Clinical Significance of Molecular Subtypes in Western Advanced Gastric Cancer: A Real-World Multicenter Experience
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Treatment Outcomes
3. Discussion
4. Materials and Methods
4.1. Patient Selection
4.2. Molecular Characteristics
4.2.1. IHC and ISH Procedures
4.2.2. HER2 IHC Tests
4.2.3. MMR IHC Tests
4.2.4. PD-L1 Test
4.2.5. ISH Analysis
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.D.; Syn, N.L.; Moehler, M.; Grothe, W.; Yong, W.P.; Tai, B.C.; Ho, J.; Unverzagt, S. Chemotherapy for advanced gastric cancer. Cochrane Database Syst. Rev. 2017, 8, CD004064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014, 383, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Doi, T.; Dvorkin, M.; Mansoor, W.; Arkenau, H.T.; Prokharau, A.; Alsina, M.; Ghidini, M.; Faustino, C.; Gorbunova, V.; et al. Trifluridine/tipiracil versus placebo in patients with heavily pretreated metastatic gastric cancer (TAGS): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2018, 19, 1437–1448. [Google Scholar] [CrossRef]
- Salati, M.; Di Emidio, K.; Tarantino, V.; Cascinu, S. Second-line treatments: Moving towards an opportunity to improve survival in advanced gastric cancer? ESMO Open 2017, 2, e000206. [Google Scholar] [CrossRef] [Green Version]
- Salati, M.; Orsi, G.; Smyth, E.; Aprile, G.; Beretta, G.; De Vita, F.; Di Bartolomeo, M.; Fanotto, V.; Lonardi, S.; Morano, F.; et al. Gastric cancer: Translating novels concepts into clinical practice. Cancer Treat. Rev. 2019, 79, 101889. [Google Scholar] [CrossRef]
- Davidson, M.; Cafferkey, C.; Goode, E.F.; Kouvelakis, K.; Hughes, D.; Reguera, P.; Kalaitzaki, E.; Peckitt, C.; Rao, S.; Watkins, D.; et al. Survival in Advanced Esophagogastric Adenocarcinoma Improves with Use of Multiple Lines of Therapy: Results from an Analysis of More than 500 Patients. Clin. Colorectal Cancer 2018, 17, 223–230. [Google Scholar] [CrossRef]
- Lee, B.H. Commentary on: “Comprehensive molecular characterization of papillary renal-cell carcinoma”. Cancer Genome Atlas Research Network.: N. Engl. J. Med. Urol. Oncol. 2017, 35, 578–579. [Google Scholar] [CrossRef]
- Catenacci, D.V.T.; Moya, S.; Lomnicki, S.; Chase, L.M.; Peterson, B.F.; Reizine, N.; Alpert, L.; Setia, N.; Xiao, S.Y.; Hart, J.; et al. Personalized Antibodies for Gastroesophageal Adenocarcinoma (PANGEA): A Phase II Study Evaluating an Individualized Treatment Strategy for Metastatic Disease. Cancer Discov. 2021, 11, 308–325. [Google Scholar] [CrossRef]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Ajani, J.A.; Moehler, M.; Garrido, M.; Gallardo, C.; Shen, L.; Yamaguchi, K.; Wyrwicz, L.; Skoczylas, T.; Bragagnoli, A.C.; et al. Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature 2022, 603, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Werner, D.; Pauligk, C.; Steinmetz, K.; Kelsen, D.P.; Jager, E.; Altmannsberger, H.M.; Robinson, E.; Tafe, L.J.; Tang, L.H.; et al. Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: A European and USA International collaborative analysis. Ann. Oncol. 2012, 23, 2656–2662. [Google Scholar] [CrossRef]
- De Meulder, S.; Sagaert, X.; Brems, H.; Brekelmans, C.; Nafteux, P.; Topal, B.; Verslype, C.; Tejpar, S.; Van Cutsem, E.; Dekervel, J. Prevalence of microsatellite instable and Epstein-Barr Virus-driven gastroesophageal cancer in a large Belgian cohort. Acta Gastroenterol. Belg. 2022, 85, 1–5. [Google Scholar] [CrossRef]
- Ramos, M.; Pereira, M.A.; de Mello, E.S.; Cirqueira, C.D.S.; Zilberstein, B.; Alves, V.A.F.; Ribeiro-Junior, U.; Cecconello, I. Gastric cancer molecular classification based on immunohistochemistry and in situ hybridization: Analysis in western patients after curative-intent surgery. World J. Clin. Oncol. 2021, 12, 688–701. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Jia, K.; Lv, H.; Wang, S.Q.; Wu, Y.; Lei, H.; Chen, X. EBV-Positive Gastric Cancer: Current Knowledge and Future Perspectives. Front. Oncol. 2020, 10, 583463. [Google Scholar] [CrossRef] [PubMed]
- Corallo, S.; Fuca, G.; Morano, F.; Salati, M.; Spallanzani, A.; Gloghini, A.; Volpi, C.C.; Trupia, D.V.; Lobefaro, R.; Guarini, V.; et al. Clinical Behavior and Treatment Response of Epstein-Barr Virus-Positive Metastatic Gastric Cancer: Implications for the Development of Future Trials. Oncologist 2020, 25, 780–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubota, Y.; Kawazoe, A.; Sasaki, A.; Mishima, S.; Sawada, K.; Nakamura, Y.; Kotani, D.; Kuboki, Y.; Taniguchi, H.; Kojima, T.; et al. The Impact of Molecular Subtype on Efficacy of Chemotherapy and Checkpoint Inhibition in Advanced Gastric Cancer. Clin. Cancer Res. 2020, 26, 3784–3790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Ciarpaglini, C.; Fleitas-Kanonnikoff, T.; Gambardella, V.; Llorca, M.; Mongort, C.; Mengual, R.; Nieto, G.; Navarro, L.; Huerta, M.; Rosello, S.; et al. Assessing molecular subtypes of gastric cancer: Microsatellite unstable and Epstein-Barr virus subtypes. Methods for detection and clinical and pathological implications. ESMO Open 2019, 4, e000470. [Google Scholar] [CrossRef]
- Fanotto, V.; Uccello, M.; Pecora, I.; Rimassa, L.; Leone, F.; Rosati, G.; Santini, D.; Giampieri, R.; Di Donato, S.; Tomasello, G.; et al. Outcomes of Advanced Gastric Cancer Patients Treated with at Least Three Lines of Systemic Chemotherapy. Oncologist 2017, 22, 1463–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordon, Y. Tumour immunology: Platelets—A new target in cancer immunotherapy? Nat. Rev. Immunol. 2017, 17, 348. [Google Scholar] [CrossRef] [PubMed]
- Assi, H.A.; Asch, A.S.; Machiorlatti, M.; Vesely, S.K.; Ibrahimi, S. Development of thrombocytopenia is associated with improved survival in patients treated with immunotherapy. Future Sci. OA 2020, 6, FSO581. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, A.; Laterza, M.M.; Tirino, G.; Pompella, L.; Ventriglia, J.; Pappalardo, A.; Famiglietti, V.; Martinelli, E.; Ciardiello, F.; Orditura, M.; et al. Systemic-inflammation-based score can predict prognosis in metastatic gastric cancer patients before first-line chemotherapy. Future Oncol. 2018, 14, 2493–2505. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Del Prete, V.; Crucinio, N.; Serviddio, G.; Vendemiale, G.; Muscatiello, N. Lymphocyte-to-monocyte ratio predicts survival after radiofrequency ablation for colorectal liver metastases. World J. Gastroenterol. 2016, 22, 4211–4218. [Google Scholar] [CrossRef]
d-MMR N = 9 (6.9%) | EBV+ N = 4 (3.1%) | HER2+ N = 26 (19.8%) | All-Negative N = 92 (70.2%) | ||
---|---|---|---|---|---|
Age | Median (range) | 69 yrs (54–83) | 69.5 yrs (60–74) | 61 yrs (35–83) | 65 yrs (31–84) |
Gender | Male Female | 3 (33.3%) 6 (66.7%) | 2 (50.0%) 2 (50.0%) | 14 (53.8%) 12 (46.2%) | 52 (56.5%) 40 (43.5%) |
ECOG PS | Median (range) | 1 (0–2) | 0 (0–1) | 1 (0–2) | 1 (0–2) |
Prior surgery | Yes | 4 (44.4%) | 1 (25.0%) | 7 (26.9%) | 25 (27.2) |
Primary site | Stomach | 5 (55.6) | 2 (50.0%) | 17 (65.4%) | 70 (76.1%) |
Junction | 4 (44.4) | 2 (50.0%) | 9 (34.7) | 22 (23.9%) | |
Disease status | Locally advanced unresectable | 3 (33.3%) | 2 (50.0%) | 5 (19.2%) | 11 (12.0%) |
Metastatic | 6 (66.7%) | 2 (50.0%) | 21 (80.8%) | 81 (82.0%) | |
N° metastasis | ≥2 | 6 (66.7%) | 0 (0.0%) | 13 (50.0%) | 52 (56.5%) |
Site of metastasis | Hepatic | 1 (11.1%) | 1 (25.0%) | 9 (34.6%) | 21 (22.8%) |
Peritoneal | 2 (22.2%) | 1 (25.0%) | 17 (65.4%) | 48 (52.2%) | |
Lymph node | 5 (55.6%) | 2 (50.0%) | 12 (46.2%) | 52 (56.5%) | |
PD-L1 (>5%) (N = 20) | 3 (33.3%) | 2 (50.0%) | 3 (11.5%) | 12 (13.0%) | |
Response | PR | 4 (44.4%) | 2 (50%) | 10 (37.0%) | 35 (38.0%) |
SD | 2 (22.2%) | 1 (25%) | 4 (14.8%) | 23 (25.0%) | |
PD | 3 (33.3%) | 1 (25%) | 12 (44.4%) | 30 (32.6%) |
Variable | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age >70 yrs vs. ≤70 yrs | 0.934 | 0.634–1.377 | 0.731 | 1.167 | 0.717–1.900 | 0.533 |
Sex male vs. female | 0.742 | 0.517–1.065 | 0.106 | / | ||
ECOG PS (0–1 vs. 2) | 0.684 | 0.476–0.982 | 0.040 | 0.670 | 0.445–1.009 | 0.055 |
Primary tumor Site (Gastric vs. GEJ) | 0.729 | 0.485–1.096 | 0.129 | 0.725 | 0.465–1.131 | 0.156 |
Disease status (Metastatic vs. Locally advanced) | 0.769 | 0.470–1.258 | 0.295 | 1.121 | 0.588–2.136 | 0.729 |
Prior Surgery (Yes vs. No) | 1.575 | 1.051–2.360 | 0.028 | 1.820 | 1.040–3.188 | 0.036 |
No. of metastatic sites (>2 vs. other) | 0.914 | 0.638–1.308 | 0.623 | 0.893 | 0.524–1.520 | 0.676 |
Type of metastasis (Liver vs. other) | 1.031 | 0.682–1.559 | 0.885 | 1.307 | 0.714–2.391 | 0.385 |
Type of metastasis (Peritoneum vs. other) | 0.919 | 0.641–1.318 | 0.647 | 1.155 | 0.674–1.981 | 0.600 |
Type of metastasis (Lymph node vs. other) | 1.212 | 0.840–1.749 | 0.304 | 1.190 | 0.709–1.998 | 0.510 |
Regimen FLOT vs. other | 1.646 | 0.801–3.385 | 0.175 | 1.477 | 0.645–3.378 | 0.356 |
MMR status (pMMR vs. dMMR) | 0.594 | 0.274–1.287 | 0.187 | 0.581 | 0.239–1.415 | 0.232 |
EBV status (+ vs. −) | 0.965 | 0.344–2.709 | 0.946 | 1.124 | 0.355–3.555 | 0.842 |
HER2 status (+ vs. −) | 0.926 | 0.586–1.462 | 0.741 | 0.957 | 0.571–1.603 | 0.866 |
All-negative (vs. others) | 0.884 | 0.595–1.315 | 0.554 | / | ||
PD-L1 CPS ≥ 5 (n = 64) | 1.006 | 0.575–1.758 | 0.983 | / | ||
Treatment intensity (Triplet vs. other) | 0.155 | 0.390 | ||||
monotherapy | 1.875 | 0.959–3.668 | 0.066 | 1.200 | 0.445–3.234 | 0.719 |
doublet | 1.181 | 0.715–1.949 | 0.516 | 0.783 | 0.394–1.555 | 0.366 |
Variable | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age >70 yrs vs. ≤70 yrs | 1.093 | 0.686–1.743 | 0.708 | 1.100 | 0.623–1.942 | 0.742 |
Sex male vs. female | 0.491 | 0.318–0.758 | 0.001 | |||
ECOG PS (0–1 vs. 2) | 0.588 | 0.382–0.905 | 0.016 | 0.568 | 0.354–0.912 | 0.019 |
Primary tumor site (Gastric vs. GEJ) | 0.662 | 0.407–1.077 | 0.097 | 0.650 | 0.377–1.122 | 0.122 |
Disease status (Metastatic vs. Locally advanced) | 0.494 | 0.260–0.938 | 0.031 | 1.017 | 0.440–2.353 | 0.968 |
Prior Surgery (Yes vs. No) | 2.434 | 1.441–4.111 | 0.001 | 2.298 | 1.155–4.572 | 0.018 |
N. of metastatic sites (>2 vs. other) | 0.701 | 0.455–1.080 | 0.107 | 0.828 | 0.444–1.543 | 0.553 |
Type of metastasis (Liver vs. other) | 0.956 | 0.588–1.554 | 0.856 | 1.212 | 0.601–2.443 | 0.591 |
Type of metastasis (Peritoneum vs. other) | 0.612 | 0.398–0.943 | 0.026 | 0.917 | 0.497–1.693 | 0.783 |
Type of metastasis (Lymph node vs. other) | 1.344 | 0.870–2.076 | 0.182 | 1.308 | 0.706–2.422 | 0.394 |
Regimen FLOT vs. other | 1.225 | 0.534–2.813 | 0.632 | 0.817 | 0.319–2.090 | 0.673 |
MMR status (pMMR vs. dMMR) | 0.513 | 0.206–1.279 | 0.152 | 0.724 | 0.273–1.922 | 0.517 |
EBV status (+ vs. −) | 1.874 | 0.445–7.892 | 0.392 | 1.673 | 0.366–7.646 | 0.507 |
HER2 status (+ vs. −) | 0.579 | 0.348–0.961 | 0.035 | 0.572 | 0.324–1.007 | 0.053 |
All-negative (vs. others) | 1.016 | 0.646–1.596 | 0.946 | / | ||
PD-L1 CPS ≥ 5 (n = 64) | 1.972 | 0.855–4.549 | 0.111 | / | ||
Treatment intensity (Triplet vs. other) | 0.024 | 0.646 | ||||
monotherapy | 3.256 | 1.393–7.656 | 0.006 | 1.636 | 0.525–5.095 | 0.396 |
doublet | 1.795 | 0.919–3.504 | 0.087 | 1.149 | 0.497–2.659 | 0.745 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salati, M.; Ghidini, M.; Paccagnella, M.; Reggiani Bonetti, L.; Bocconi, A.; Spallanzani, A.; Gelsomino, F.; Barbin, F.; Garrone, O.; Daniele, B.; et al. Clinical Significance of Molecular Subtypes in Western Advanced Gastric Cancer: A Real-World Multicenter Experience. Int. J. Mol. Sci. 2023, 24, 813. https://doi.org/10.3390/ijms24010813
Salati M, Ghidini M, Paccagnella M, Reggiani Bonetti L, Bocconi A, Spallanzani A, Gelsomino F, Barbin F, Garrone O, Daniele B, et al. Clinical Significance of Molecular Subtypes in Western Advanced Gastric Cancer: A Real-World Multicenter Experience. International Journal of Molecular Sciences. 2023; 24(1):813. https://doi.org/10.3390/ijms24010813
Chicago/Turabian StyleSalati, Massimiliano, Michele Ghidini, Matteo Paccagnella, Luca Reggiani Bonetti, Alessandro Bocconi, Andrea Spallanzani, Fabio Gelsomino, Francesca Barbin, Ornella Garrone, Bruno Daniele, and et al. 2023. "Clinical Significance of Molecular Subtypes in Western Advanced Gastric Cancer: A Real-World Multicenter Experience" International Journal of Molecular Sciences 24, no. 1: 813. https://doi.org/10.3390/ijms24010813
APA StyleSalati, M., Ghidini, M., Paccagnella, M., Reggiani Bonetti, L., Bocconi, A., Spallanzani, A., Gelsomino, F., Barbin, F., Garrone, O., Daniele, B., Dominici, M., Facciorusso, A., & Petrillo, A. (2023). Clinical Significance of Molecular Subtypes in Western Advanced Gastric Cancer: A Real-World Multicenter Experience. International Journal of Molecular Sciences, 24(1), 813. https://doi.org/10.3390/ijms24010813