Biochemical, Clinical, and Genetic Characteristics of Mexican Patients with Primary Hypertriglyceridemia, Including the First Case of Hyperchylomicronemia Syndrome Due to GPIHBP1 Deficiency
Abstract
:1. Introduction
2. Results and Discussion
2.1. Description of Biochemical and Clinical Characteristics of Patients with Primary Hypertriglyceridemia
2.2. DNA Analysis
2.3. Odds Ratio Analyses in Common Genetic Variants
2.4. Description of the Common and Rare Genetic Variants Related to Primary Hypertriglyceridemia, as Well as the Clinical Characteristics of the Patients
3. Materials and Methods
3.1. Subjects
3.2. DNA Analysis
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dron, J.S.; Hegele, R.A. Genetics of Hypertriglyceridemia. Front. Endocrinol. 2020, 11, 455. [Google Scholar] [CrossRef] [PubMed]
- Hegele, R.A.; Berberich, A.J.; Ban, M.R.; Wang, J.; Digenio, A.; Alexander, V.J.; D’Erasmo, L.; Arca, M.; Jones, A.; Bruckert, E.; et al. Clinical and Biochemical Features of Different Molecular Etiologies of Familial Chylomicronemia. J. Clin. Lipidol. 2018, 12, 920–927.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Eckel, R.H. Lipoprotein Lipase: From Gene to Obesity. Am. J. Physiol. Metab. 2009, 297, E271–E288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doolittle, M.H.; Ehrhardt, N.; Péterfy, M. Lipase Maturation Factor 1 (Lmf1): Structure and Role in Lipase Folding and Assembly. Curr. Opin. Lipidol. 2010, 21, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Kim, M.; Yoo, H.J.; Lee, E.; Chae, J.S.; Lee, S.-H.; Lee, J.H. A Promoter Variant of the APOA5 Gene Increases Atherogenic LDL Levels and Arterial Stiffness in Hypertriglyceridemic Patients. PLoS ONE 2017, 12, e0186693. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving Access to Variant Interpretations and Supporting Evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [Green Version]
- Colima Fausto, A.G.; Topete, J.; González García, J.R.; de Hernández Flores, T.J.; Rodríguez Preciado, S.Y.; Magaña Torres, M.T. Effect of APOB Gene Polymorphisms on Body Mass Index, Blood Pressure, and Total Cholesterol Levels: A Cross-Sectional Study in Mexican Population. Medicine 2022, 101, e30457. [Google Scholar] [CrossRef]
- Colima Fausto, A.G.; González García, J.R.; Hernández Flores, T.D.J.; Vázquez Cárdenas, N.A.; Solís Perales, N.E.; Magaña Torres, M.T. Homozygous LPL p.Gly188Glu Mutation in a Mexican Girl With Lipoprotein Lipase Deficiency. Ann. Lab. Med. 2017, 37, 355–358. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Bautista, I.; Huerta-Chagoya, A.; Moreno-Macías, H.; Rodríguez-Guillén, R.; Ordóñez-Sánchez, M.L.; Segura-Kato, Y.; Mehta, R.; Almeda-Valdés, P.; Gómez-Munguía, L.; Ruiz-De Chávez, X.; et al. Familial Hypertriglyceridemia: An Entity with Distinguishable Features from Other Causes of Hypertriglyceridemia. Lipids Health Dis. 2021, 20, 14. [Google Scholar] [CrossRef]
- Kniery, K.R.; Kay, J.T.; Escobar, M.A., Jr. The Fatty Spleen: Severe Hypertriglyceridemia Leading to Splenomegaly in a Child. J. Pediatr. Surg. Case Rep. 2017, 17, 25–27. [Google Scholar] [CrossRef]
- Dancer, M.S.; Di Filippo, M.; Marmontel, O.; Valéro, R.; Rivarola, M.D.C.P.; Peretti, N.; Caussy, C.; Krempf, M.; Vergès, B.; Mahl, M. New Rare Genetic Variants of LMF1 Gene Identified in Severe Hypertriglyceridemia. J. Clin. Lipidol. 2018, 12, 1244–1252. [Google Scholar] [CrossRef]
- Chen, W.J.; Sun, X.F.; Zhang, R.X.; Xu, M.J.; Dou, T.H.; Zhang, X.B.; Zhong, M.; Yang, W.Q.; Liu, L.; Lu, X.Y.; et al. Hypertriglyceridemic Acute Pancreatitis in Emergency Department: Typical Clinical Features and Genetic Variants. J. Dig. Dis. 2017, 18, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.L.; Sun, D.; Cao, Y.X.; Zhang, H.W.; Guo, Y.L.; Wu, N.Q.; Zhu, C.G.; Gao, Y.; Dong, Q.T.; Liu, G.; et al. Intensive Genetic Analysis for Chinese Patients with Very High Triglyceride Levels: Relations of Mutations to Triglyceride Levels and Acute Pancreatitis. EBioMedicine 2018, 38, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Johansen, C.T.; Wang, J.; McIntyre, A.D.; Martins, R.A.; Ban, M.R.; Lanktree, M.B.; Huff, M.W.; Péterfy, M.; Mehrabian, M.; Lusis, A.J.; et al. Excess of Rare Variants in Non-Genome-Wide Association Study Candidate Genes in Patients with Hypertriglyceridemia. Circ. Cardiovasc. Genet. 2012, 5, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Cefalù, A.B.; Spina, R.; Noto, D.; Ingrassia, V.; Valenti, V.; Giammanco, A.; Fayer, F.; Misiano, G.; Cocorullo, G.; Scrimali, C.; et al. Identification of a Novel LMF1 Nonsense Mutation Responsible for Severe Hypertriglyceridemia by Targeted Next-Generation Sequencing. J. Clin. Lipidol. 2017, 11, 272–281.e8. [Google Scholar] [CrossRef]
- Lee, C.J.; Oum, C.-Y.; Lee, Y.; Park, S.; Kang, S.-M.; Choi, D.; Jang, Y.; Lee, J.H.; Lee, S.-H. Variants of Lipolysis-Related Genes in Korean Patients with Very High Triglycerides. Yonsei Med. J. 2018, 59, 148. [Google Scholar] [CrossRef]
- Matsunaga, A.; Nagashima, M.; Yamagishi, H.; Saku, K. Variants of Lipid-Related Genes in Adult Japanese Patients with Severe Hypertriglyceridemia. J. Atheroscler. Thromb. 2020, 27, 1264–1277. [Google Scholar] [CrossRef] [Green Version]
- Tietjen, I.; Hovingh, G.K.; Radomski, C.; McEwen, J.; Chan, E.; Mattice, M.; Legendre, A.; Kastelein, J.J.P.; Hayden, M.R. Increased Risk of Coronary Artery Disease in Caucasians with Extremely Low HDL Cholesterol Due to Mutations in ABCA1, APOA1, and LCAT. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2012, 1821, 416–424. [Google Scholar] [CrossRef]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef]
- Ou, H.J.; Huang, G.; Liu, W.; Ma, X.L.; Wei, Y.; Zhou, T.; Pan, Z.M. Relationship of the APOA5/A4/C3/A1 Gene Cluster and APOB Gene Polymorphisms with Dyslipidemia. Genet. Mol. Res. 2015, 14, 9277–9290. [Google Scholar] [CrossRef]
- You, Y.; Wu, Y.-H.; Zhang, Y.; Zhang, L.; Song, Y.; Bai, W.; Li, Y.; Yu, Y.; Kou, C. Effects of Polymorphisms in APOA5 on the Plasma Levels of Triglycerides and Risk of Coronary Heart Disease in Jilin, Northeast China: A Case–Control Study. BMJ Open 2018, 8, e020016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, A.B.; Frikke-Schmidt, R.; West, A.S.; Grande, P.; Nordestgaard, B.G.; Tybjærg-Hansen, A. Genetically Elevated Non-Fasting Triglycerides and Calculated Remnant Cholesterol as Causal Risk Factors for Myocardial Infarction. Eur. Heart J. 2013, 34, 1826–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, W.-C.; Chen, W.-T.; Shen, C.-Y. A Common Variant in 11q23. 3 Associated with Hyperlipidemia Is Mediated by the Binding and Regulation of GATA4. NPJ Genom. Med. 2022, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ouatou, S.; Ajjemami, M.; Charoute, H.; Sefri, H.; Ghalim, N.; Rhaissi, H.; Benrahma, H.; Barakat, A.; Rouba, H. Association of APOA5 Rs662799 and Rs3135506 Polymorphisms with Arterial Hypertension in Moroccan Patients. Lipids Health Dis. 2014, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakbakbi el Yaagoubi, F.; Charoute, H.; Bakhchane, A.; Ajjemami, M.; Benrahma, H.; Errouagui, A.; Kandil, M.; Rouba, H.; Barakat, A. Association Analysis of APOA5 Rs662799 and Rs3135506 Polymorphisms with Obesity in Moroccan Patients. Pathol. Biol. 2015, 63, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Morjane, I.; Charoute, H.; Ouatou, S.; Elkhattabi, L.; Benrahma, H.; Saile, R.; Rouba, H.; Barakat, A. Association of c. 56C> G (Rs3135506) Apolipoprotein A5 Gene Polymorphism with Coronary Artery Disease in Moroccan Subjects: A Case-Control Study and an Updated Meta-Analysis. Cardiol. Res. Pract. 2020, 2020, 5981971. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Singh, P.; Verma, P.; Sethi, R.; Verma, A.; Ali, W.; Tiwari, S. Influence of APOA5 (Rs662799 and Rs3135506) Gene Polymorphism in Acute Myocardial Infarction Patients and Its Association with Basic Coronary Artery Disease Risk Factors. J. Appl. Pharm. Sci. 2015, 5, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Talmud, P.J.; Palmen, J.; Putt, W.; Lins, L.; Humphries, S.E. Determination of the Functionality of Common APOA5 Polymorphisms. J. Biol. Chem. 2005, 280, 28215–28220. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.; Ehrhardt, N.; Weissglas-Volkov, D.; Lai, C.M.; Mao, H.Z.; Liao, J.L.; Nikkola, E.; Bensadoun, A.; Taskinen, M.R.; Doolittle, M.H.; et al. Transgenic Expression and Genetic Variation of Lmf1 Affect LPL Activity in Mice and Humans. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1204–1210. [Google Scholar] [CrossRef] [Green Version]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Aguilera, M.A.; Meyer, R.; Massouras, A. VarSome: The Human Genomic Variant Search Engine. Bioinformatics 2019, 35, 1978. [Google Scholar] [CrossRef] [Green Version]
- Fong, L.G.; Young, S.G.; Beigneux, A.P.; Bensadoun, A.; Oberer, M.; Jiang, H.; Ploug, M. GPIHBP1 and Plasma Triglyceride Metabolism. Trends Endocrinol. Metab. 2016, 27, 455–469. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Witkowski, A.; Witkowska, H.E.; Dykstra, A.; Simonsen, J.B.; Nelbach, L.; Beckstead, J.A.; Pullinger, C.R.; Kane, J.P.; Malloy, M.J.; et al. Aberrant Hetero-Disulfide Bond Formation by the Hypertriglyceridemia-Associated p.Gly185Cys APOA5 Variant (Rs2075291). Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2254–2260. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Lei, L.; Chen, E.; Dong, J.; Zhang, K.; Yang, J. The c.553G>T Genetic Variant of the APOA5 Gene and Altered Triglyceride Levels in the Asian Population: A Meta-Analysis of Case-Control Studies. Genet. Test. Mol. Biomark. 2016, 20, 758–765. [Google Scholar] [CrossRef]
- Yang, Q.; Pu, N.; Li, X.-Y.; Shi, X.-L.; Chen, W.-W.; Zhang, G.-F.; Hu, Y.-P.; Zhou, J.; Chen, F.-X.; Li, B.-Q.; et al. Digenic Inheritance and Gene-Environment Interaction in a Patient With Hypertriglyceridemia and Acute Pancreatitis. Front. Genet. 2021, 12, 640859. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Hartman, M.L.; Kilianska, Z.M. Lipoprotein Lipase; a New Prognostic Factor in Chronic Lymphocytic Leukemia. Contemp. Oncol. Onkol. 2012, 16, 474–479. [Google Scholar] [CrossRef] [Green Version]
- Minicocci, I.; Prisco, C.; Montali, A.; Di Costanzo, A.; Ceci, F.; Pigna, G.; Arca, M. Contribution of Mutations in Low Density Lipoprotein Receptor (LDLR) and Lipoprotein Lipase (LPL) Genes to Familial Combined Hyperlipidemia (FCHL): A Reappraisal by Using a Resequencing Approach. Atherosclerosis 2015, 242, 618–624. [Google Scholar] [CrossRef]
- Fisher, R.M.; Humphries, S.E.; Talmud, P.J. Common Variation in the Lipoprotein Lipase Gene: Effects on Plasma Lipids and Risk of Atherosclerosis. Atherosclerosis 1997, 135, 145–159. [Google Scholar] [CrossRef]
- Merkel, M.; Eckel, R.H.; Goldberg, I.J. Lipoprotein Lipase: Genetics, Lipid Uptake, and Regulation. J. Lipid Res. 2002, 43, 1997–2006. [Google Scholar] [CrossRef] [Green Version]
- Sawano, M.; Watanabe, Y.; Ohmura, H.; Shimada, K.; Daida, H.; Mokuno, H.; Yamaguchi, H. Potentially Protective Effects of the Ser447-Ter Mutation of the Lipoprotein Lipase Gene against the Development of Coronary Artery Disease in Japanese Subjects via a Beneficial Lipid Profile. Jpn. Circ. J. 2001, 65, 310–314. [Google Scholar] [CrossRef]
- Yau, M.-H.; Wang, Y.; Lam, K.S.L.; Zhang, J.; Wu, D.; Xu, A. A Highly Conserved Motif within the NH2-Terminal Coiled-Coil Domain of Angiopoietin-like Protein 4 Confers Its Inhibitory Effects on Lipoprotein Lipase by Disrupting the Enzyme Dimerization. J. Biol. Chem. 2009, 284, 11942–11952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulin, P.; Dufour, R.; Averna, M.; Arca, M.; Cefalù, A.B.; Noto, D.; D’Erasmo, L.; Di Costanzo, A.; Marçais, C.; Alvarez-Sala Walther, L.A.; et al. Identification and Diagnosis of Patients with Familial Chylomicronaemia Syndrome (FCS): Expert Panel Recommendations and Proposal of an “FCS Score”. Atherosclerosis 2018, 275, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, M.J.; Lee, J.-S.; Lee, J.A.; Song, J.Y.; Im Cho, S.; Park, S.-S.; Seong, M.-W. SnackVar: An Open-Source Software for Sanger Sequencing Analysis Optimized for Clinical Use. J. Mol. Diagn. 2021, 23, 140–148. [Google Scholar] [CrossRef] [PubMed]
- den Dunnen, J.T.; Dalgleish, R.; Maglott, D.R.; Hart, R.K.; Greenblatt, M.S.; Mcgowan-Jordan, J.; Roux, A.F.; Smith, T.; Antonarakis, S.E.; Taschner, P.E.M. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum. Mutat. 2016, 37, 564–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messeguer, X.; Escudero, R.; Farré, D.; Nuñez, O.; Martínez, J.; Albà, M.M. PROMO: Detection of Known Transcription Regulatory Elements Using Species-Tailored Searches. Bioinformatics 2002, 18, 333–334. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation Prediction for the Deep-Sequencing Age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Birjmohun, R.S.; Hutten, B.A.; Kastelein, J.J.P.; Stroes, E.S.G. Efficacy and Safety of High-Density Lipoprotein Cholesterol-Increasing Compounds: A Meta-Analysis of Randomized Controlled Trials. J. Am. Coll. Cardiol. 2005, 45, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Branchi, A.; Fiorenza, A.M.; Rovellini, A.; Torri, A.; Muzio, F.; Macor, S.; Sommariva, D. Lowering Effects of Four Different Statins on Serum Triglyceride Level. Eur. J. Clin. Pharmacol. 1999, 55, 499–502. [Google Scholar] [CrossRef]
- Wierzbicki, A.S.; Poston, R.; Ferro, A. The Lipid and Non-Lipid Effects of Statins. Pharmacol. Ther. 2003, 99, 95–112. [Google Scholar] [CrossRef]
- Farnier, M.; Freeman, M.W.; Macdonell, G.; Perevozskaya, I.; Davies, M.J.; Mitchel, Y.B.; Gumbiner, B. Efficacy and Safety of the Coadministration of Ezetimibe with Fenofibrate in Patients with Mixed Hyperlipidaemia. Eur. Heart J. 2005, 26, 897–905. [Google Scholar] [CrossRef]
- McKenney, J.M.; Jones, P.H.; Bays, H.E.; Knopp, R.H.; Kashyap, M.L.; Ruoff, G.E.; McGovern, M.E. Comparative Effects on Lipid Levels of Combination Therapy with a Statin and Extended-Release Niacin or Ezetimibe versus a Statin Alone (the COMPELL Study). Atherosclerosis 2007, 192, 432–437. [Google Scholar] [CrossRef]
- Farnier, M.; Roth, E.; Gil-Extremera, B.; Mendez, G.F.; Macdonell, G.; Hamlin, C.; Perevozskaya, I.; Davies, M.J.; Kush, D.; Mitchel, Y.B. Efficacy and Safety of the Coadministration of Ezetimibe/Simvastatin with Fenofibrate in Patients with Mixed Hyperlipidemia. Am. Heart J. 2007, 153, 335.e1–335.e8. [Google Scholar] [CrossRef]
Variable | Reference Values | Total n = 58 | FCS n = 4 | MCS Children n = 7 | MCS Adults n = 47 | Values | ||
---|---|---|---|---|---|---|---|---|
p c | p d | p e | ||||||
Sex (F/M) | 35/23 | 2/2 | 4/3 | 29/18 | ||||
Age (y) | 37.4 ± 17.7 | 5.4 ± 4.6 | 9.4 ± 4.3 | 44.0 ± 11.7 | ||||
Biochemical characteristics | ||||||||
Glucose a | 70–100 mg/dL | 96.9 ± 47.8 | 66.3 ± 10.8 | 77.8 ± 13.7 | 102 ± 51.2 | 0.38 | 0.04 | 0.16 |
Urea b | 15–45 mg/dL | 25.8 ± 8.8 | 17.6 ± 4.7 | 21.1 ± 8.2 | 27.1 ± 8.7 | 0.52 | 0.07 | 0.12 |
Creatinine a | 0.52–1.2 mg/dL | 0.7 [0.1–17.7] f | 0.5 ± 0.1 | 0.5 ± 0.2 | 0.7 [0.4–17.7] f | 0.26 | 0.01 | 0.29 |
TC a | <200 mg/dL | 268.8 ± 98.9 | 215.1 ± 67.6 | 193.3 ± 44.2 | 283.8 ± 101 | 0.52 | 0.23 | <0.01 |
HDL a | >35 mg/dL | 29.8 ± 8.8 | 11.1 ± 3.7 | 32.8 ± 5.3 | 30.5 ± 8.1 | 0.02 | <0.01 | 0.28 |
LDL a | <130 mg/dL | 100.7 ± 59.6 | 82.7 ± 56.2 | 63 ± 34.7 | 108 ± 61.4 | 0.67 | 0.50 | 0.04 |
TG a | <200 mg/dL | 773.9 [205–9848] f | 2826 ± 839.1 | 475.1 ± 88.4 | 791 [205–9848] f | <0.01 | <0.01 | 0.01 |
SBP b | <140 mmHg | 124.5 ± 17.5 | ||||||
DBP a | <90 mmHg | 84.3 ± 14.9 | ||||||
Clinical characteristics | ||||||||
Arterial hypertension | 35.1% (13/37) | 0% | 0% | 35.1% (13/37) | ||||
Cardiovascular disease | 3.6% (2/56) | 0% | 0% | 4.5% (2/45) | ||||
Hypoalphalipoproteinemia | 77.6% (45/58) | 100% (4/4) | 57.1% (4/7) | 78.7% (37(47) | ||||
Hypothyroidism | 10.2% (5/49) | 0% | 14.3% (1/7) | 9.5% (4/42) | ||||
Pancreatitis | 18.1% (10/55) | 50% (2/4) | 0% | 17.8% (8/45) | ||||
Type 2 diabetes mellitus | 25.5% (14/55) | 0% | 0% | 31.1% (14/45) |
Location | Identifier | Nucleotide | Amino Acid | Genotypes (n = 58) | Alleles (n = 116) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
W/W | W/M | M/M | MA | ||||||||
N | % | n | % | n | % | n | % | ||||
APOA5 | |||||||||||
5′UTR | rs651821 | c.-3A > G | 24 | 41.4 | 30 | 51.7 | 4 | 6.9 | 38 | 32.8 | |
E2 | rs3135506 | c.56C > G | p.S19W | 29 | 50 | 23 | 39.7 | 6 | 10.3 | 35 | 30.2 |
E2 | rs34282181 | c.111C > A | p.D37E | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E2 | rs12287066 | c.132C > A | p.I44= | 27 | 46.6 | 25 | 43.1 | 6 | 10.3 | 37 | 31.9 |
I2 | rs2072560 | c.162-43A > G | 3 | 5.2 | 24 | 41.4 | 31 | 53.4 | 86 | 74.1 | |
E3 | c.360G > A a | p.W120* | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 | |
E3 | rs3135507 | c.457G > A | p.V153M | 54 | 93.1 | 4 | 6.9 | - | - | 4 | 3.6 |
E3 | rs2075291 | c.553G > T | p.G185C | 56 | 96.6 | 2 | 3.4 | - | - | 2 | 1.8 |
3′UTR | rs619054 | c.*31C > T | 50 | 86.2 | 8 | 13.8 | - | - | 8 | 7.2 | |
3′UTR | rs34089864 | c.*76C > T | 56 | 96.6 | 2 | 3.4 | - | - | 2 | 1.8 | |
GPIHBP1 | |||||||||||
E1 | rs61747644 | c.12C > T | p.L4= | 29 | 50 | 26 | 44.8 | 3 | 5.2 | 32 | 27.6 |
E1 | rs11538389 | c.41G > T | p.C14F | 36 | 62.1 | 21 | 36.2 | 1 | 1.7 | 23 | 19.8 |
E1 | rs779309481 | c.46C > T | p.R16W | 56 | 96.6 | 2 | 3.4 | - | - | 2 | 1.7 |
I1 | rs1447543669 | c.53-2A > G | p.(G18_R60del) | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E2 | rs11538388 | c.138G > T | p.V46= | 25 | 43.1 | 28 | 48.3 | 5 | 8.6 | 33 | 28.4 |
I2 | rs369934389 | c.182-17G > A | 53 | 91.4 | 5 | 8.6 | - | - | 5 | 4.3 | |
I2 | rs773126617 | c.182-14C > G | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 | |
E3 | rs142959160 | c.294C > T | p.T98= | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
I3 | rs56046179 | c.295 + 27T > C | 6 | 10.3 | 15 | 25.9 | 37 | 63.8 | 89 | 76.7 | |
I3 | rs375588884 | c.296-19T > A | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 | |
I3 | rs141874363 | c.295 + 52del | 56 | 96.6 | 2 | 3.4 | - | - | 2 | 1.7 | |
E4 | rs759883512 | c.433C > T | p.R145* | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E4 | rs751092284 | c.460_461del | p.A154Rfs*152 | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E4 | rs756773250 | c.462_463insAAA | p.A154_G155insK | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E4 | rs373297994 | c.484G > A | p.E162K | 54 | 93.1 | 4 | 6.9 | - | - | 4 | 3.4 |
3′UTR | rs1465035770 | c.*26C > T | 57 | 98.3 | 0 | 0 | 1 | 1.7 | 2 | 1.7 | |
LPL | |||||||||||
E2 | rs1801177 | c.106G > A | p.D36N | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E2 | rs11542065 | c.213C > G | p.H71Q | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E3 | rs1121923 | c.405G > A | p.V135= | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
I3 | rs343 | c.430-34C > A | 45 | 77.6 | 12 | 20.7 | 1 | 1.7 | 14 | 12.1 | |
I3 | rs11570897 | c.430-6C > T | 52 | 89.7 | 5 | 8.6 | 1 | 1.7 | 7 | 6.0 | |
E4 | rs248 | c.435G > A | p.E145= | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E5 | rs118204057 | c.644G > A | p.G215E | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E5 | c.723delA a | p.G242Dfs*10 | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 | |
I5 | rs254 | c.775 + 33C > G | 43 | 74.1 | 13 | 22.4 | 2 | 3.4 | 17 | 14.7 | |
I5 | rs255 | c.775 + 37T > C | 43 | 74.1 | 13 | 22.4 | 2 | 3.4 | 17 | 14.7 | |
E6 | rs268 | c.953A > G | p.N318S | 56 | 96.5 | 2 | 3.5 | - | - | 2 | 1.8 |
E8 | rs316 | c.1164C > A | p.T388= | 49 | 84.5 | 7 | 12.1 | 2 | 3.4 | 11 | 9.5 |
E8 | rs757705770 | c.1230G > C | p.K410N | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E9 | rs328 | c.1421C > G | p.S474* | 55 | 94.8 | 3 | 5.2 | - | - | 3 | 2.6 |
Location | Identifier | Nucleotide | Amino Acid | Genotypes (n = 58) | Alleles (n = 116) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
W/W | W/M | M/M | MA | ||||||||
n | % | n | % | n | % | n | % | ||||
P | --- | c.-40_-22del a | 25 | 43.1 | 24 | 41.4 | 9 | 15.5 | 42 | 36.2 | |
P | rs13334376 | c.-21G > T | 45 | 77.6 | 12 | 20.7 | 1 | 1.7 | 14 | 12.1 | |
E1 | rs371796784 | c.81T > C | p.P27= | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E1 | rs111980103 | c.107G > A | p.G36D | 49 | 84.5 | 9 | 15.5 | - | - | 9 | 7.8 |
I1 | rs113750251 | c.194-91G > A | 56 | 96.6 | 2 | 3.4 | - | - | 2 | 1.7 | |
I1 | rs3751665 | c.194-77G > A | 22 | 37.9 | 22 | 37.9 | 14 | 24.2 | 50 | 43.1 | |
I1 | rs778473079 | c.194-64C > T | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 | |
I1 | rs3751666 | c.194-28T > C | 20 | 34.5 | 15 | 25.9 | 23 | 39.6 | 61 | 52.6 | |
E2 | rs12448005 | c.255T > C | p.L85= | 56 | 96.6 | 2 | 3.4 | - | - | 2 | 1.7 |
E2 | rs3751667 | c.306G > A | p.T102= | 30 | 51.7 | 21 | 36.2 | 7 | 12.1 | 35 | 30.2 |
E2 | rs35663121 | c.491T > C | p.V164A | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E4 | rs2277892 | c.540G > A | p.T180= | 37 | 63.8 | 18 | 31 | 3 | 5.2 | 24 | 20.7 |
E4 | rs2277893 | c.543G > A | p.G181= | 21 | 36.2 | 28 | 48.3 | 9 | 15.5 | 46 | 39.7 |
I4 | rs4984706 | c.664-58G > C | 19 | 32.8 | 27 | 46.5 | 12 | 20.7 | 51 | 44 | |
I4 | rs4984705 | c.664-35T > C | 19 | 32.8 | 27 | 46.5 | 12 | 20.7 | 51 | 44 | |
I5 | rs751225707 | c.729 + 12G > A | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 | |
I5 | rs11864203 | c.729 + 18C > G | 12 | 20.7 | 26 | 44.8 | 20 | 34.5 | 66 | 56.9 | |
I5 | rs746716054 | c.730-33C > T | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 | |
E6 | rs2076425 | c.756G > A | p.A252= | 49 | 84.5 | 7 | 12.1 | 2 | 3.4 | 11 | 9.5 |
E6 | rs61745065 | c.837C > A | p.F279L | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
I6 | rs113445575 | c.898-86C > T | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 | |
I6 | rs531327980 | c.898-85C > T | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 | |
E7 | rs192520307 | c.1052G > A | p.R351Q | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E8 | rs35168378 | c.1091G > A | p.R364Q | 56 | 96.6 | 2 | 3.4 | - | - | 2 | 1.7 |
E8 | rs200940009 | c.1137C > T | p.S379= | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E8 | rs199713950 | c.1228G > A | p.G410R | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
I8 | rs13329717 | c.1232 + 54C > G | 56 | 96.6 | 2 | 3.4 | - | - | 2 | 1.7 | |
I8 | rs575396266 | c.1233-66C > T | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 | |
E9 | rs181731943 | c.1405G > A | p.A469T | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
I9 | rs138911395 | c.1416 + 24G > A | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 | |
E10 | rs142258761 | c.1476C > T | p.A492= | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E11 | rs750316655 | c.1638G > A | p.P546= | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
E11 | rs4984948 | c.1685C > G | p.P562R | 39 | 67.2 | 19 | 32.8 | - | - | 19 | 16.4 |
3′UTR | rs556385549 | c.*27C > T | 57 | 98.3 | 1 | 1.7 | - | - | 1 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Gutiérrez, P.G.; Colima-Fausto, A.G.; Zepeda-Olmos, P.M.; Hernández-Flores, T.d.J.; González-García, J.R.; Magaña-Torres, M.T. Biochemical, Clinical, and Genetic Characteristics of Mexican Patients with Primary Hypertriglyceridemia, Including the First Case of Hyperchylomicronemia Syndrome Due to GPIHBP1 Deficiency. Int. J. Mol. Sci. 2023, 24, 465. https://doi.org/10.3390/ijms24010465
Rodríguez-Gutiérrez PG, Colima-Fausto AG, Zepeda-Olmos PM, Hernández-Flores TdJ, González-García JR, Magaña-Torres MT. Biochemical, Clinical, and Genetic Characteristics of Mexican Patients with Primary Hypertriglyceridemia, Including the First Case of Hyperchylomicronemia Syndrome Due to GPIHBP1 Deficiency. International Journal of Molecular Sciences. 2023; 24(1):465. https://doi.org/10.3390/ijms24010465
Chicago/Turabian StyleRodríguez-Gutiérrez, Perla Graciela, Ana Gabriela Colima-Fausto, Paola Montserrat Zepeda-Olmos, Teresita de Jesús Hernández-Flores, Juan Ramón González-García, and María Teresa Magaña-Torres. 2023. "Biochemical, Clinical, and Genetic Characteristics of Mexican Patients with Primary Hypertriglyceridemia, Including the First Case of Hyperchylomicronemia Syndrome Due to GPIHBP1 Deficiency" International Journal of Molecular Sciences 24, no. 1: 465. https://doi.org/10.3390/ijms24010465
APA StyleRodríguez-Gutiérrez, P. G., Colima-Fausto, A. G., Zepeda-Olmos, P. M., Hernández-Flores, T. d. J., González-García, J. R., & Magaña-Torres, M. T. (2023). Biochemical, Clinical, and Genetic Characteristics of Mexican Patients with Primary Hypertriglyceridemia, Including the First Case of Hyperchylomicronemia Syndrome Due to GPIHBP1 Deficiency. International Journal of Molecular Sciences, 24(1), 465. https://doi.org/10.3390/ijms24010465