Coronavirus-Specific Antibody and T Cell Responses Developed after Sputnik V Vaccination in Patients with Chronic Lymphocytic Leukemia
Abstract
:1. Introduction
2. Results
2.1. General Cohort Description
2.2. Safety
2.3. Dynamics of the Antibody and T Cell Responses
2.4. The Impact of the Clinical Parameters on Vaccination Efficiency among CLL Patients
2.5. COVID-19 Occurrence among the CLL Patients
3. Discussion
4. Materials and Methods
4.1. Blood Collection and PBMC Isolation
4.2. SARS-CoV-2–Specific Antibodies
4.3. IFNγ ELISpot Assay
4.4. Flow Cytometry
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martin-Moro, F.; Razanamahery, J.; Riches, J.C.; Zwicker, J.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.A.; Niemann, C.U.; Rostgaard, K.; Dalby, T.; Sorrig, R.; Weinberger, D.M.; Hjalgrim, H.; Harboe, Z.B. Differences and Temporal Changes in Risk of Invasive Pneumococcal Disease in Adults with Hematological Malignancies: Results from a Nationwide 16-Year Cohort Study. Clin. Infect. Dis. 2021, 72, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Kochneva, O.L.; Kislova, M.; Zhelnova, E.I.; Petrenko, A.A.; Baryakh, E.A.; Yatskov, K.V.; Dmitrieva, E.A.; Misurina, E.N.; Nikitin, K.E.; Vasilieva, E.J.; et al. COVID-19 in patients with chronic lymphocytic leukemia: A Moscow observational study. Leuk. Lymphoma 2022, 63, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- CDC Interim Clinical Considerations for the Use of COVID-19 Vaccines Currently Approved or Authorized in the United States. Available online: www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html#primary-series (accessed on 20 May 2022).
- Pasiarski, M.; Rolinski, J.; Grywalska, E.; Stelmach-Goldys, A.; Korona-Glowniak, I.; Gozdz, S.; Hus, I.; Malm, A. Antibody and plasmablast response to 13-valent pneumococcal conjugate vaccine in chronic lymphocytic leukemia patients—Preliminary report. PLoS ONE 2014, 9, e114966. [Google Scholar] [CrossRef]
- Mauro, F.R.; Giannarelli, D.; Galluzzo, C.M.; Vitale, C.; Visentin, A.; Riemma, C.; Rosati, S.; Porrazzo, M.; Pepe, S.; Coscia, M.; et al. Response to the conjugate pneumococcal vaccine (PCV13) in patients with chronic lymphocytic leukemia (CLL). Leukemia 2021, 35, 737–746. [Google Scholar] [CrossRef]
- Teh, J.S.K.; Coussement, J.; Neoh, Z.C.F.; Spelman, T.; Lazarakis, S.; Slavin, M.A.; Teh, B.W. Immunogenicity of COVID-19 vaccines in patients with hematologic malignancies: A systematic review and meta-analysis. Blood Adv. 2022, 6, 2014–2034. [Google Scholar] [CrossRef]
- Haydu, J.E.; Maron, J.S.; Redd, R.A.; Gallagher, K.M.E.; Fischinger, S.; Barnes, J.A.; Hochberg, E.P.; Johnson, P.C.; Takvorian, R.W.; Katsis, K.; et al. Humoral and cellular immunogenicity of SARS-CoV-2 vaccines in chronic lymphocytic leukemia: A prospective cohort study. Blood Adv. 2022, 6, 1671–1683. [Google Scholar] [CrossRef]
- Herishanu, Y.; Avivi, I.; Aharon, A.; Shefer, G.; Levi, S.; Bronstein, Y.; Morales, M.; Ziv, T.; Shorer Arbel, Y.; Scarfo, L.; et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood 2021, 137, 3165–3173. [Google Scholar] [CrossRef]
- Herishanu, Y.; Rahav, G.; Levi, S.; Braester, A.; Itchaki, G.; Bairey, O.; Dally, N.; Shvidel, L.; Ziv-Baran, T.; Polliack, A.; et al. Efficacy of a third BNT162b2 mRNA COVID-19 vaccine dose in patients with CLL who failed standard 2-dose vaccination. Blood 2022, 139, 678–685. [Google Scholar] [CrossRef]
- Reimann, P.; Ulmer, H.; Mutschlechner, B.; Benda, M.; Severgnini, L.; Volgger, A.; Lang, T.; Atzl, M.; Huynh, M.; Gasser, K.; et al. Efficacy and safety of heterologous booster vaccination with Ad26.COV2.S after BNT162b2 mRNA COVID-19 vaccine in haemato-oncological patients with no antibody response. Br. J. Haematol. 2022, 196, 577–584. [Google Scholar] [CrossRef]
- Parry, H.; McIlroy, G.; Bruton, R.; Damery, S.; Tyson, G.; Logan, N.; Davis, C.; Willett, B.; Zuo, J.; Ali, M.; et al. Impaired neutralisation of SARS-CoV-2 delta variant in vaccinated patients with B cell chronic lymphocytic leukaemia. J. Hematol. Oncol. 2022, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Freeman, J.A.; Holland, J.; Solterbeck, A.; Naidu, K.; Soosapilla, A.; Downe, P.; Tang, C.; Kerridge, I.; Wallman, L.; et al. COVID-19 vaccine failure in chronic lymphocytic leukaemia and monoclonal B-lymphocytosis; humoural and cellular immunity. Br. J. Haematol. 2022, 197, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Langerbeins, P.; Hallek, M. COVID-19 in patients with hematologic malignancy. Blood 2022, 140, 236–252. [Google Scholar] [CrossRef] [PubMed]
- Logunov, D.Y.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021, 397, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Voko, Z.; Kiss, Z.; Surjan, G.; Surjan, O.; Barcza, Z.; Palyi, B.; Formanek-Balku, E.; Molnar, G.A.; Herczeg, R.; Gyenesei, A.; et al. Nationwide effectiveness of five SARS-CoV-2 vaccines in Hungary-the HUN-VE study. Clin. Microbiol. Infect. 2022, 28, 398–404. [Google Scholar] [CrossRef]
- Chahla, R.E.; Tomas-Grau, R.H.; Cazorla, S.I.; Ploper, D.; Vera Pingitore, E.; Lopez, M.A.; Aznar, P.; Alcorta, M.E.; Velez, E.; Stagnetto, A.; et al. Long-term analysis of antibodies elicited by SPUTNIK V: A prospective cohort study in Tucuman, Argentina. Lancet Reg. Health Am. 2022, 6, 100123. [Google Scholar] [CrossRef]
- Benjamini, O.; Rokach, L.; Itchaki, G.; Braester, A.; Shvidel, L.; Goldschmidt, N.; Shapira, S.; Dally, N.; Avigdor, A.; Rahav, G.; et al. Safety and efficacy of the BNT162b mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Haematologica 2022, 107, 625–634. [Google Scholar] [CrossRef]
- Agha, M.E.; Blake, M.; Chilleo, C.; Wells, A.; Haidar, G. Suboptimal Response to Coronavirus Disease 2019 Messenger RNA Vaccines in Patients with Hematologic Malignancies: A Need for Vigilance in the Postmasking Era. Open Forum Infect. Dis. 2021, 8, ofab353. [Google Scholar] [CrossRef]
- Herzog Tzarfati, K.; Gutwein, O.; Apel, A.; Rahimi-Levene, N.; Sadovnik, M.; Harel, L.; Benveniste-Levkovitz, P.; Bar Chaim, A.; Koren-Michowitz, M. BNT162b2 COVID-19 vaccine is significantly less effective in patients with hematologic malignancies. Am. J. Hematol. 2021, 96, 1195–1203. [Google Scholar] [CrossRef]
- Roeker, L.E.; Knorr, D.A.; Thompson, M.C.; Nivar, M.; Lebowitz, S.; Peters, N.; Deonarine, I., Jr.; Momotaj, S.; Sharan, S.; Chanlatte, V.; et al. COVID-19 vaccine efficacy in patients with chronic lymphocytic leukemia. Leukemia 2021, 35, 2703–2705. [Google Scholar] [CrossRef]
- Greenberger, L.M.; Saltzman, L.A.; Senefeld, J.W.; Johnson, P.W.; DeGennaro, L.J.; Nichols, G.L. Antibody response to SARS-CoV-2 vaccines in patients with hematologic malignancies. Cancer Cell 2021, 39, 1031–1033. [Google Scholar] [CrossRef] [PubMed]
- Parry, H.; McIlroy, G.; Bruton, R.; Ali, M.; Stephens, C.; Damery, S.; Otter, A.; McSkeane, T.; Rolfe, H.; Faustini, S.; et al. Antibody responses after first and second COVID-19 vaccination in patients with chronic lymphocytic leukaemia. Blood Cancer J. 2021, 11, 136. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mora, S.; Corona, M.; Torres, M.; Casado-Fernandez, G.; Garcia-Perez, J.; Ramos-Martin, F.; Vigon, L.; Manzanares, M.; Mateos, E.; Martin-Moro, F.; et al. Early Cellular and Humoral Responses Developed in Oncohematological Patients after Vaccination with One Dose against COVID-19. J. Clin. Med. 2022, 11, 2803. [Google Scholar] [CrossRef] [PubMed]
- Bagacean, C.; Letestu, R.; Al-Nawakil, C.; Brichler, S.; Levy, V.; Sritharan, N.; Delmer, A.; Dartigeas, C.; Leblond, V.; Roos-Weil, D.; et al. Humoral response to mRNA anti-COVID-19 vaccines BNT162b2 and mRNA-1273 in patients with chronic lymphocytic leukemia. Blood Adv. 2022, 6, 207–211. [Google Scholar] [CrossRef]
- Riches, J.C.; Davies, J.K.; McClanahan, F.; Fatah, R.; Iqbal, S.; Agrawal, S.; Ramsay, A.G.; Gribben, J.G. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 2013, 121, 1612–1621. [Google Scholar] [CrossRef]
- Ramsay, A.G.; Johnson, A.J.; Lee, A.M.; Gorgun, G.; Le Dieu, R.; Blum, W.; Byrd, J.C.; Gribben, J.G. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J. Clin. Investig. 2008, 118, 2427–2437. [Google Scholar] [CrossRef]
- Molodtsov, I.A.; Kegeles, E.; Mitin, A.N.; Mityaeva, O.; Musatova, O.E.; Panova, A.E.; Pashenkov, M.V.; Peshkova, I.O.; Alsalloum, A.; Asaad, W.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-Specific T Cells and Antibodies in Coronavirus Disease 2019 (COVID-19) Protection: A Prospective Study. Clin. Infect. Dis. 2022, 75, e1–e9. [Google Scholar] [CrossRef]
- Morawska, M. Reasons and consequences of COVID-19 vaccine failure in patients with chronic lymphocytic leukemia. Eur. J. Haematol. 2022, 108, 91–98. [Google Scholar] [CrossRef]
- Lyski, Z.L.; Kim, M.S.; Xthona Lee, D.; Raue, H.P.; Raghunathan, V.; Griffin, J.; Ryan, D.; Brunton, A.E.; Curlin, M.E.; Slifka, M.K.; et al. Cellular and humoral immune response to mRNA COVID-19 vaccination in subjects with chronic lymphocytic leukemia. Blood Adv. 2022, 6, 1207–1211. [Google Scholar] [CrossRef]
- Tillman, B.F.; Pauff, J.M.; Satyanarayana, G.; Talbott, M.; Warner, J.L. Systematic review of infectious events with the Bruton tyrosine kinase inhibitor ibrutinib in the treatment of hematologic malignancies. Eur. J. Haematol. 2018, 100, 325–334. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Dolzhikova, I.V.; Zubkova, O.V.; Tukhvatullin, A.I.; Shcheblyakov, D.V.; Dzharullaeva, A.S.; Grousova, D.M.; Erokhova, A.S.; Kovyrshina, A.V.; Botikov, A.G.; et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet 2020, 396, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, P.A.; Page, M.; Bernasconi, V.; Mattiuzzo, G.; Dull, P.; Makar, K.; Plotkin, S.; Knezevic, I. WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Lancet 2021, 397, 1347–1348. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value |
---|---|
Age, years, mean (range) | 67 (36–85) |
Number of previous treatment lines (range) | 1 (0–5) |
ECOG performance status (range) | 1 (0–3) |
Immunoglobulins, g/L (%) | |
G | 6.4 (0.5–19.8) |
M | 0.4 (0.01–8.3) |
A | 0.7 (0.02–4.4) |
Absolute lymphocyte count, 103/µL (%) | 2.1 (0.2–175.2) |
Sex, males (%) | 45 (57) |
Binet stage, N (%) | |
A | 5 (6.3) |
B | 47 (59.5) |
C | 27 (34.2) |
Deletion 17 p, N/total (%) | 24/76 (31.6) |
Unmutated IGHV status, N/total (%) | 60/70 (85.7%) |
Treatment at the time of vaccination, N (%): | |
Untreated | 4 (5) |
Previously treated, not currently receiving treatment | 19 (24.1) |
BTK-inhibitor as a monotherapy | 30 (38) |
Venetoclax as a monotherapy | 3 (3.8) |
Ibrutinib and venetoclax | 14 (17.7) |
Combination treatment with anti-CD20 antibodies * | 9 (11.4) |
Adverse Event | Number of Patients with Adverse Events, N (%) | ||
---|---|---|---|
After rAd26-S Till Day 21 | After rAd5-S Till Day 49 | Total Number rAd26-S and rAd5-S | |
Hyperthermia | 15 (19) | 19 (24) | 25 (32) |
Local pain | 19 (25) | 12 (15) | 21 (27) |
Malaise | 13 (16) | 10 (13) | 21 (27) |
Local edema | 6 (8) | 5 (6) | 8 (10) |
Muscle and joint pain | 6 (8) | 3 (4) | 7 (9) |
Headache | 5 (6) | 5 (6) | 7 (9) |
Chills | 3 (4) | 4 (5) | 7 (9) |
Local redness | 3 (4) | 3 (4) | 5 (6) |
Dizziness | 2 (3) | 2 (3) | 3 (4) |
Rhinorrhea | 2 (3) | 0 | 2 (3) |
Nausea | 1 (2) | 2 (3) | 2 (3) |
Itching | 1 (2) | 2 (3) | 2 (3) |
Diarrhea | 1 (2) | 1 (1) | 2 (3) |
Vomiting | 1 (2) | 1 (2) | 1 (2) |
Cough | 1 (2) | 0 | 1 (2) |
Lymphadenopathy | 1 (2) | 0 | 1 (2) |
Hypotension and bradycardia | 1 (2) | 0 | 1 (2) |
Hypertension | 1 (2) | 0 | 1 (2) |
Loss of taste (anosmia, ageusia) | 0 | 1 (2) | 1 (2) |
Transaminitis | 0 | 1 (2) | 1 (2) |
No symptoms | 45 (57) | 48 (61) | 36 (46) |
Clinical Parameter | Category | Immune Response Metric | Response, Median (IQR) | p-Value |
---|---|---|---|---|
Total IgG | ≥5 g/L | Virus-specific IgG titers, BAU/mL | 16.4 (1.2–1494.2) | 0.023 |
<5 g/L | 1.6 (0.4–11.0) | |||
Total IgA | ≥0.8 g/L | Virus-specific IgG titers, BAU/mL | 61.2 (1.2–3592.9) | 0.028 |
<0.8 g/L | 2.6 (0.6–22.3) | |||
Total IgM | ≥0.4 g/L | Virus-specific IgG titers, BAU/mL | 44.7 (2.5–388.9) | 0.038 |
<0.4 g/L | 2.6 (0.4–1094.3) | |||
Anti-CD20 treatment | ≥6 months or absence | Virus-specific IgG titers, BAU/mL | 1.0 (0.5–20.3) | 0.034 |
<6 months | 12.1 (1.1–1555.0) | |||
Age | ≥70 years | Virus-specific IgG titers, BAU/mL | 1.0 (0.5–20.3) | 0.025 |
<70 years | 16.3 (1.6–1510.1) | |||
≥70 years | S-protein specific T cells, SFU | 90.0 (38.3–596.7) | 0.00069 | |
<70 years | 1020.0 (223.3–4181.7) | |||
≥70 years | Virus-specific CD4+ cells, cells per 104 CD4+ T cells | 19 (9–44) | 0.047 | |
<70 years | 37 (15–70) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komissarov, A.A.; Kislova, M.; Molodtsov, I.A.; Petrenko, A.A.; Dmitrieva, E.; Okuneva, M.; Peshkova, I.O.; Shakirova, N.T.; Potashnikova, D.M.; Tvorogova, A.V.; et al. Coronavirus-Specific Antibody and T Cell Responses Developed after Sputnik V Vaccination in Patients with Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2023, 24, 416. https://doi.org/10.3390/ijms24010416
Komissarov AA, Kislova M, Molodtsov IA, Petrenko AA, Dmitrieva E, Okuneva M, Peshkova IO, Shakirova NT, Potashnikova DM, Tvorogova AV, et al. Coronavirus-Specific Antibody and T Cell Responses Developed after Sputnik V Vaccination in Patients with Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences. 2023; 24(1):416. https://doi.org/10.3390/ijms24010416
Chicago/Turabian StyleKomissarov, Alexey A., Maria Kislova, Ivan A. Molodtsov, Andrei A. Petrenko, Elena Dmitrieva, Maria Okuneva, Iuliia O. Peshkova, Naina T. Shakirova, Daria M. Potashnikova, Anna V. Tvorogova, and et al. 2023. "Coronavirus-Specific Antibody and T Cell Responses Developed after Sputnik V Vaccination in Patients with Chronic Lymphocytic Leukemia" International Journal of Molecular Sciences 24, no. 1: 416. https://doi.org/10.3390/ijms24010416
APA StyleKomissarov, A. A., Kislova, M., Molodtsov, I. A., Petrenko, A. A., Dmitrieva, E., Okuneva, M., Peshkova, I. O., Shakirova, N. T., Potashnikova, D. M., Tvorogova, A. V., Ptushkin, V. V., Efimov, G. A., Nikitin, E. A., & Vasilieva, E. (2023). Coronavirus-Specific Antibody and T Cell Responses Developed after Sputnik V Vaccination in Patients with Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 24(1), 416. https://doi.org/10.3390/ijms24010416