Potential Development of Vitrified Immature Human Oocytes: Influence of the Culture Medium and the Timing of Vitrification
Abstract
:1. Introduction
2. Results
2.1. Survival Rate (SR)
2.2. Maturation Rate (MR)
2.3. Activation Rate (AR)
2.4. Development Rate
3. Discussion
4. Materials and Methods
4.1. Experimental Desing
4.2. Oocyte Collection
4.3. In Vitro Maturation
4.4. Oocyte Vitrification and Warming
4.5. Parthenogenetic Activation and Embryonic Development
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbrevations
6-DMAP | 6-Dimethylaminopurine |
AR | Activation rate |
ART | Assisted reproductive technique |
ATP | Adenosyltriphospate |
BR | Blastocyst rate |
CM | Culture medium |
CN | Embryo cell number at day 3 |
CCO | Cumulus-corona-oocyte |
CR | Cleavage rate |
ER | Endoplasmic reticulum |
FSH | Follicle stimulating hormone |
GnRH | Gonadotropin releasing hormone |
GV | Germinal vesicle |
GVBD | Germinal vesicle breakdown |
h | Hours |
hMG | Human menopausal gonadotropin |
HTF | Human tubal fluid |
hCG | Human chorionic gonadotropin |
ICSI | Intracytoplasmic sperm microinjection |
IP3 | Inositol triphosphate |
IVF | In vitro fertilization |
IVM | In vitro maturation |
MII | Metaphase II |
MR | Maturation rate |
OV | Oocyte vitrification |
PA | Parthenogenetic activation |
PB | Polar body |
PN | Pronucleus |
SR | Survival rate |
SSS | Synthetic serum substitute |
References
- Bosch, E.; De Vos, M.; Humaidan, P. The Future of Cryopreservation in Assisted Reproductive Technologies. Font. Endocrinol. 2020, 11, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobo, A.; García-Velasco, J.A.; Coello, A.; Domingo, J.; Pellicer, A.; Remohí, J. Oocyte vitrification as an efficient option for elective fertility preservation. Fertil. Steril. 2016, 105, 755–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobo, A.; Giles, J.; Paolelli, S.; Pellicer, A.; Remohí, J.; García-Velasco, J.A. Oocyte vitrification for fertility preservation in women with endometriosis: An observational study. Fertil. Steril. 2020, 113, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Pujol, A.; Zamora, M.J.; Obradors, A.; Garcia, D.; Rodriguez, A.; Vassena, R. Comparison of two different oocyte vitrification methods: A prospective, paired study on the same genetic background and stimulation protocol. Hum. Reprod. 2019, 34, 989–997. [Google Scholar] [CrossRef]
- Cohen, Y.; St-Onge-St-Hilaire, A.; Tannus, S.; Younes, G.; Dahan, M.H.; Buckett, W.; Son, W.Y. Decreased pregnancy and live birth rates after vitrification of in vitro matured oocytes. J. Assist. Reprod. Genet. 2018, 35, 1683–1689. [Google Scholar] [CrossRef]
- Escrich, L.; Galiana, Y.; Grau, N.; Insua, F.; Soler, N.; Pellicer, A.; Escribá, M.J. Do immature and mature sibling oocytes recovered from stimulated cycles have the same reproductive potential? Reprod. Biomed. Online 2018, 37, 667–676. [Google Scholar] [CrossRef]
- Farsi, M.M.; Jorsaraei, S.G.; Esmaelzadeh, S.; Golaipour, M.J. In vitro maturation of germinal vesicle oocytes in stimulated intracytoplasmic sperm injection cycles. Cell J. 2011, 13, 73–78. [Google Scholar]
- Lee, H.J.; Barad, D.H.; Kushnir, V.A.; Shohat-Tal, A.; Lazzaroni-Tealdi, E.; Wu, Y.G.; Gleicher, N. Rescue in vitro maturation (IVM) of immature oocytes in stimulated cycles in women with low functional ovarian reserve (LFOR). Endocrine 2016, 52, 165–171. [Google Scholar] [CrossRef]
- Son, W.Y.; Chung, J.T.; Demirtas, E.; Holzer, H.; Sylvestre, C.; Buckett, W.; Chian, R.C.; Tan, S.L. Comparison of in-vitro maturation cycles with and without in-vivo matured oocytes retrieved. Reprod. Biomed. Online 2008, 17, 59–67. [Google Scholar] [CrossRef]
- Tucker, M.J.; Wright, G.; Morton, P.C.; Massey, J.B. Birth after cryopreservation of immature oocytes with subsequent in vitro maturation. Fertil. Steril. 1998, 70, 578–579. [Google Scholar] [CrossRef]
- Chen, H.; Lv, J.Q.; Ge, H.S.; Wu, X.M.; Xi, H.T.; Chi, H.H.; Zhu, C.F.; Huang, J.H. Live Birth Following Vitrification of in Vitro Matured Oocytes Derived From Sibling Smaller Follicles at Follicle Selection Phase in the Context of in Vitro Fertilization. Gynecol. Endocrinol. 2014, 30, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Chian, R.C.; Gilbert, L.; Huang, J.Y.; Demirtas, E.; Holzer, H.; Benjamin, A.; Buckett, W.M.; Tulandi, T.; Tan, S.L. Live Birth After Vitrification of in Vitro Matured Human Oocytes. Fertil. Steril. 2009, 91, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Cobo, A.; Garrido, N.; Crespo, J.; José, R.; Pellicer, A. Accumulation of oocytes: A new strategy for managing low-responder patients. Reprod. Biomed. Online 2012, 24, 424–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasano, G.; Demeestere, I.; Englert, Y. In-vitro maturation of human oocytes: Before or after vitrification? J. Assist. Reprod. Genet. 2012, 29, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Khalili, M.A.; Shahedi, A.; Ashourzadeh, S.; Nottola, S.A.; Macchiarelli, G.; Palmerini, M.G. Vitrification of human immature oocytes before and after in vitro maturation: A review. J. Assist. Reprod. Genet. 2017, 34, 1413–1426. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.A.; Sekhon, L.; Grunfeld, L.; Copperman, A.B. In-vitro maturation of germinal vesicle and metaphase I eggs prior to cryopreservation optimizes reproductive potential in patients undergoing fertility preservation. Curr. Opin. Obstet. Gynecol. 2014, 26, 168–173. [Google Scholar] [CrossRef]
- Hatirnaz, S.; Ata, B.; Saynur-Hatirnaz, E.; Dahan, M.H.; Tannus, S.; Tan, J.; Tan, S.L. Oocyte in vitro maturation: A sytematic review. J. Turkish. Soc. Obstetr. Gynecol. 2018, 15, 112–125. [Google Scholar] [CrossRef]
- Mandelbaum, J.; Anastasiou, O.; Lévy, R.; Guérin, J.F.; de Larouzière, V.; Antoine, J.M. Effects of cryopreservation on the meiotic spindle of human oocytes. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004, 113, S17–S23. [Google Scholar] [CrossRef]
- Van Blerkom, J. Maturation at high frequency of germinal-vesicle-stage mouse oocytes after cryopreservation: Alterations in cytoplasmic, nuclear, nucleolar and chromosomal structure and organization associated with vitrification. Hum. Reprod. 1989, 4, 883–898. [Google Scholar] [CrossRef]
- de Araujo, C.H.; Nogueira, D.; de Araujo, M.C.; Martins, W.P.; Ferriani, R.A.; dos Reis, R.M. Supplemented tissue culture medium 199 is a better medium for in vitro maturation of oocytes from women with polycystic ovary syndrome women than human tubal fluid. Fertil. Steril. 2009, 91, 509–513. [Google Scholar] [CrossRef]
- Filali, M.; Hesters, L.; Fanchin, R.; Tachdjian, G.; Frydman, R.; Frydman, N. Retrospective comparison of two media for invitro maturation of oocytes. Reprod. Biomed. Online 2008, 16, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Hong, S.J.; Lee, J.H.; Min, C.K.; Hwang, K.J.; Park, R.W. Comparison of in vitro maturation media of immature oocytes: The effectiveness of blastocyst culture media. Fertil. Steril. 2011, 95, 554–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escrich, L.; Grau, N.; de los Santos, M.J.; Romero, J.L.; Pellicer, A.; Escribá, M.J. The Dynamics of in Vitro Maturation of Germinal Vesicle Oocytes. Fertil. Steril. 2012, 98, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Pongsuthirak, P.; Songveeratham, S.; Vutyavanich, T. Comparison of blastocyst and Sage media for in vitro maturation of human immature oocytes. Reprod. Sci. 2015, 22, 343–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coticchio, G.; Dal Canto, M.; Fadini, R.; Mignini, R.M.; Guglielmo, M.C.; Miglietta, S.; Palmerini, M.G.; Macchiarelli, G.; Nottola, S.A. Ultrastructure of human oocytes after in vitro maturation. Mol. Hum. Reprod. 2016, 22, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segovia, Y.; Victory, N.; Peinado, I.; García-Valverde, L.; García, M.; Aizpurua, J.; Monzó, A.; Gómez-Torres, M.J. Ultrastructural characteristics of human oocytes vitrified before and after in vitro maturation. J. Reprod. Dev. 2017, 63, 377–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ci, Q.; Li, M.; Zhang, Y.; Ma, S.; Gao, Q.; Shi, Y. Confocal microscopic analysis of the microfilament configurations from human vitrification-thawed oocytes matured in vitro. CryoLetters 2014, 35, 544–548. [Google Scholar]
- Zhu, L.; Han, C.S.; Cao, Z.L.; Wang, Z.B.; Han, R.G.; Wang, B.; Sun, Q.Y. Confocal Microscopic Analysis of the Spindle and Chromosome Configurations of in vitro-Matured Oocytes from Different Types of Polycystic Ovary Syndrome Patients. Gynecol. Obstet. Investig. 2015, 80, 179–186. [Google Scholar] [CrossRef]
- Peinado, I.; Moya, I.; Sáez-Espinosa, P.; Barrera, M.; García-Valverde, L.; Francés, R.; Torres, P.; Gómez-Torres, M.J. Impact of Maturation and Vitrification Time of Human GV Oocytes on the Metaphase Plate Configuration. Int. J. Mol. Sci. 2021, 22, 1125. [Google Scholar] [CrossRef]
- Choy, J.S.; Acuña, R.; Au, W.C.; Basrai, M.A. A Role for Histone H4K16 Hypoacetylation in Saccharomyces cerevisiae Kinetochore Function. Genetics 2011, 189, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Li, T.; Ding, C.H.; Brosens, J.; Zhou, C.Q.; Wang, H.H.; Xu, Y.W. Insufficient histone-3 lysine-9 deacetylation in human oocytes matured in vitro is associated with aberrant meiosis. Fertil. Steril. 2012, 97, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ding, C.H.; Li, Z.Y.; Zhang, X.B.; You, Z.S.; Zhou, C.Q.; Xu, Y.W. Epigenetic changes of histone deacetylation in murine oocytes matured in vitro versus in vivo. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2039–2044. [Google Scholar] [PubMed]
- Yang, F.; Baumann, C.; Viveiros, M.M.; De La Fuente, R. Histone hyperacetylation during meiosis interferes with large-scale chromatin remodeling, axial chromatid condensation and sister chromatid separation in the mammalian oocyte. Int. J. Dev. Biol. 2012, 56, 889–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Racowsky, C.; Combelles, C.M. Is it best to cryopreserve human cumulus-free immature oocytes before or after in vitro maturation? Cryobiology 2012, 65, 79–87. [Google Scholar] [CrossRef]
- Brambillasca, F.; Guglielmo, M.C.; Coticchio, G.; Mignini, R.M.; Dal, C.M.; Fadini, R. The current challenges to efficient immature oocyte cryopreservation. J. Assist. Reprod. Genet. 2013, 30, 1531–1539. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.X.; Chian, R.C. Fertility preservation with immature and in vitro matured oocytes. Semin. Reprod. Med. 2009, 27, 456–464. [Google Scholar] [CrossRef]
- Van den, A.E.; Schneider, U.; Liu, J.; Agca, Y.; Critser, J.K.; Van, S.A. Osmotic responses and tolerance limits to changes in external osmolalities, and oolemma permeability characteristics, of human in vitro matured MII oocytes. Hum. Reprod. 2007, 22, 1959–1972. [Google Scholar] [CrossRef] [Green Version]
- Toth, T.L.; Baka, S.G.; Veeck, L.L.; Jones, H.W., Jr.; Muasher, S.; Lanzendorf, S.E. Fertilization and in vitro development of cryopreserved human prophase I oocytes. Fertil. Steril. 1994, 61, 891–894. [Google Scholar] [CrossRef]
- Boiso, I.; Marti, M.; Santalo, J.; Ponsa, M.; Barri, P.N.; Veiga, A. A confocal microscopy analysis of the spindle and chromosome configurations of human oocytes cryopreserved at the germinal vesicle and metaphase II stage. Hum. Reprod. 2002, 17, 1885–1891. [Google Scholar] [CrossRef] [Green Version]
- Ezoe, K.; Yabuuchi, A.; Tani, T.; Mori, C.; Miki, T.; Takayama, Y.; Beyhan, Z.; Kato, Y.; Okuno, T.; Kobayashi, T.; et al. Developmental Competence of Vitrified-Warmed Bovine Oocytes at the Germinal-Vesicle Stage is Improved by Cyclic Adenosine Monophosphate Modulators during In Vitro Maturation. PLoS ONE 2015, 10, e0126801. [Google Scholar] [CrossRef] [Green Version]
- Lowther, K.M.; Weitzman, V.N.; Maier, D.; Mehlmann, L.M. Maturation, fertilization, and the structure and function of the endoplasmic reticulum in cryopreserved mouse oocytes. Biol. Reprod. 2009, 81, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Bogliolo, L.; Ariu, F.; Fois, S.; Rosati, I.; Zedda, M.T.; Leoni, G.; Succu, S.; Ledda, S. Morphological and biochemical analysis of immature ovine oocytes vitrified with or without cumulus cells. Theriogenology 2007, 68, 1138–1149. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Igarashi, H.; Doshida, M.; Takahashi, K.; Nakahara, K.; Tezuka, N.; Kurachi, H. Lowering intracellular and extracellular calcium contents prevents cytotoxic effects of ethylene glycolbased vitrification solution in unfertilized mouse oocytes. Mol. Reprod. Dev. 2004, 68, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Larman, M.G.; Sheehan, C.B.; Gardner, D.K. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 2006, 131, 53–61. [Google Scholar] [CrossRef]
- Kohaya, N.; Fujiwara, K.; Ito, J.; Kashiwazaki, N. High developmental rates of mouse oocytes cryopreserved by an optimized vitrification protocol: The effects of cryoprotectants, calcium and cumulus cells. J. Reprod. Dev. 2011, 57, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Marques, C.C.; Santos-Silva, C.; Rodrigues, C.; Matos, J.E.; Moura, T.; Baptista, M.C.; Horta, A.E.M.; Bessa, R.J.B.; Alves, S.P.; Soveral, G.; et al. Bovine oocyte membrane permeability and cryosurvival: Effects of different cryoprotectans and calcium in the vitrification media. Cryobiology 2018, 81, 4–11. [Google Scholar] [CrossRef]
- Succu, S.; Berlinguer, F.; Leoni, G.G.; Bebbere, D.; Satta, V.; Marco-Jimenez, F.; Pasciu, V.; Naitana, S. Calcium concentration in vitrification medium affects the developmental competence of in vitro matured ovine oocytes. Theriogenology 2011, 75, 715–721. [Google Scholar] [CrossRef]
- Isachenko, V.; Montag, M.; Isachenko, E.; Dessole, S.; Nawroth, F.; Van der Ven, H. Aseptic vitrification of human germinal vesicle oocytes using dimethyl sulfoxide as a cryoprotectant. Fertil. Steril. 2006, 85, 741–747. [Google Scholar] [CrossRef]
- Cha, K.Y.; Chian, R.C. Maturation in vitro of immature human oocytes for clinical use. Hum Reprod. Update. 1998, 4, 103–120. [Google Scholar] [CrossRef]
- Gomez, E.; Tarin, J.J.; Pellicer, A. Oocyte maturation in humans: The role of gonadotropins and growth factors. Fertil. Steril. 1993, 60, 40–46. [Google Scholar] [CrossRef]
- Goud, P.T.; Goud, A.P.; Qian, C.; Laverge, H.; Van der, E.J.; De, S.P.; Dhont, M. In-vitro maturation of human germinal vesicle stage oocytes: Role of cumulus cells and epidermal growth factor in the culture medium. Hum. Reprod. 1998, 13, 1638–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moschini, R.M.; Chuang, L.; Poleshchuk, F.; Slifkin, R.E.; Copperman, A.B.; Barritt, J. Commercially available enhanced in vitro maturation medium does not improve maturation of germinal vesicle and metaphase I oocytes in standard in vitro fertilization cases. Fertil. Steril. 2011, 95, 2645–2647. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.; Franks, S.; Hardy, K. Culture environment modulates maturation and metabolism of human oocytes. Hum. Reprod. 2002, 17, 2950–2956. [Google Scholar] [CrossRef]
- Imesch, P.; Scheiner, D.; Xie, M.; Fink, D.; Macas, E.; Dubey, R.; Imthurn, B. Developmental potential of human oocytes matured in vitro followed by vitrification and activation. J. Ovarian. Res. 2013, 6, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Yang, Y.; Liying, Y.; Zichuan, L.; Ping, L.; Huailiang, F.; Qi, Z.; Jie, Q. In vitro maturation of cumulus- partially enclosed immature human oocytes by priming with gonadotropin. Fertil. Steril. 2011, 96, 629–634. [Google Scholar] [CrossRef]
- Mann, J.S.; Lowther, K.M.; Mehlmann, L.M. Reorganization of the Endoplasmic Reticulum and Develeoment of Ca2+ Release Mechanisms During Meiotic Maturation of Human Oocytes. Biol. Reprod. 2010, 83, 578–583. [Google Scholar] [CrossRef] [Green Version]
- Paffoni, A.; Brevini, T.A.; Somigliana, E.; Restelli, L.; Gandolfi, F.; Ragni, G. In vitro development of human oocytes after parthenogenetic activation or intracytoplasmic sperm injection. Fertil. Steril. 2007, 87, 77–82. [Google Scholar] [CrossRef]
- Combelles, C.M.; Fissore, R.A.; Albertini, D.F.; Racowsky, C. In vitro maturation of human oocytes and cumulus cells using a co-culture three-dimensional collagen gel system. Hum. Reprod. 2005, 20, 1349–1358. [Google Scholar] [CrossRef] [Green Version]
- Magli, M.C.; Ferraretti, A.P.; Crippa, A.; Lappi, M.; Feliciani, E.; Gianaroli, L. First meiosis errors in immature oocytes generated by stimulated cycles. Fertil. Steril. 2006, 86, 629–635. [Google Scholar] [CrossRef]
- Sun, Y.; Gu, R.; Lu, X.; Zhao, S.; Feng, Y. Vitrification of in vitro matured oocytes diminishes embryo development potential before but not after embryo genomic activation. J. Assist. Reprod. Genet. 2016, 33, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Schramm, R.D.; Paprocki, A.M.; VandeVoort, C.A. Causes of developmental failure of in-vitro matured rhesus monkey oocytes: Impairments in embryonic genome activation. Hum. Reprod. 2003, 18, 826–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghetler, Y.; Yavin, S.; Shalgi, R.; Arav, A. The effect of chilling on membrane lipid phase transition in human oocytes and zygotes. Hum. Reprod. 2005, 20, 3385–3389. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.T.; Liang, L.; Witz, C.; Williams, D.; Griffith, J.; Skorupski, J.; Haddad, G.; Gill, J.; Wang, W. Optimized protocol for cryopreservation of human eggs improves developmental competence and implantation of resulting embryos. J. Ovarian Res. 2013, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwayama, M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: The Cryotop method. Theriogenology 2007, 67, 73–80. [Google Scholar] [CrossRef] [PubMed]
GV Stage | MR | ||
---|---|---|---|
GVBD | 24 h | 48 h | |
Vitrified | 83.7% (349/417) | 59.2% (247/417) | 74.3% (310/417) |
Fresh | 73.0% (374/512) | 49.6% (234/512) | 62.7% (321/512) |
p-value | <0.0001 | <0.0001 | <0.0001 |
IVM Medium | GV Stage | MR | ||
---|---|---|---|---|
GVBD | 24 h | 48 h | ||
CM1 | Vitrified | 73.2% (109/149) | 42.3% (63/149) | 59.7% (89/149) |
Fresh | 70.2% (207/295) | 39.7% (117/295) | 53.9% (159/295) | |
p-value | 0.579 | 0.610 | 0.266 | |
CM2 | Vitrified | 89.6% (240/268) | 68.7% (184/268) | 82.5% (221/268) |
Fresh | 78.2% (229/293) | 64.2% (188/293) | 74.1% (217/293) | |
p-value | <0.0001 | 0.239 | 0.016 |
CM1 | |||
---|---|---|---|
Vitrification Stage | RATES | ||
AR | CR | BR | |
GV | 58.5% (38/65) | 60.5% (23/38) | 7.9% (3/38) |
MII | 49.3% (36/73) | 88.9% (32/36) | 2.8% (1/36) |
p-value | 0.309 | 0.007 | 0.615 |
CM2 | |||
---|---|---|---|
Study Group | RATES | ||
AR | CR | BR | |
GV-Vit | 42.6% (75/176) | 78.7% (59/75) | 6.7% (5/75) |
MII-Vit | 56.7% (59/104) | 72.9% (43/59) | 5.1% (3/59) |
Not-Vit | 36% (9/25) | 77.8% (7/9) | 11.1% (1/9) |
p-value | SDab | NoSD | NoSD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peinado, I.; Moya, I.; García-Valverde, L.; Francés, R.; Ribes, R.; Polo, P.; Gómez-Torres, M.J.; Monzó, A. Potential Development of Vitrified Immature Human Oocytes: Influence of the Culture Medium and the Timing of Vitrification. Int. J. Mol. Sci. 2023, 24, 417. https://doi.org/10.3390/ijms24010417
Peinado I, Moya I, García-Valverde L, Francés R, Ribes R, Polo P, Gómez-Torres MJ, Monzó A. Potential Development of Vitrified Immature Human Oocytes: Influence of the Culture Medium and the Timing of Vitrification. International Journal of Molecular Sciences. 2023; 24(1):417. https://doi.org/10.3390/ijms24010417
Chicago/Turabian StylePeinado, Irene, Isabel Moya, Laura García-Valverde, Raquel Francés, Rosana Ribes, Patrocinio Polo, María José Gómez-Torres, and Ana Monzó. 2023. "Potential Development of Vitrified Immature Human Oocytes: Influence of the Culture Medium and the Timing of Vitrification" International Journal of Molecular Sciences 24, no. 1: 417. https://doi.org/10.3390/ijms24010417
APA StylePeinado, I., Moya, I., García-Valverde, L., Francés, R., Ribes, R., Polo, P., Gómez-Torres, M. J., & Monzó, A. (2023). Potential Development of Vitrified Immature Human Oocytes: Influence of the Culture Medium and the Timing of Vitrification. International Journal of Molecular Sciences, 24(1), 417. https://doi.org/10.3390/ijms24010417