Soy Isoflavones Induce Feminization of Japanese Eel (Anguilla japonica)
Abstract
:1. Introduction
2. Results
2.1. Sex Ratio and Gene Expression Patterns in Control and Soy Isoflavone-Treated Eels
2.2. Sex Ratio of Genistein- and Daidzein-Treated Japanese Eels
2.3. RNA Sequencing (RNA-Seq) Analysis of Gonads during Eel Sexual Differentiation
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Experimental Treatments
4.3. Quantitative Real-Time PCR (qPCR)
4.4. Next-Generation Sequencing and RNA-Seq Analysis
4.5. Histological Analysis
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baroiller, J.F.; Guiguen, Y.; Fostier, A. Endocrine and environmental aspects of sex differentiation in fish. Cell. Mol. Life Sci. 1999, 55, 910–931. [Google Scholar] [CrossRef]
- Devlin, R.H.; Nagahama, Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture 2002, 208, 191–364. [Google Scholar] [CrossRef]
- Satoh, H.; Nimura, Y.; Hibiya, T. Sex control of the Japanese eel by an estrogen (DES-Na) in feed. Nippon Suisan Gakkaishi 1992, 58, 1211–1218. [Google Scholar] [CrossRef]
- Yokouchi, K.; Kaneko, Y.; Kaifu, K.; Aoyama, J.; Uchida, K.; Tsukamoto, K. Demographic survey of the yellow-phase Japanese eel in Japan. Fish. Sci. 2014, 80, 543–554. [Google Scholar] [CrossRef]
- Bogart, M.H. Sex determination: A hypothesis based on steroid ratios. J. Theor. Biol. 1987, 128, 349–357. [Google Scholar] [CrossRef]
- Yamamoto, T. Sex differentiation. In Fish Physiology; Hoar, W.S., Randall, D.J., Eds.; Academic Press: New York, NY, USA, 1969; Volume 3, pp. 117–175. [Google Scholar]
- Nagahama, Y. Endocrine regulation of gametogenesis in fish. Int. J. Dev. Biol. 1994, 38, 217–229. [Google Scholar]
- Kitano, T.; Takamune, K.; Kobayashi, T.; Nagahama, Y.; Abe, S.I. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). J. Mol. Endocrinol. 1999, 23, 167–176. [Google Scholar] [CrossRef]
- Leet, J.K.; Gall, H.E.; Sepúlveda, M.S. A review of studies on androgen and estrogen exposure in fish early life stages: Effects on gene and hormonal control of sexual differentiation. J. Appl. Toxicol. 2011, 31, 379–398. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, Y.; Zhao, D.; Liu, X.; Duan, J.; Xie, S.; Zhao, H. Effects of sexual steroids on the expression of foxl2 in Gobiocypris rarus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 160, 187–193. [Google Scholar] [CrossRef]
- Schulz, R.W.; Bogerd, J.; Male, R.; Ball, J.; Fenske, M.; Olsen, A.L.C.; Tyler, C.R. Estrogen-induced alterations in amh and dmrt1 expression signal for disruption in male sexual development in the zebrafish. Environ. Sci. Technol. 2007, 41, 6305–6310. [Google Scholar] [CrossRef]
- Chiba, H.; Iwatsuki, K.; Hayami, K.; Yamauchi, K. Effects of dietary estradiol-17β on feminization, growth and body composition in the Japanese eel (Anguilla japonica). Comp. Biochem. Physiol. A 1993, 106, 367–371. [Google Scholar]
- Colombo, G.; Grandi, G. Sex differentiation in the European eel: Histological analysis of the effects of sex steroids on the gonad. J. Fish Biol. 1995, 47, 394–413. [Google Scholar] [CrossRef]
- Inaba, H.; Hara, S.; Horiuchi, M.; Ijiri, S.; Kitano, T. Gonadal expression profiles of sex-specific genes during early sexual differentiation in Japanese eel, Anguilla japonica. Fish. Sci. 2021, 87, 203–209. [Google Scholar] [CrossRef]
- Nakamura, M. The mechanism of sex determination in vertebrates-are sex steroids the key-factor? J. Exp. Zool. A Ecol. Genet. Physiol. 2010, 313, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, N.; Shiraishi, E.; Yamamoto, T.; Iguchi, T.; Abe, S.; Kitano, T. Sexually dimorphic expression of a teleost homologue of Müllerian inhibiting substance during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem. Biophys. Res. Commun. 2004, 322, 508–513. [Google Scholar] [CrossRef]
- Kaneko, H.; Ijiri, S.; Kobayashi, T.; Izumi, H.; Kuramochi, Y.; Wang, D.S.; Misuno, S.; Nagahama, Y. Gonadal soma-derived factor (gsdf), a TGF-beta superfamily gene, induces testis differentiation in the teleost fish Oreochromis niloticus. Mol. Cell. Endocrinol. 2015, 415, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Pelissero, C.; Le Menn, F.; Kaushik, S. Estrogenic effect of dietary soya bean meal on vitellogenesis in cultured Siberian sturgeon Acipenser baeri. Gen. Comp. Endocrinol. 1991, 83, 447–457. [Google Scholar] [CrossRef]
- Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.O.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor b. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef]
- Pike, A.C.; Brzozowski, A.M.; Hubbard, R.E.; Bonn, T.; Thorsell, A.G.; Engstrom, O.; Ljunggren, J.; Gustafsson, J.A.; Carlquist, M. Structure of the ligandbinding domain of estrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J. 1999, 18, 4608–4618. [Google Scholar] [CrossRef] [Green Version]
- Latonnelle, K.; Le Menn, F.; Kaushik, S.J.; Bennetau-Pelisseroc, C. Effects of dietary phytoestrogens in vivo and in vitro in rainbow trout and siberian sturgeon: Interests and limits of the in vitro studies of interspecies differences. Gen. Comp. Endocrinol. 2002, 126, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Kitano, T.; Koyanagi, T.; Adachi, R.; Sakimura, N.; Takamune, K.; Abe, S.I. Assessment of estrogenic chemicals using an estrogen receptor α (ERα)-and ERβ-mediated reporter gene assay in fish. Mar. Biol. 2006, 149, 49–55. [Google Scholar] [CrossRef]
- Green, C.C.; Kelly, A.M. Effects of the estrogen mimic genistein as a dietary component on sex differentiation and ethoxyresorufin-O-deethylase (EROD) activity in channel catfish (Ictalurus punctatus). Fish Physiol. Biochem. 2009, 35, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Kiparissis, Y.; Balch, G.C.; Metcalfe, T.L.; Metcalfe, C.D. Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka Oryzias latipes. Environ. Health Perspect. 2003, 111, 1158–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fajkowska, M.; Adamek-Urbańska, D.; Ostaszewska, T.; Szczepkowski, M.; Rzepkowska, M. Effect of genistein, daidzein and coumestrol on sex-related genes expression in Russian sturgeon (Acipenser gueldenstaedtii). Aquaculture 2021, 530, 735872. [Google Scholar] [CrossRef]
- Tzchori, I.; Degani, G.; Elisha, R.; Eliyahu, R.; Hurvitz, A.; Vaya, J.; Moav, B. The influence of phytoestrogen and estradiol-17b on growth and sex determination in the European ell (Anguilla anguilla). Aquac. Res. 2004, 35, 1213–1219. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar]
- Folman, Y.; Pope, G.S. The interaction in the immature mouse of potent oestrogens with coumestrol, genistein and other utero-vaginotrophic compounds of low potency. J. Endocrinol. 1966, 34, 215–225. [Google Scholar] [CrossRef]
- Santell, R.C.; Chang, Y.C.; Nair, M.G.; Helferich, W.G. Dietary genistein exerts estrogenic effects upon the uterus, mammary gland and the hypothalamic/pituitary axis in rats. J. Nutr. 1997, 127, 263–269. [Google Scholar]
- Kurzer, M.S.; Xu, X. Dietary phytoestrogens. Annu. Rev. Nutr. 1997, 17, 353–381. [Google Scholar] [CrossRef]
- Fajkowska, M.; Ostaszewska, T.; Rzepkowska, M. Review: Molecular Mechanisms of Sex Differentiation in Sturgeons. Rev. Aquac. 2019, 12, 1003–1027. [Google Scholar] [CrossRef]
- Guiguen, Y.; Fostier, A.; Piferrer, F.; Chang, C.F. Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish. Gen. Comp. Endocrinol. 2010, 165, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Contractor, R.G.; Foran, C.M.; Li, S.F.; Willett, K.L. Evidence of gender- and tissue-specific promoter methylation and the potential for ethinylestradiol-induced changes in Japanese medaka (Oryzias latipes) estrogen receptor and aromatase genes. J. Toxicol. Environ. Health Part A 2004, 67, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Halm, S.; Pounds, N.; Maddix, S.; Rand-Weaver, M.; Sumpter, J.P.; Hutchinson, T.H.; Tyler, C.R. Exposure to exogenous 17β-oestradiol disrupts P450aromB mRNA expression in the brain and gonad of adult fathead minnows (Pimephales promelas). Aquat. Toxicol. 2002, 60, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Kazeto, Y.; Goto-Kazeto, R.; Place, A.R.; Trant, J.M. Aromatase expression in zebrafish and channel catfish brains: Changes in transcript abundance associated with the reproductive cycle and exposure to endocrine disrupting chemicals. Fish Physiol. Biochem. 2003, 28, 29–32. [Google Scholar] [CrossRef]
- Kishida, M.; McLellan, M.; Miranda, J.A.; Callard, G.V. Estrogen and xenoestrogens upregulate the brain aromatase isoform (P450aromB) and perturb markers of early development in zebrafish (Danio rerio). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001, 129, 261–268. [Google Scholar] [CrossRef]
- Kobayashi, T.; Chiba, A.; Sato, T.; Myosho, T.; Yamamoto, J.; Horie, Y.; Okamura, T.; Onishi, Y.; Sakaizumi, M.; Hamaguchi, S.; et al. Estrogen alters gonadal soma-derived factor (Gsdf)/Foxl2 expression levels in the testes associated with testis-ova differentiation in adult medaka, Oryzias latipes. Aquat. Toxicol. 2017, 191, 209–218. [Google Scholar] [CrossRef]
- Baron, D.; Houlgatte, R.; Fostier, A.; Guiguen, Y. Large-scale temporal gene expression profiling during gonadal differentiation and early gametogenesis in rainbow trout. Biol. Reprod. 2005, 73, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Haugen, T.; Almeida, F.F.L.; Andersson, E.; Bogerd, J.; Male, R.; Skaar, K.S.; Schulz, R.W.; Sørhus, E.; Wijgerde, T.; Taranger, G.L. Sex differentiation in Atlantic cod (Gadus morhua L.): Morphological and gene expression studies. Reprod. Biol. Endocrinol. 2012, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Miura, T.; Miura, C.; Konda, Y.; Yamauchi, K. Spermatogenesis-preventing substance in Japanese eel. Development 2002, 129, 2689–2697. [Google Scholar] [CrossRef]
- Shibata, Y.; Paul-Prasanth, B.; Suzuki, A.; Usami, T.; Nakamoto, M.; Matsuda, M.; Nagahama, Y. Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka. Gene Expr. Patterns 2010, 10, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guan, G.; Li, M.; Zhu, F.; Liu, Q.; Naruse, K.; Herpin, A.; Nagahama, Y.; Li, J.; Hong, Y. Autosomal gsdf acts as a male sex initiator in the fish medaka. Sci. Rep. 2016, 6, 19738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horiguchi, R.; Nozu, R.; Hirai, T.; Kobayashi, Y.; Nagahama, Y.; Nakamura, M. Characterization of gonadal soma-derived factor expression during sex change in the protogynous wrasse, Halichoeres trimaculatus. Dev. Dyn. 2013, 242, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Line, A.; Slucka, Z.; Stengrevics, A.; Silina, K.; Li, G.; Rees, R.C. Characterisation of tumour-associated antigens in colon cancer. Cancer Immunol. Immunother. 2002, 51, 574–582. [Google Scholar] [CrossRef]
- Katsyv, I.; Wang, M.; Song, W.M.; Zhou, X.; Zhao, Y.; Park, S.; Zhu, J.; Zhang, B.; Irie, H.Y. EPRS is a critical regulator of cell proliferation and estrogen signaling in ER+ breast cancer. Oncotarget 2016, 7, 69592–69605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellastella, G.; Visconti, D.; Conzo, G.; Rossi, V.; Palumbo, V.; Bellis, A.; Bellastella, A.; Sinisi, A. Presence of liver X receptors alfa (LXRalfa) and beta (LXRbeta) in cortisol-secreting adrenal adenomas. Endocrine Abstracts 2011, 26, P35. [Google Scholar]
- Hartig, E.I.; Zhu, S.; King, B.L.; Coffman, J.A. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation. Biol. Open 2016, 5, 1134–1141. [Google Scholar] [CrossRef] [Green Version]
- Hara, S.; Furukawa, F.; Mukai, K.; Yazawa, T.; Kitano, T. Peroxisome proliferator-activated receptor alpha is involved in the temperature-induced sex differentiation of a vertebrate. Sci. Rep. 2020, 10, 11672. [Google Scholar] [CrossRef]
- Hara, S.; Kumamoto, Japan; Kitano, T.; Kumamoto, Japan. Personal communication, 2021.
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
No. | Gene Name | GO Term | |
---|---|---|---|
up-regulated genes | 1 | QNR-71 | membrane |
2 | class E basic helix-loop-helix 41 | regulation of DNA-templated transcription, cell differentiation, anatomical structure development, DNA binding, transcription regulator activity | |
3 | phosphatase 1 regulatory subunit 26 | negative regulation of phosphatase activity, protein phosphatase inhibitor activity | |
4 | TBC1 domain family member 9B | calcium ion binding | |
5 | ATP-dependent DNA helicase Q1 | DNA replication, DNA repair, DNA recombination, hydrolase activity, catalytic activity, acting on DNA, ATP-dependent activity, nucleus | |
6 | Y-box-binding 2 | nucleic acid binding | |
7 | complex I intermediate-associated mitochondrial | generation of precursor metabolites and energy, mitochondrion organization, protein-containing complex assembly, mitochondrion | |
8 | centromere T | Not Applicable | |
9 | histidine N-acetyltransferase-like | acetyltransferase activity | |
10 | transcription intermediary factor 1-alpha-like | Not Applicable | |
11 | glutamyl prolyl tRNA synthetase | tRNA metabolic process, amino acid metabolic process, ligase activity, catalytic activity, acting on RNA | |
12 | GTPase IMAP family member 8-like | nucleotide binding, GTP binding | |
13 | calmodulin-regulated spectrin-associated 2a | cell differentiation, anatomical structure development, cytoskeletal protein binding, cytoskeleton | |
14 | RNA-binding 14b | RNA binding | |
15 | L-aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transferase | amino acid metabolic process, protein modification process, transferase activity, cytosol | |
down-regulated genes | 16 | syntaxin-5-like | intracellular protein transport, vesicle-mediated transport, membrane organization, molecular adaptor activity, Golgi apparatus |
17 | oxysterols receptor LXR-alpha-like | regulation of DNA-templated transcription, lipid metabolic process, signaling, DNA binding, molecular transducer activity, transcription regulator activity, nucleus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inaba, H.; Iwata, Y.; Suzuki, T.; Horiuchi, M.; Surugaya, R.; Ijiri, S.; Uchiyama, A.; Takano, R.; Hara, S.; Yazawa, T.; et al. Soy Isoflavones Induce Feminization of Japanese Eel (Anguilla japonica). Int. J. Mol. Sci. 2023, 24, 396. https://doi.org/10.3390/ijms24010396
Inaba H, Iwata Y, Suzuki T, Horiuchi M, Surugaya R, Ijiri S, Uchiyama A, Takano R, Hara S, Yazawa T, et al. Soy Isoflavones Induce Feminization of Japanese Eel (Anguilla japonica). International Journal of Molecular Sciences. 2023; 24(1):396. https://doi.org/10.3390/ijms24010396
Chicago/Turabian StyleInaba, Hiroyuki, Yuzo Iwata, Takashi Suzuki, Moemi Horiuchi, Ryohei Surugaya, Shigeho Ijiri, Ai Uchiyama, Ryoko Takano, Seiji Hara, Takashi Yazawa, and et al. 2023. "Soy Isoflavones Induce Feminization of Japanese Eel (Anguilla japonica)" International Journal of Molecular Sciences 24, no. 1: 396. https://doi.org/10.3390/ijms24010396
APA StyleInaba, H., Iwata, Y., Suzuki, T., Horiuchi, M., Surugaya, R., Ijiri, S., Uchiyama, A., Takano, R., Hara, S., Yazawa, T., & Kitano, T. (2023). Soy Isoflavones Induce Feminization of Japanese Eel (Anguilla japonica). International Journal of Molecular Sciences, 24(1), 396. https://doi.org/10.3390/ijms24010396