The Novel Cardiac Myosin Activator Danicamtiv Improves Cardiac Systolic Function at the Expense of Diastolic Dysfunction In Vitro and In Vivo: Implications for Clinical Applications
Abstract
:1. Introduction
2. Results
2.1. Danicamtiv Altered LV Dimensions and Cardiomyocyte Mechanics
2.2. Danicamtiv Improved Left Ventricular Contractile Function In Vivo
2.3. Danicamtiv Increased Contraction Durations in Rats and Canine Cardiomyocytes
2.4. Danicamtiv Decreased Myocardial Contraction Kinetics Both In Vivo and In Vitro
2.5. Danicamtiv Impaired Diastolic Function
2.6. Danicamtiv Did Not Affect the Time Courses of Ca2+ Transients and Had No Proarrhytmic Effects
3. Discussion
4. Materials and Methods
4.1. Animals
4.1.1. In Vitro Experiments
4.1.2. In Vivo Experiments
4.2. Drugs and Chemicals
4.3. Isolation of Canine Left Ventricular Cardiomyocytes
4.4. Recording of Intracellular Ca2+ Transients and Cardiomyocyte Shortening
4.5. Determination of Effects on Diastolic SL, Contractile Parameters, and Ca2+ Transients
4.6. Echocardiography
4.7. Strain Echocardiography
4.8. Electrocardiogram
4.9. Data Analysis and Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, K.S.; Xu, H.; Matsouaka, R.A.; Bhatt, D.L.; Heidenreich, P.A.; Hernandez, A.F.; Devore, A.D.; Yancy, C.W.; Fonarow, G.C. Heart Failure with Preserved, Borderline, and Reduced Ejection Fraction: 5-Year Outcomes. J. Am. Coll. Cardiol. 2017, 70, 2476–2486. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Gandhi, D.; Srivastava, S.; Shah, K.J.; Mansukhani, R. Heart Failure: A Class Review of Pharmacotherapy. P T A Peer-Rev. J. Formul. Manag. 2017, 42, 464–472. [Google Scholar]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Bernier, T.D.; Buckley, L.F. Cardiac Myosin Activation for the Treatment of Systolic Heart Failure. J. Cardiovasc. Pharmacol. 2021, 77, 4–10. [Google Scholar] [CrossRef]
- Alsulami, K.; Marston, S. Small Molecules Acting on Myofilaments as Treatments for Heart and Skeletal Muscle Diseases. Int. J. Mol. Sci. 2020, 21, 9599. [Google Scholar] [CrossRef]
- Shen, Y.-T.; Malik, F.I.; Zhao, X.; Depre, C.; Dhar, S.K.; Abarzúa, P.; Morgans, D.J.; Vatner, S.F. Improvement of Cardiac Function by a Cardiac Myosin Activator in Conscious Dogs with Systolic Heart Failure. Circ. Heart Fail. 2010, 3, 522–527. [Google Scholar] [CrossRef] [Green Version]
- Teerlink, J.R.; Clarke, C.P.; Saikali, K.G.; Lee, J.H.; Chen, M.M.; Escandon, R.D.; Elliott, L.; Bee, R.; Habibzadeh, M.R.; Goldman, J.H.; et al. Dose-Dependent Augmentation of Cardiac Systolic Function with the Selective Cardiac Myosin Activator, Omecamtiv Mecarbil: A First-in-Man Study. Lancet 2011, 378, 667–675. [Google Scholar] [CrossRef]
- Teerlink, J.R.; Diaz, R.; Felker, G.M.; McMurray, J.J.V.; Metra, M.; Solomon, S.D.; Adams, K.F.; Anand, I.; Arias-Mendoza, A.; Biering-Sørensen, T.; et al. Cardiac Myosin Activation with Omecamtiv Mecarbil in Systolic Heart Failure. N. Engl. J. Med. 2021, 384, 105–116. [Google Scholar] [CrossRef]
- Cleland, J.G.F.; Teerlink, J.R.; Senior, R.; Nifontov, E.M.; Mc Murray, J.J.V.; Lang, C.C.; Tsyrlin, V.A.; Greenberg, B.H.; Mayet, J.; Francis, D.P.; et al. The Effects of the Cardiac Myosin Activator, Omecamtiv Mecarbil, on Cardiac Function in Systolic Heart Failure: A Double-Blind, Placebo-Controlled, Crossover, Dose-Ranging Phase 2 Trial. Lancet 2011, 378, 676–683. [Google Scholar] [CrossRef]
- Nagy, L.; Kovács, Á.; Bódi, B.; Pásztor, E.T.; Fülöp, G.Á.; Tóth, A.; Édes, I.; Papp, Z. The Novel Cardiac Myosin Activator Omecamtiv Mecarbil Increases the Calcium Sensitivity of Force Production in Isolated Cardiomyocytes and Skeletal Muscle Fibres of the Rat. Br. J. Pharmacol. 2015, 172, 4506–4518. [Google Scholar] [CrossRef] [Green Version]
- Fülöp, G.Á.; Oláh, A.; Csipo, T.; Kovács, Á.; Pórszász, R.; Veress, R.; Horváth, B.; Nagy, L.; Bódi, B.; Fagyas, M.; et al. Omecamtiv Mecarbil Evokes Diastolic Dysfunction and Leads to Periodic Electromechanical Alternans. Basic Res. Cardiol. 2021, 116, 24. [Google Scholar] [CrossRef] [PubMed]
- Day, S.M.; Tardiff, J.C.; Ostap, E.M. Myosin Modulators: Emerging Approaches for the Treatment of Cardiomyopathies and Heart Failure. J. Clin. Investig. 2022, 132, e148557. [Google Scholar] [CrossRef] [PubMed]
- Voors, A.A.; Tamby, J.-F.; Cleland, J.G.; Koren, M.; Forgosh, L.B.; Gupta, D.; Lund, L.H.; Camacho, A.; Karra, R.; Swart, H.P.; et al. Effects of Danicamtiv, a Novel Cardiac Myosin Activator, in Heart Failure with Reduced Ejection Fraction: Experimental Data and Clinical Results from a Phase 2a Trial. Eur. J. Heart Fail. 2020, 22, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Abstracts of the Heart Failure 2019 and the World Congress on Acute Heart Failure, 25–28 May 2019, Megaron Athens In-ternational Conference Centre, Greece. Eur. J. Heart Fail. 2019, 21, 5–592. [CrossRef] [Green Version]
- Tamby, J.F.; Fang, L.; Lickliter, J.; Hegde, S.; Surks, H.; Reele, S.; Teichman, S.; Yang, C.; Fernandes, S.L. MYK-491, a Novel Cardiac Myosin Activator, Increases Cardiac Contractility in Healthy Volunteers. In Proceedings of the Heart Faiulre 2019–6th World Congress on Acute Heart Failure, Athens, Greece, 25–28 May 2019. Abstract 60668. [Google Scholar]
- Grillo, M.P.; Markova, S.; Evanchik, M.; Trellu, M.; Moliner, P.; Brun, P.; Perreard-Dumaine, A.; Vicat, P.; Driscoll, J.P.; Carlson, T.J. Preclinical In Vitro and In Vivo Pharmacokinetic Properties of Danicamtiv, a New Targeted Myosin Activator for the Treatment of Dilated Cardiomyopathy. Xenobiotica 2021, 51, 222–238. [Google Scholar] [CrossRef]
- Shen, S.; Sewanan, L.R.; Jacoby, D.L.; Campbell, S.G. Danicamtiv Enhances Systolic Function and Frank-Starling Behavior at Minimal Diastolic Cost in Engineered Human Myocardium. J. Am. Heart Assoc. 2021, 10, e020860. [Google Scholar] [CrossRef]
- Fernandes, S.; Oikonomopoulos, A.; Jimenez-MacInnes, S.K.; Aschar-Sobbi, R.; Henze, M.; Sumandea, M.; Gan, Q.F.; Anderson, R.L.; del Rio, C.L. MYK-491, a Novel Small-Molecule Cardiac Myosin Activator Increases Cardiac Systolic Function and Preserves Mechanical Efficiency: Pre-Clinical In Vivo and In Vitro Evidence. Circulation 2019, 140, A15707. [Google Scholar]
- Lehman, S.J.; Crocini, C.; Leinwand, L.A. Targeting the Sarcomere in Inherited Cardiomyopathies. Nat. Rev. Cardiol. 2022, 19, 353–363. [Google Scholar] [CrossRef]
- Olivotto, I.; Oreziak, A.; Barriales-Villa, R.; Abraham, T.P.; Masri, A.; Garcia-Pavia, P.; Saberi, S.; Lakdawala, N.K.; Wheeler, M.T.; Owens, A.; et al. Mavacamten for Treatment of Symptomatic Obstructive Hypertrophic Cardiomyopathy (EXPLORER-HCM): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2020, 396, 759–769. [Google Scholar] [CrossRef]
- Teerlink, J.R.; Diaz, R.; Felker, G.M.; McMurray, J.J.V.; Metra, M.; Solomon, S.D.; Legg, J.C.; Büchele, G.; Varin, C.; Kurtz, C.E.; et al. Omecamtiv Mecarbil in Chronic Heart Failure with Reduced Ejection Fraction: Rationale and Design of GALACTIC-HF. JACC Heart Fail. 2020, 8, 329–340. [Google Scholar] [CrossRef]
- Malik, F.I.; Hartman, J.J.; Elias, K.A.; Morgan, B.P.; Rodriguez, H.; Brejc, K.; Anderson, R.L.; Sueoka, S.H.; Lee, K.H.; Finer, J.T.; et al. Cardiac Myosin Activation: A Potential Therapeutic Approach for Systolic Heart Failure. Science 2011, 331, 1439–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nánási, P.P.; Horváth, B.; Tar, F.; Almássy, J.; Szentandrássy, N.; Jost, N.; Baczkó, I.; Bányász, T.; Varró, A. Canine Myocytes Represent a Good Model for Human Ventricular Cells Regarding Their Electrophysiological Properties. Pharmaceuticals 2021, 14, 748. [Google Scholar] [CrossRef]
- Zacchigna, S.; Paldino, A.; Falcão-Pires, I.; Daskalopoulos, E.P.; Dal Ferro, M.; Vodret, S.; Lesizza, P.; Cannatà, A.; Miranda-Silva, D.; Lourenço, A.P.; et al. Towards Standardization of Echocardiography for the Evaluation of Left Ventricular Function in Adult Rodents: A Position Paper of the ESC Working Group on Myocardial Function. Cardiovasc. Res. 2021, 117, 43–59. [Google Scholar] [CrossRef]
- Francis, G.S.; Tang, W.H.W. Pathophysiology of Congestive Heart Failure. Rev. Cardiovasc. Med. 2003, 4, S14–S20. [Google Scholar]
- Packer, M.; Carver, J.R.; Rodeheffer, R.J.; Ivanhoe, R.J.; DiBianco, R.; Zeldis, S.M.; Hendrix, G.H.; Bommer, W.J.; Elkayam, U.; Kukin, M.L. Effect of Oral Milrinone on Mortality in Severe Chronic Heart Failure. The PROMISE Study Research Group. N. Engl. J. Med. 1991, 325, 1468–1475. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.M.; Gattis, W.A.; Uretsky, B.F.; Adams, K.F.J.; McNulty, S.E.; Grossman, S.H.; McKenna, W.J.; Zannad, F.; Swedberg, K.; Gheorghiade, M.; et al. Continuous Intravenous Dobutamine Is Associated with an Increased Risk of Death in Patients with Advanced Heart Failure: Insights from the Flolan International Randomized Survival Trial (FIRST). Am. Heart J. 1999, 138, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Miller, P.E.; McCullough, M.; Desai, N.R.; Riello, R.; Psotka, M.; Böhm, M.; Allen, L.A.; Teerlink, J.R.; Rosano, G.M.C.; et al. Why Has Positive Inotropy Failed in Chronic Heart Failure? Lessons from Prior Inotrope Trials. Eur. J. Heart Fail. 2019, 21, 1064–1078. [Google Scholar] [CrossRef]
- Horváth, B.; Szentandrássy, N.; Veress, R.; Almássy, J.; Magyar, J.; Bányász, T.; Tóth, A.; Papp, Z.; Nánási, P.P. Frequency-Dependent Effects of Omecamtiv Mecarbil on Cell Shortening of Isolated Canine Ventricular Cardiomyocytes. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2017, 390, 1239–1246. [Google Scholar] [CrossRef]
- Borbély, A.; van der Velden, J.; Papp, Z.; Bronzwaer, J.G.F.; Edes, I.; Stienen, G.J.M.; Paulus, W.J. Cardiomyocyte Stiffness in Diastolic Heart Failure. Circulation 2005, 111, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Perk, G.; Tunick, P.A.; Kronzon, I. Non-Doppler Two-Dimensional Strain Imaging by Echocardiography–From Technical Considerations to Clinical Applications. J. Am. Soc. Echocardiogr. 2007, 20, 234–243. [Google Scholar] [CrossRef]
- Stokke, T.M.; Hasselberg, N.E.; Smedsrud, M.K.; Sarvari, S.I.; Haugaa, K.H.; Smiseth, O.A.; Edvardsen, T.; Remme, E.W. Geometry as a Confounder When Assessing Ventricular Systolic Function: Comparison Between Ejection Fraction and Strain. J. Am. Coll. Cardiol. 2017, 70, 942–954. [Google Scholar] [CrossRef] [PubMed]
- Horváth, B.; Váczi, K.; Hegyi, B.; Gönczi, M.; Dienes, B.; Kistamás, K.; Bányász, T.; Magyar, J.; Baczkó, I.; Varró, A.; et al. Sarcolemmal Ca(2+)-Entry through L-Type Ca(2+) Channels Controls the Profile of Ca(2+)-Activated Cl(−) Current in Canine Ventricular Myocytes. J. Mol. Cell. Cardiol. 2016, 97, 125–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegyi, B.; Horváth, B.; Váczi, K.; Gönczi, M.; Kistamás, K.; Ruzsnavszky, F.; Veress, R.; Izu, L.T.; Chen-Izu, Y.; Bányász, T.; et al. Ca (2+)-Activated Cl (−) Current Is Antiarrhythmic by Reducing Both Spatial and Temporal Heterogeneity of Cardiac Repolarization. J. Mol. Cell. Cardiol. 2017, 109, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Andrei, S.R.; Ghosh, M.; Sinharoy, P.; Dey, S.; Bratz, I.N.; Damron, D.S. TRPA1 Ion Channel Stimulation Enhances Cardiomyocyte Contractile Function via a CaMKII-Dependent Pathway. Channels 2017, 11, 587–603. [Google Scholar] [CrossRef]
- Moran, C.; Thomson, A. Preclinical Ultrasound Imaging—A Review of Techniques and Imaging Applications. Front. Phys. 2020, 8, 124. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, T.; Liu, F.; Cohen, E.D.; Patel, V.V. An Evaluation of Transmitral and Pulmonary Venous Doppler Indices for Assessing Murine Left Ventricular Diastolic Function. J. Am. Soc. Echocardiogr. 2010, 23, 887–897. [Google Scholar] [CrossRef] [Green Version]
- Smiseth, O.A.; Torp, H.; Opdahl, A.; Haugaa, K.H.; Urheim, S. Myocardial Strain Imaging: How Useful Is It in Clinical Decision Making? Eur. Heart J. 2016, 37, 1196–1207. [Google Scholar] [CrossRef] [Green Version]
- Beyhoff, N.; Brix, S.; Betz, I.R.; Klopfleisch, R.; Foryst-Ludwig, A.; Krannich, A.; Stawowy, P.; Knebel, F.; Grune, J.; Kintscher, U. Application of Speckle-Tracking Echocardiography in an Experimental Model of Isolated Subendocardial Damage. J. Am. Soc. Echocardiogr. 2017, 30, 1239–1250.e2. [Google Scholar] [CrossRef]
- Hein, S.J.; Lehmann, L.H.; Kossack, M.; Juergensen, L.; Fuchs, D.; Katus, H.A.; Hassel, D. Advanced Echocardiography in Adult Zebrafish Reveals Delayed Recovery of Heart Function after Myocardial Cryoinjury. PloS ONE 2015, 10, e0122665. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Cheng, S.; Jain, M.; Ngoy, S.; Theodoropoulos, C.; Trujillo, A.; Lin, F.-C.; Liao, R. Echocardiographic Speckle-Tracking Based Strain Imaging for Rapid Cardiovascular Phenotyping in Mice. Circ. Res. 2011, 108, 908–916. [Google Scholar] [CrossRef]
Parameters | Baseline (n = 14) | Danicamtiv (n = 14) | p Value (Baseline vs. Danicamtiv) |
---|---|---|---|
Echocardiography | |||
LV volume—systole (μL) | 61.53 ± 4.23 | 35.7 ± 4.77 | <0.001 |
LV volume—diastole (μL) | 305.4 ± 11.2 | 326.1 ± 23.9 | 0.327 |
LV anterior wall thickness—systole (mm) | 3.17 ± 0.09 | 3.49 ± 0.14 | 0.034 |
LV anterior wall thickness—diastole (mm) | 1.76 ± 0.22 | 1.65 ± 0.26 | 0.171 |
LV posterior wall thickness—systole (mm) | 3.24 ± 0.12 | 3.69 ± 0.09 | 0.003 |
LV posterior wall thickness—diastole (mm) | 1.93 ± 0.08 | 1.92 ± 0.08 | 0.867 |
Aorta peak systolic velocity (mm/s) | 899.3 ± 35.7 | 936.7 ± 41.2 | 0.276 |
Aorta mean systolic velocity (mm/s) | 547.8 ± 29.8 | 511.1 ± 35.4 | 0.213 |
Aorta peak pressure gradient (mmHg) | 3.30 ± 0.26 | 3.59 ± 0.31 | 0.248 |
Aorta mean pressure gradient (mmHg) | 1.30 ± 0.15 | 1.11 ± 0.17 | 0.178 |
Pulmonic vein atrial reverse flow (mm/s) | 136.7 ± 11.4 | 201.1 ± 24.9 | 0.008 |
Pulmonic vein atrial reverse flow duration (ms) | 20.27 ± 0.77 | 28.10 ± 2.24 | 0.004 |
Mitral E wave deceleration time (ms) | 57.57 ± 2.53 | 51.09 ± 2.63 | 0.134 |
Mitral valve septal e’ (mm/s) | 40.47 ± 2.44 | 36.36 ± 2.36 | 0.051 |
Mitral valve septal a’ (mm/s) | 35.21 ± 1.74 | 42.24 ± 2.27 | 0.070 |
Mitral valve septal e’/a’ | 1.21 ± 0.11 | 0.874 ± 0.10 | 0.014 |
Tei index | 0.60 ± 0.04 | 0.50 ± 0.03 | <0.001 |
E/e’ ratio | 18.79 ± 1.31 | 19.53 ± 1.69 | 0.549 |
Isovolumic contraction time (ms) | 14.50 ± 0.53 | 14.50 ± 0.91 | 0.999 |
Isovolumic relaxation time (ms) | 27.79 ± 1.77 | 28.71 ± 2.22 | 0.450 |
Electrocardiography | |||
Heart rate (bpm) | 251 ± 15 | 249 ± 14 | 0.715 |
PQ interval (s) | 0.048 ± 0.004 | 0.051 ± 0.004 | 0.245 |
QRS duration (s) | 0.017 ± 0.003 | 0.017 ± 0.002 | 0.869 |
QT interval—corrected to heart rate (s) | 0.042 ± 0.002 | 0.042 ± 0.001 | 0.577 |
T wave amplitude (mV) | 0.13 ± 0.02 | 0.13 ± 0.03 | 0.477 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ráduly, A.P.; Sárkány, F.; Kovács, M.B.; Bernát, B.; Juhász, B.; Szilvássy, Z.; Porszász, R.; Horváth, B.; Szentandrássy, N.; Nánási, P.; et al. The Novel Cardiac Myosin Activator Danicamtiv Improves Cardiac Systolic Function at the Expense of Diastolic Dysfunction In Vitro and In Vivo: Implications for Clinical Applications. Int. J. Mol. Sci. 2023, 24, 446. https://doi.org/10.3390/ijms24010446
Ráduly AP, Sárkány F, Kovács MB, Bernát B, Juhász B, Szilvássy Z, Porszász R, Horváth B, Szentandrássy N, Nánási P, et al. The Novel Cardiac Myosin Activator Danicamtiv Improves Cardiac Systolic Function at the Expense of Diastolic Dysfunction In Vitro and In Vivo: Implications for Clinical Applications. International Journal of Molecular Sciences. 2023; 24(1):446. https://doi.org/10.3390/ijms24010446
Chicago/Turabian StyleRáduly, Arnold Péter, Fruzsina Sárkány, Máté Balázs Kovács, Brigitta Bernát, Béla Juhász, Zoltán Szilvássy, Róbert Porszász, Balázs Horváth, Norbert Szentandrássy, Péter Nánási, and et al. 2023. "The Novel Cardiac Myosin Activator Danicamtiv Improves Cardiac Systolic Function at the Expense of Diastolic Dysfunction In Vitro and In Vivo: Implications for Clinical Applications" International Journal of Molecular Sciences 24, no. 1: 446. https://doi.org/10.3390/ijms24010446
APA StyleRáduly, A. P., Sárkány, F., Kovács, M. B., Bernát, B., Juhász, B., Szilvássy, Z., Porszász, R., Horváth, B., Szentandrássy, N., Nánási, P., Csanádi, Z., Édes, I., Tóth, A., Papp, Z., Priksz, D., & Borbély, A. (2023). The Novel Cardiac Myosin Activator Danicamtiv Improves Cardiac Systolic Function at the Expense of Diastolic Dysfunction In Vitro and In Vivo: Implications for Clinical Applications. International Journal of Molecular Sciences, 24(1), 446. https://doi.org/10.3390/ijms24010446