Plasma-Functionalised Dressings for Enhanced Wound Healing
Abstract
:1. Introduction
2. Results
2.1. Production and Administration of Plasma-Functionalised Dressings
2.2. Allylamine Functionalisation Accelerates Early Wound Closure in Murine Excisional Wounds
2.3. Re-Epithelialisation May Be Delayed by Treatment with Allylamine-Functionalised Dressings
2.4. Plasma-Functionalised Dressings Increase Collagen Deposition and Cellular Infiltration
3. Discussion
4. Materials and Methods
4.1. Plasma Polymerisation of Dressings
4.2. Surface Characterisation
4.3. Excisional Wound Model
4.4. Wound Healing Analysis
4.5. Collagen Analysis
4.6. Immunofluorescent Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graves, N.; Zheng, H. Modelling the direct health care costs of chronic wounds in Australia. Wound Pract. Res. 2014, 22, 20–33. [Google Scholar]
- Sood, A.; Granick, M.S.; Tomaselli, N.L. Wound Dressings and Comparative Effectiveness Data. Adv. Wound Care 2014, 3, 511–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graves, N.; Phillips, C.J.; Harding, K. A narrative review of the epidemiology and economics of chronic wounds. Br. J. Dermatol. 2022, 187, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Xu, F.J. Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomater. Sci. 2020, 8, 2084–2101. [Google Scholar] [CrossRef]
- Kalantari, K.; Mostafavi, E.; Afifi, A.; Izadiyan, Z.; Jahangirian, H.; Rafiee-Moghaddam, R.; Webster, T. Wound dressings functionalized with silver nanoparticles: Promises and pitfalls. Nanoscale 2020, 12, 2268–2291. [Google Scholar] [CrossRef]
- Tavakoli, S.; Klar, A.S. Advanced Hydrogels as Wound Dressings. Biomolecules 2020, 10, 1169. [Google Scholar] [CrossRef]
- Frykberg, R.G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care 2015, 4, 560–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, L.E.; Bryant, C.; Krasowska, M.; Cowin, A.J.; Whittle, J.D.; MacNeil, S.; Short, R.D. Haptotatic Plasma Polymerized Surfaces for Rapid Tissue Regeneration and Wound Healing. ACS Appl. Mater. Interfaces 2016, 8, 32675. [Google Scholar] [CrossRef]
- Fernandez, T.; Strudwick, X.; Al-Bataineh, S.; Short, R.D.; Cowin, A.J.; Whittle, J.D.; Smith, L.E. Surfaces to enhance matrix deposition for wound healing. Wound Pract. Res. 2018, 26, 201–209. [Google Scholar]
- Barry, J.J.A.; Silva, M.; Shakesheff, K.M.; Howdle, S.M.; Alexander, M.R. Using Plasma Deposits to Promote Cell Population of the Porous Interior of Three-Dimensional Poly (D,L-Lactic Acid) Tissue-Engineering Scaffolds. Adv. Funct. Mater. 2005, 15, 1134–1140. [Google Scholar] [CrossRef]
- Gristina, R.; D’Aloia, E.; Senesi, G.S.; Milella, A.; Nardulli, M.; Sardella, E.; Favia, E.P.; d’Agostino, R. Increasing cell adhesion on plasma deposited fluorocarbon coatings by changing the surface topography. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 88, 139–149. [Google Scholar] [CrossRef]
- Finke, B.; Hempel, F.; Testrich, H.; Artemenko, A.; Rebl, H.; Kylián, O.; Meichsner, J.; Biederman, H.; Nebe, B.; Weltmann, K.-D.; et al. Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. Surf. Coat. Technol. 2011, 205, S520–S524. [Google Scholar] [CrossRef]
- Aziz, G.; Ghobeira, R.; Morent, R.; De Geyter, N. Plasma Polymerization for Tissue Engineering Purposes. In Recent Research in Polymerization; Cankaya, N., Ed.; IntechOpen: London, UK, 2017. [Google Scholar]
- Ibrahim, J.; Al-Bataineh, S.A.; Michelmore, A.; Whittle, J.D. Atmospheric Pressure Dielectric Barrier Discharges for the Deposition of Organic Plasma Polymer Coatings for Biomedical Application. Plasma Chem. Plasma Process. 2021, 41, 47–83. [Google Scholar] [CrossRef]
- Liu, X.; Xie, Y.; Shi, S.; Feng, Q.; Bachhuka, A.; Guo, X.; She, Z.; Tan, R.; Cai, Q.; Vasilev, K. The co-effect of surface topography gradient fabricated via immobilization of gold nanoparticles and surface chemistry via deposition of plasma polymerized film of allylamine/acrylic acid on osteoblast-like cell behavior. Appl. Surf. Sci. 2019, 473, 838–847. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Clements, L.R.; Thissen, H.; Tsai, W.-B.; Voelcker, N.H. Screening rat mesenchymal stem cell attachment and differentiation on surface chemistries using plasma polymer gradients. Acta Biomat. 2015, 11, 58–6717. [Google Scholar] [CrossRef]
- Beck, A.J.; Whittle, J.D.; Bullett, N.A.; Eves, P.; Mac Neil, S.; McArthur, S.L.; Shard, A.G. Plasma Co-Polymerisation of Two Strongly Interacting Monomers: Acrylic Acid and Allylamine. Plasma Process. Polym. 2005, 2, 641–649. [Google Scholar] [CrossRef]
- Bullett, N.A.; Whittle, J.D.; Short, R.D.; Douglas, C.W.I. Adsorption of immunoglobulin G to plasma-co-polymer surfaces of acrylic acid and 1,7-octadiene. J. Mater. Chem. 2003, 13, 1546–1553. [Google Scholar] [CrossRef]
- Colley, H.E.; Mishra, G.; Scutt, A.M.; McArthur, S.L. Plasma polymer coatings to support mesenchymal stem cell adhesion, growth and differentiation on variable stiffness silicone elastomers. Plasma Process. Polym. 2009, 6, 831–839. [Google Scholar] [CrossRef]
- Deshpande, P.; Notara, M.; Bullett, N.; Daniels, J.T.; Haddow, D.B.; MacNeil, S. Development of a surface-modified contact lens for the transfer of cultured limbal epithelial cells to the cornea for ocular surface diseases. Tissue Eng. Part A 2009, 15, 2889–2902. [Google Scholar] [CrossRef]
- Eves, P.C.; Beck, A.J.; Shard, A.G.; Mac Neil, S. A chemically defined surface for the co-culture of melanocytes and keratinocytes. Biomaterials 2005, 26, 7068–7081. [Google Scholar] [CrossRef]
- France, R.M.; Short, R.D.; Dawson, R.A.; MacNeil, S. Attachment of human keratinocytes to plasma co-polymers of acrylic acid/octa-1,7-diene and allyl amine/octa-1,7-diene. J. Mater. Chem. 1998, 8, 37–42. [Google Scholar] [CrossRef]
- Haddow, D.B.; MacNeil, S.; Short, R.D. A cell therapy for chronic wounds based upon a plasma polymer delivery surface. Plasma Process. Polym. 2006, 3, 419–430. [Google Scholar] [CrossRef]
- Hopp, I.; Michelmore, A.; Smith, L.E.; Robinson, D.E.; Bachhuka, A.; Mierczynska, A.; Vasilev, K. The influence of substrate stiffness gradients on primary human dermal fibroblasts. Biomaterials 2013, 34, 5070–5077. [Google Scholar] [CrossRef] [PubMed]
- Kirby, G.T.S.; Mills, S.J.; Vandenpoel, L.; Pinxteren, J.; Ting, A.; Short, R.D.; Cowin, A.J.; Michelmore, A.; Smith, L.E. Development of Advanced Dressings for the Delivery of Progenitor Cells. ACS App. Mater. Interfaces 2017, 9, 3445–3454. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Wang, M.-J. Atmospheric pressure plasma jet-assisted copolymerization of sulfobetaine methacrylate and acrylic acid. Plasma Process. Polym. 2020, 17, e1900209. [Google Scholar] [CrossRef]
- Yang, Z.; Lei, X.; Wang, J.; Luo, R.; He, T.; Sun, H.; Huang, N. A Novel Technique Toward Bipolar Films Containing Alternating Nano–Layers of Allylamine and Acrylic Acid Plasma Polymers for Biomedical Application. Plasma Process. Polym. 2011, 8, 208–214. [Google Scholar] [CrossRef]
- Mangindaan, D.; Kuo, W.-H.; Wang, M.-J. Two-dimensional amine-functionality gradient by plasma polymerization. Biochem. Eng. 2013, 78, 198–204. [Google Scholar]
- Whittle, J.D.; Steele, D.A.; Short, R.D. Reconciling the Physical and Chemical Environments of Plasma: A Commentary on “Mechanisms of Plasma Polymerisation—Reviewed from a Chemical Point of View”. Plasma Process. Polym. 2012, 9, 840–843. [Google Scholar] [CrossRef]
- Daunton, C.; Smith, L.E.; Whittle, J.D.; Short, R.D.; Steele, D.A.; Michelmore, A. Plasma parameter aspects in the fabrication of stable amine functionalized plasma polymer films. Plasma Process. Polym. 2015, 12, 817–826. [Google Scholar] [CrossRef]
- Ryssy, J.; Prioste-Amaral, E.; Assuncao, D.F.N.; Rogers, N.; Kirby, G.T.S.; Smith, L.E.; Michelmore, A. Chemical and physical processes in the retention of functional groups in plasma polymers studied by plasma phase mass spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 4496–4504. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.E.; Smith, L.E.; Steele, D.A.; Short, R.D.; Whittle, J.D. Development of a surface to enhance the effectiveness of fibroblast growth factor 2 (FGF-2). Biomater. Sci. 2014, 2, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv. Wound Care 2021, 10, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Chenyu, S.; Chenyu, W.; He, L.; Qiuju, L.; Ronghang, L.; Yan, Z.; Yuzhe, L.; Ying, S.; Jincheng, W. Selection of Appropriate Wound Dressing for Various Wounds. Front. Bioeng. Biotechnol. 2020, 8, 00182. [Google Scholar]
- Michelmore, A.; Charles, C.; Boswell, R.W.; Short, R.D.; Whittle, J.D. Defining Plasma Polymerization: New Insight Into What We Should Be Measuring. ACS Appl. Mater. Interfaces 2013, 5, 5387–5391. [Google Scholar] [CrossRef]
- Bachhuka, A.; Hayball, J.; Smith, L.E.; Vasilev, K. Effect of surface chemical functionalities on collagen deposition by primary human dermal fibroblasts. ACS Appl. Mater. Interfaces 2015, 7, 23767–23775. [Google Scholar] [CrossRef]
- Hinz, B. Formation and Function of the Myofibroblast during Tissue Repair. J. Investig. Derm. 2007, 127, 526–537. [Google Scholar] [CrossRef]
- Hobbs, J.A.R.; May, R.; Tanousis, K.; McNeill, E.; Mathies, M.; Gebhardt, C.; Henderson, R.; Robinson, M.J.; Hogg, N. Myeloid Cell Function in MRP-14 (S100A9) Null Mice. Mol. Cell. Biol. 2003, 23, 2564–2576. [Google Scholar] [CrossRef] [Green Version]
- Mizobuchi, H.; Yamakoshi, S.; Omachi, S.; Osada, Y.; Sanjoba, C.; Goto, Y.; Matsumoto, Y. Exacerbation of hepatic injury during rodent malaria by myeloid-related protein 14. PLoS ONE 2018, 13, e019911. [Google Scholar] [CrossRef] [Green Version]
- Pusztaszeri, M.P.; Seelentag, W.; Bosman, F.T. Immunohistochemical Expression of Endothelial Markers CD31, CD34, von Willebrand Factor, and Fli-1 in Normal Human Tissues. J. Histochem. Cytochem. 2006, 54, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Veith, A.P.; Henderson, K.; Spencer, A.; Sligar, A.D.; Baker, A.B. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug. Deliv. Rev. 2019, 146, 97–125. [Google Scholar] [CrossRef]
- Lenhardt, R.; Hopf, H.W.; Marker, E.; Akça, O.; Kurz, A.; Scheuenstuhl, H.; Sessler, D.I. Perioperative Collagen Deposition in Elderly and Young Men and Women. Arch. Surg. 2000, 135, 71–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, D.J.; Vetteth, S.; Periyasamy, S.M.; Kanj, M.; Fedorova, L.; Khouri, S.; Kahaleh, M.B.; Xie, Z.; Malhotra, D.; Kolodkin, N.I.; et al. Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension 2006, 47, 488–495. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strudwick, X.L.; Whittle, J.D.; Cowin, A.J.; Smith, L.E. Plasma-Functionalised Dressings for Enhanced Wound Healing. Int. J. Mol. Sci. 2023, 24, 797. https://doi.org/10.3390/ijms24010797
Strudwick XL, Whittle JD, Cowin AJ, Smith LE. Plasma-Functionalised Dressings for Enhanced Wound Healing. International Journal of Molecular Sciences. 2023; 24(1):797. https://doi.org/10.3390/ijms24010797
Chicago/Turabian StyleStrudwick, Xanthe L., Jason D. Whittle, Allison J. Cowin, and Louise E. Smith. 2023. "Plasma-Functionalised Dressings for Enhanced Wound Healing" International Journal of Molecular Sciences 24, no. 1: 797. https://doi.org/10.3390/ijms24010797
APA StyleStrudwick, X. L., Whittle, J. D., Cowin, A. J., & Smith, L. E. (2023). Plasma-Functionalised Dressings for Enhanced Wound Healing. International Journal of Molecular Sciences, 24(1), 797. https://doi.org/10.3390/ijms24010797