Pasdaran, A.; Kheirandish, S.; Pierre, G.; Kozani, P.S.; Kozani, P.S.; et al. Production, characterization and biological activities of exopolysaccharides from a new cold-adapted yeast: Rhodotorula mucilaginosa sp. GUMS16. Int. J. Biol. Macromol. 2020, 151, 268–277. [Google Scholar] [CrossRef]
- Hao, Y.; Huang, Y.; Chen, J.Y.; Li, J.; Yuan, Y.C.; Wang, M.Z.; Han, L.L.; Xin, X.; Wang, H.L.; Lin, D.Q.; et al. Exopolysaccharide from Cryptococcus heimaeyensis S20 induces autophagic cell death in non-small cell lung cancer cells via ROS/p38 and ROS/ERK signalling. Cell Prolif. 2020, 53, e12869. [Google Scholar] [CrossRef]
- Cano-García, L.; Rivera-Jiménez, S.; Belloch, C.; Flores, M. Generation of aroma compounds in a fermented sausage meat model system by Debaryomyces hansenii strains. Food Chem. 2014, 151, 364–373. [Google Scholar] [CrossRef]
- Martin, N.; Berger, C.; Le Du, C.; Spinnler, H.E. Aroma compound production in cheese curd by coculturing with selected yeast and bacteria. J. Dairy Sci. 2001, 84, 2125–2135. [Google Scholar] [CrossRef]
- Guo, K.; Tan, Z. The synergic effect of ultra-micro powder Qiweibaizhusan combined with east on dysbacteriotic diarrhea mice. Chin. J. Appl. Environ. Biol. 2015, 21, 61–67. [Google Scholar]
- Banjara, N.; Nickerson, K.W.; Suhr, M.J.; Hallen-Adams, H.E. Killer toxin from several food-derived Debaryomyces hansenii strains effective against pathogenic Candida yeasts. Int. J. Food Microbiol. 2016, 222, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.X.; Chen, G.Q.; Xue, L.; Zhang, H.B.; Wang, J.M.; Xiang, H.Y.; Li, J.L.; Zheng, K. Isolation, structural characterizations and bioactivities of exopolysaccharides produced by Bacillus licheniformis. Int. J. Biol. Macromol. 2019, 141, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Chen, G.Q.; Wang, F.; Zhao, H.; Wei, Y.X.; Liu, L.J.; Zhang, H.B. Extraction, characterization, antioxidant activity and rheological behavior of a polysaccharide produced by the extremely salt tolerant Bacillus subtilis LR-1. LWT Food Sci. Technol. 2022, 162, 113413. [Google Scholar] [CrossRef]
- Reyes-Becerril, M.; Angulo, M.; Sanchez, V.; Guluarte, C.; Angulo, C. β-D-glucan from marine yeast Debaryomyces hansenii BCS004 enhanced intestinal health and glucan-expressed receptor genes in Pacific red snapper Lutjanus peru. Microb. Pathog. 2020, 143, 104141. [Google Scholar] [CrossRef] [PubMed]
- Angulo, M.; Reyes-Becerril, M.; Cepeda-Palacios, R.; Angulo, C. Oral administration of Debaryomyces hansenii CBS8339-β-glucan induces trained immunity in newborn goats. Dev. Comp. Immunol. 2020, 105, 103597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Wang, G.A.; Lai, F.R.; Wu, H. Structural Characterization and Immunomodulatory Activity of a Novel Polysaccharide from Lepidium meyenii. J. Agric. Food. Chem. 2016, 64, 1921–1931. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.Y.; Huang, Y.; Li, A.J.; Ma, D.; Wang, Y. Fabrication and Characterization of Oleogel Stabilized by Gelatin-Polyphenol-Polysaccharides Nanocomplexes. J. Agric. Food. Chem. 2018, 66, 13243–13252. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Li, C.X.; Zhang, C.; Zeng, R.; Fu, C.M. Optimization of infrared-assisted extraction of Bletilla striata polysaccharides based on response surface methodology and their antioxidant activities. Carbohydr. Polym. 2016, 148, 345–353. [Google Scholar] [CrossRef]
- Mathivanan, K.; Chandirika, J.U.; Mathimani, T.; Vinothkanna, A.; Rajaram, R.; Annadurai, G. Optimization, compositional analysis, and characterization of exopolysaccharides produced by multi-metal resistant Bacillus cereus KMS3-1. Carbohydr. Polym. 2020, 227, 115369. [Google Scholar]
- Li, J.; Li, B.; Geng, P.; Song, A.X.; Wu, J.Y. Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water. Food Hydrocoll. 2017, 70, 14–19. [Google Scholar] [CrossRef]
- Li, G.Q.; Chen, P.F.; Zhao, Y.T.; Zeng, Q.H.; Ou, S.Y.; Zhang, Y.H.; Wang, P.C.; Chen, N.H.; Ou, J.Y. Isolation, structural characterization and anti-oxidant activity of a novel polysaccharide from garlic bolt. Carbohydr. Polym. 2021, 267, 118194. [Google Scholar] [CrossRef]
- Cheng, H.R.; Feng, S.L.; Jia, X.J.; Li, Q.Q.; Zhou, Y.H.; Ding, C.B. Structural characterization and antioxidant activities of polysaccharides extracted from Epimedium acuminatum. Carbohydr. Polym. 2013, 92, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Zeng, J.S.; Wang, B.; Cheng, Z.; Xu, J.; Gao, W.H.; Chen, K.F. Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods. Carbohydr. Polym. 2021, 266, 118149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Gao, F.; Gan, S.; He, Y.; Chen, Z.; Liu, X.; Fu, C.; Qu, Y.; Zhang, J. Chemical characterization and gastroprotective effect of an isolated polysaccharide fraction from Bletilla striata against ethanol-induced acute gastric ulcer. Food Chem. Toxicol. 2019, 131, 110539. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.Y.; Xu, D.L.; Tang, N.Y.; Rui, X.; Zhang, Q.Q.; Chen, X.H.; Dong, M.S.; Li, W. Biosynthesis of exopolysaccharide and structural characterization by Lacticaseibacillus paracasei ZY-1 isolated from Tibetan kefir. Food Chem.Mol. Sci. 2021, 3, 100054. [Google Scholar] [CrossRef]
- Chang, X.; Shen, C.Y.; Jiang, J.G. Structural characterization of novel arabinoxylan and galactoarabinan from citron with potential antitumor and immunostimulatory activities. Carbohydr. Polym. 2021, 269, 118331. [Google Scholar] [CrossRef]
- You, X.; Li, Z.; Ma, K.; Zhang, C.L.; Chen, X.H.; Wang, G.X.; Yang, L.; Dong, M.S.; Rui, X.; Zhang, Q.Q.; et al. Structural characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus helveticus LZ-R-5. Carbohydr. Polym. 2020, 235, 115977. [Google Scholar] [CrossRef]
- Sen, I.K.; Mandal, A.K.; Chakraborty, R.; Behera, B.; Yadav, K.K.; Maiti, T.K.; Islam, S.S. Structural and immunological studies of an exopolysaccharide from Acinetobacter junii BB1A. Carbohydr. Polym. 2014, 101, 188–195. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.H.; Yang, X.Q.; Lin, P.; Liu, N.; Li, X.J.; Zhang, B.H.; Guo, S.D. Purification, structural characterization, and PCSK9 secretion inhibitory effect of the novel alkali-extracted polysaccharide from Cordyceps militaris. Int. J. Biol. Macromol. 2021, 179, 407–417. [Google Scholar] [CrossRef]
- Shan, J.M.; Zhang, L.F.; Che, Q.; Sun, S.W.; Gu, Q.Q.; Mao, W.J. Structures of the exopolysaccharides produced by the mangrove soil actinomycete Saccharopolyspora sp. Chin. J. Mar. Drugs 2014, 33, 8–12. [Google Scholar]
- Nadzir, M.M.; Nurhayati, R.W.; Idris, F.N.; Nguyen, M.H. Biomedical Applications of Bacterial Exopolysaccharides: A Review. Polymers 2021, 13, 530. [Google Scholar] [CrossRef]
- Tian, J.J.; Wang, X.M.; Zhang, X.L.; Zhang, C.P.; Chen, X.H.; Dong, M.S.; Rui, X.; Zhang, Q.Q.; Fang, Y.; Li, W. Isolation, structural characterization and neuroprotective activity of exopolysaccharide from Paecilomyces cicada TJJ1213. Int. J. Biol. Macromol. 2021, 183, 1034–1046. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Ren, Y.M.; Li, L.A. The relationship between charge intensity and bioactivities/processing characteristics of exopolysaccharides from lactic acid bacteria. LWT Food Sci. Technol. 2022, 153, 112345. [Google Scholar] [CrossRef]
- Romdhane, M.B.; Haddar, A.; Ghazala, I.; Jeddou, K.B.; Helbert, C.B.; Ellouz-Chaabouni, S. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities. Food Chem. 2017, 216, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.X.; Yang, J.; Wu, J.R.; Li, H.; Yin, Z.W.; Zhu, L.; Zhan, X.B. Structural characterization and in vitro evaluation of the prebiotic potential of an exopolysaccharide produced by Bacillus thuringiensis during fermentation. LWT Food Sci. Technol. 2022, 163, 113532. [Google Scholar] [CrossRef]
- Guo, R.; Chen, M.; Ding, Y.Y.; Yang, P.Y.; Wang, M.J.; Zhang, H.H.; He, Y.Q.; Ma, H.L. Polysaccharides as Potential Anti-tumor Biomacromolecules—A Review. Front. Nutr. 2022, 9, 838179. [Google Scholar] [CrossRef]
- Meng, L.; Sun, S.; Li, R.; Shen, Z.; Wang, P.; Jiang, X. Antioxidant activity of polysaccharides produced by Hirsutella sp and relation with their chemical characteristics. Carbohydr. Polym. 2015, 117, 452–457. [Google Scholar] [CrossRef]
- Wasser, S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. [Google Scholar]
- Sun, Y.D.; Wang, Z.H.; Ye, Q.S. Composition analysis and anti-proliferation activity of polysaccharides from Dendrobium chrysotoxum. Int. J. Biol. Macromol. 2013, 62, 291–295. [Google Scholar] [CrossRef]
Residue | Sugar Linkage | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|
(A) | α-D-Manp-(1→ | H | 5.17 | 4.00 | 3.86 | 4.12 | 3.93 | 3.83 |
C | 102.11 | 70.11 | 71.55 | 70.44 | 70.53 | 60.71 | ||
(B) | →3,4)-α-D-Manp-(1→ | H | 5.01 | 3.95 | 3.88 | 3.93 | 3.78 | 3.98 |
C | 103.76 | 70.08 | 80.21 | 76.49 | 71.60 | 62.54 | ||
(C) | →2)-α-D-Glcp-(1→ | H | 4.99 | 3.95 | 3.61 | 3.71 | 3.97 | 3.77 |
C | 99.80 | 77.51 | 72.21 | 68.43 | 74.12 | 62.47 | ||
(D) | →4)-α-D-Manp-(1→ | H | 4.91 | 3.95 | 3.69 | 4.10 | 3.78 | 3.71 |
C | 103.72 | 67.31 | 74.72 | 80.09 | 74.78 | 61.69 | ||
(E) | →4,6)-β-D-Manp-(1→ | H | 4.77 | 3.86 | 3.74 | 3.99 | 3.66 | 3.85 |
C | 100.96 | 70.34 | 69.60 | 80.01 | 72.34 | 67.46 | ||
(F) | →2)-β-D-Glcp-(1→ | H | 4.40 | 3.21 | 3.72 | 3.52 | 3.57 | 3.71,3.96 |
C | 104.52 | 74.70 | 82.63 | 71.44 | 76.37 | 62.50 |
Residue | Sugar Linkage | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|
(A) | →2,6)-α-D-Manp-(1→ | H | 5.42 | 4.06 | 3.99 | 3.80 | 3.99 | 3.92 |
C | 96.03 | 80.18 | 72.17 | 74.84 | 74.34 | 67.10 | ||
(B) | →6)-α-D-Manp-(1→ | H | 5.32 | 3.87 | 3.96 | 3.60 | 3.80 | 3.69 |
C | 98.32 | 71.76 | 73.41 | 75.01 | 71.33 | 65.6 | ||
(C) | →4)-α-D-Galp-(1→ | H | 5.25 | 3.96 | 3.70 | 4.12 | 3.51 | 3.74 |
C | 102.68 | 71.99 | 70.28 | 72.25 | 73.71 | 65.62 | ||
(D) | T-α-D-Manp-(1→ | H | 5.17 | 3.99 | 3.89 | 3.66 | 3.76 | 3.62 |
C | 102.41 | 69.66 | 70.07 | 70.86 | 70.42 | 62.89 | ||
(E) | →3)-β-D-Manp-(1→ | H | 4.90 | 3.94 | 3.92 | 3.58 | 3.86 | 3.67/3.90 |
C | 103.54 | 71.86 | 80.46 | 68.4 | 75.2 | 62.16 | ||
(F) | →4,6)-β-D-Manp-(1→ | H | 4.81 | 4.19 | 3.82 | 3.75 | 3.66 | 3.88 |
C | 101.15 | 71.23 | 70.07 | 76.76 | 71.10 | 67.6 | ||
(G) | →6)-β-D-Galp-(1→ | H | 4.72 | 4.05 | 3.68 | 3.92 | 3.91 | 3.71 |
C | 103.5 | 74.84 | 75.19 | 68.40 | 75.47 | 67.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chen, G.; Zhao, X.; Cao, X.; Wang, L.; Mu, J.; Qi, F.; Liu, L.; Zhang, H. Structural Characterization, Antioxidant and Antitumor Activities of the Two Novel Exopolysaccharides Produced by Debaryomyces hansenii DH-1. Int. J. Mol. Sci. 2023, 24, 335. https://doi.org/10.3390/ijms24010335
Yang Y, Chen G, Zhao X, Cao X, Wang L, Mu J, Qi F, Liu L, Zhang H. Structural Characterization, Antioxidant and Antitumor Activities of the Two Novel Exopolysaccharides Produced by Debaryomyces hansenii DH-1. International Journal of Molecular Sciences. 2023; 24(1):335. https://doi.org/10.3390/ijms24010335
Chicago/Turabian StyleYang, Yajing, Guoqiang Chen, Xiaoqi Zhao, Xiaohe Cao, Lei Wang, Jingjiu Mu, Fenghui Qi, Lijuan Liu, and Haibo Zhang. 2023. "Structural Characterization, Antioxidant and Antitumor Activities of the Two Novel Exopolysaccharides Produced by Debaryomyces hansenii DH-1" International Journal of Molecular Sciences 24, no. 1: 335. https://doi.org/10.3390/ijms24010335
APA StyleYang, Y., Chen, G., Zhao, X., Cao, X., Wang, L., Mu, J., Qi, F., Liu, L., & Zhang, H. (2023). Structural Characterization, Antioxidant and Antitumor Activities of the Two Novel Exopolysaccharides Produced by Debaryomyces hansenii DH-1. International Journal of Molecular Sciences, 24(1), 335. https://doi.org/10.3390/ijms24010335