Somaclonal Variation—Advantage or Disadvantage in Micropropagation of the Medicinal Plants
Abstract
:1. Introduction
2. In Vitro Propagation of Medicinal Plants
3. Somaclonal Variation
4. Cytogenetic Analyses and Somaclonal Variation
5. Variation at DNA Level
Plant Species | Type of In Vitro Culture | Cytogenetic Abnormality | Ref. |
---|---|---|---|
Cuminum cyminum L. (2n = 14) | cell suspension culture (CSC) | 29% with 12 chromosomes, 15% tetraploid, 4% with 13 chromosomes, 1% with 27 chromosomes | [52] |
root tip cells of plants regenerated from CSC | chromosome no. ranged between 12 and 28 | ||
Plantago ovata Forssk. (2n = 8) | Second-generation callus cell | numerical variation and other aberrations | [53] |
plant regenerated from second-generation callus | normal diploids | [54] | |
Coffea arabica L. (2n = 44) | plant regenerated from a 27-month-old cell culture | 23–25% of the cell presented aneuploidy (2n − 1, − 2 or − 3) | [55] |
Cyphomandra betacea (Cav.) Sendt. (2n = 24) | short-term (1 and 2 years) and long-term (7 and 10 years) calli | aneuploidy (43, 45, and 46 chromosomes) and tetraploidy | [56] |
plants regenerated from short-term embryogenic cultures (1 and 2 years) | normal (diploid) | ||
plants regenerated from long-term embryogenic cultures (7 and 10 years) | tetraploid | ||
Hypericum perforatum L. (2n = 16) | plants regenerated by adventitious shoot formation | diploids (2n = 2x = 16), triploids (2n = 3x = 24), tetraploids (2n = 4x = 32), and mixoploids | [57] |
Withania somnifera (L.) Dunal (2n = 48) | regenerated plants attained through indirect organogenesis from leaf explants | no modification of chromosome number and structure | [58] |
Carica papaya L. (2n = 18) | somatic embryos | diploid (88%), tetraploid (6%), and aneuploid (6%) plantlets | [59] |
Dioscorea floribunda Mart & Gall (2n = 36) | plants representing a single clone regenerated from stem tissue | diploids, mixoploids, and tetraploids | [60] |
Curcuma longa L. (2n = 63) | root tips of callus-derived regenerants from the field | rare diploids with polymodal distribution of DNA content peaks | [61] |
Tylophora indica R.Br. (2n = 22) | plants obtained by direct organogenesis from leaves | cytologically stable, no abnormality | [62] |
Lathyrus sativus L. (2n = 14) | plants regenerated from long-term callus cultures | 26% with one or more interchanges and/or loss of chromosome segments | [45] |
Plant Species | Type of Analysed Tissue | Molecular Markers | Results | Ref. |
---|---|---|---|---|
Hibiscus sabdariffa L. | single nodes explants, leaf from 10 regenerants + mother plant | RAPD (3 out of 30 were informative) | RAPD polymorphism between explants and mother plant | [69] |
Hibiscus cannabinus L. | leaf tissue from 27 micropropagated plants | RAPD (3 out of 25 were informative) |
| [28] |
Silybum marianum L. | callus tissues, leaves of regenerated plants, seed-derived plantlets, and plantlets | RAPD (9 out of 10 were informative) | OPC 10 revealed polymorphism all other 8 primers—monomorphic bands | [67] |
Chlorophytum borivilianum Santapau & R.R.Fern. | leaves from 15 micropropagated plants and one field-grown plant | 31 RAPD primers | 100% monomorphism—all RAPD profile genetically similar to mother plant | [68] |
Humulus lupulus L. | leaf tissue 10 explants/MS variant | 16 RAPD primers | 9.6% scoreable polymorphisms | [65] |
Celastrus paniculatus Willd. | 40 in vitro regenerated plantlets, rooted microshoots, acclimatized plantlets | RAPD (21 out of 30 were informative) + ISSR (12 out of 20 were informative) | 100% monomorphism | [73] |
Pavetta indica L. | leaf tissue | 6 RAPD + 5 ISSR primers | 100% monomorphic bands | [75] |
Thunbergia coccinea Wall. ex D.Don | leaf tissue from mother plant, in vitro-raised direct regenerants, callus mediated plants | 12 RAPD + 9 ISSR primers | Jaccard’s similarity coefficient 0.9542–1.000—all plants, even those that passed through the callus stage, proved to be genetically stable. | [74] |
Anoectochilus formosanus Hayata | 20 plantlets, sub-cultured in vitro every 3 months for a period of more than 5 years | ISSR (17 out of 50 were informative) | 2.76% polymorphism—low risk of genetic instability, high genetic fidelity | [71] |
Plantago major L. | callus samples from 18 in vitro-raised plants | ISSR (6 out of 18 were informative) | 98.61% polymorphism | [84] |
Orthosiphon stamineus | fresh leaf tissue from 10 in vitro regenerants after the 3rd subculture | ISSR (10 out of 20 were informative) | 7.32% polymorphism | [70] |
Zingiber officinale Roscoe. | leaf tissue + callus | 4 ISSR primers | 11.11%–42.86% polymorphism | [85] |
Salvia bulleyana Diels. | 4 shoot lines + 1 control | 15 ISSR primers | not a significant somaclonal variations | [72] |
Cinchona officinalis Diels. | leaf tissue + callus | ISSR (6 out of 13 were informative) |
| [86] |
Pittosporum eriocarpum Royle. | leaf tissue from 8 hardened plants randomly selected + mother plant | SCoT (10 out of 20 were informative) + ISSR (10 out of 15 were informative) + RAPD (10 out of 15 were informative) | 97% similarity among micropropagated plants and mother plant | [78] |
Rauwolfia tetraphylla L. | callus regenerants (4 from leaf + 3 from stem) | 10 SCoT primers + 10 ISSR primers + 10 RAPD primers | absence of somaclonal variation in regenerants—100% monomorphic bands all 30 primers | [77] |
Dendrobium fimbriatum Lindl. | leaf tissue from mother plant + plants regenerated on Mitra ± hormones | 25 RAPD primers + 34 ISSR primers + 18 SCoT primers | 100% monomorphism between plants regenerated on Mitra medium ± hormones | [76] |
Aerva lanata (L.) Juss. ex Schult. | leaf tissue for 3 samples | 5 combinations of 3 forward + 3 reverse SRAP primers | somaclonal variation in regenerants | [87] |
leaf tissue from mother plant + 9 randomly regenerants | 10 RAPD primers | 100% monomorphic bands | [66] | |
Ducrosia anethifolia (DC.) Boiss. | 8 regenerated plants + mother plant | AFLP analysis—2 different digestion systems: MseI/EcoRI and BglII/MseI |
| [79] |
Polyscias filicifolia (C.Moore ex E.Fourn.) L.H.Bailey | leaf tissue from mother plant + 45 regenerants from each primary/secondary/tertiary somatic embryo | AFLP with 8 primers for MSeI/EcoR1 | 3.51% polymorphism between mother plant and regenerants | [80] |
metAFLP with 8 primers for KpnI/MseI + 8 primers for Acc65I/MseI |
| |||
Parmentiera cereifera Seem. | 20 regenerants + mother plant. | SSR primers (36 out of 38 were informative) | micropropagated plants were genetically stable–4.49% polymorphism | [81] |
Lilium candidum L. | leaf tissue from mother plant + regenerated bulbils + somatic embryos + acclimatized plantlets | 12 SSR primers | no somaclonal variation after micropropagation—100% monomorphism | [82] |
Cannabis sativa L. | leaf tissue from 9 micropropagated plants + donor plant | 12 SSR primers | no somaclonal variation after micropropagation—100% monomorphism | [83] |
Withania somnifera (L.) Dunal | mother plant + 10 micropropagated plantlets | 12 SCoT primers | 0.12% polimorphysm | [88] |
7 combinations of SRAP primers |
| |||
Artemisia absinthium L. | plant tissue in vitro + in vivo raised plants 10 replicates per treatment (MS + IBA) | ISSR primers (5 out of 15 were informative) |
| [89] |
SSAP—MseI enzyme + primers against LTR region and RNase H motif |
|
6. Somaclonal Epigenetic Variation
7. Practical Consequences of Somaclonal Variation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottcher, H. Miracle Drugs; Zora: Zagreb, Croatia, 1965; pp. 23–139. [Google Scholar]
- Wiart, C. Ethnopharmacology of Medicinal Plants: Asia and the Pacific; Human Press Inc.: Totowa, NJ, USA, 2006. [Google Scholar]
- Sovilj, M.; Momčilo, S. Production and application of essential oils from the domestic medicinal plant. PTEP 2001, 5, 34–38. [Google Scholar]
- Bojadzievski, P. The health services in Bitola through the centuries. Bitola Soc. Sci. Art 1992, 1992, 15–27. [Google Scholar]
- Kurhekar, J.V. Preparation of Phytopharmaceuticals for the Management of Disorders; Egbuna, C., Prakash Mishra, A., Goyal, M.G., Eds.; Academic Press Elsevier Inc.: Cambridge, MA, USA, 2021; pp. 55–75. [Google Scholar] [CrossRef]
- Scarborough, J. Pliny’s medicinal plants. The classical review. JSTOR 2016, 66, 132–134. Available online: https://www.jstor.org/stable/24759989 (accessed on 22 September 2022).
- Green, C. Medicinal Plant Ontology in Pliny the Elder’s Natural History. Ph.D. Thesis, Department of Religion, Faculty of Graduate Studies of The University of Manitoba, University of Manitoba, Winnipeg, MB, Canada, 2020. [Google Scholar]
- Everett, N. The Alphabet of Galen: Pharmacy from Antiquity to the Middle Ages—A Critical Edition of the Latin Text with English Translation and Commentary; University of Toronto Press: Toronto, ON, Canada, 2012; p. 445. ISBN 978-0802098126. [Google Scholar]
- Dervendzi, V. Contemporary Treatment with Medicinal Plants; Tabernakul: Skopje, North Macedonia, 1992; pp. 5–43. [Google Scholar]
- Ghiorghiță, G.; Petrescu Nicuță, D. Biotehnologiile Azi; Junimea: Iași, Romania, 2005; p. 326. [Google Scholar]
- Sidhu, Y. In vitro micropropagation of medicinal plants by tissue culture. Plymouth Stud. Sci. 2011, 4, 432–449. Available online: http://hdl.handle.net/10026.1/13944 (accessed on 20 September 2022).
- Efferth, T. Biotechnology applications of plant callus cultures. Engineering 2019, 5, 50–59. [Google Scholar] [CrossRef]
- Sagharyan, M.; Ganjeali, A.; Cheniany, M.; Mousavi Kouhi, S.M. Optimization of callus induction with enhancing production of phenolic compounds production and antioxidants activity in callus cultures of Nepeta binaloudensis Jamzad (Lamiaceae). Iran J. Biotechnol. 2020, 18, e2621. [Google Scholar] [CrossRef]
- Ahmad, A.; Tahir ul Qamar, M.; Shoukat, A.; Aslam, M.M.; Tariq, M.; Hakiman, M.; Joyia, F.A. The effects of genotypes and media composition on callogenesis, regeneration and cell suspension culture of chamomile (Matricaria chamomilla L.). PeerJ 2021, 9, e11464. [Google Scholar] [CrossRef]
- Krishna, H.; Alizadeh, M.; Singh, D.; Singh, U.; Chauhan, N.; Eftekhari, M.; Sadh, R.K. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 2016, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Duncan, R.R. Tissue culture-induced variation and crop improvement. Adv. Agron. 1997, 58, 201–240. [Google Scholar] [CrossRef]
- Ghiorghiţă, G.; Hârţan, M.; Maftei, D.E.; Nicuţă, D. Some considerations regarding the in vitro culture of Rhodiola rosea L. Rom. Biotechnol. Lett. 2011, 16, 5902–5908. [Google Scholar]
- El-Banna, H.Y. Indirect micropropagation of Thymus vulgaris. Plant. J. Plant. Prod. 2017, 8, 1241–1246. [Google Scholar] [CrossRef] [Green Version]
- Cachiță-Cosma, D.; Deliu, C.; Rakosy-Tican, L.; Ardelean, A. Tratat de Biotehnologie Vegetală; Dacia: Cluj-Napoca, Romania, 2004; p. 208. [Google Scholar]
- Ghiorghiță, G. A journey into of the universe of in vitro cultures of plants. Callogenesis Environ. Nat. Resour. Res. 2019, 9, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Ngezahayo, F. Somaclonal variations and their applications in medicinal plant improvement. In Biotechnological Approaches for Medicinal and Aromatic Plants, Conservation, Genetic Improvement and Utilization; Kumar, N., Ed.; Springer: Singapore, 2018; Chapter 23; pp. 503–519. [Google Scholar] [CrossRef]
- Sujana, P.; Naidu, C.V. Indirect plant regeneration from leaf explants of Mentha piperita (L.)—An important multipurpose medicinal plant. J. Phytol. 2011, 3, 19–22. [Google Scholar]
- Islam, A.T.M.R.; Alam, M.F. In vitro callus induction and indirect organogenesis of Mentha piperita (L.)—An aromatic medicinal plant. GSC Biol. Pharm. Sci. 2018, 4, 49–60. [Google Scholar] [CrossRef]
- Joyce, S.M.; Cassells, A.C.; Jain, S.M. Stress and aberrant phenotypes in vitro culture. Plant Cell Tissue Organ Cult. 2003, 74, 103–121. [Google Scholar] [CrossRef]
- Mohanty, S.; Panda, M.; Subudhi, E.; Nayak, S. Plant regeneration from callus culture of Curcuma aromatica and in vitro detection of somaclonal variation through cytophotometric analysis. Biol. Plant. 2008, 52, 783–786. [Google Scholar] [CrossRef]
- Larkin, P.; Scowcroft, W. Somaclonal variation—A novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 1981, 60, 197–214. [Google Scholar] [CrossRef]
- Haque, M.S.; Biswas, T.; Islam, M.S.; Hossain, M.S. In vitro regeneration and PCR-RAPD based detection of somaclonal variation in kenaf (Hibiscus cannabinus). Progress Agric. 2017, 28, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Nwauzoma, A.B.; Jaja, E.T. A review of somaclonal variation in plantain (Musa spp.): Mechanisms and applications. J. Appl. Biosci. 2013, 67, 5252–5260. [Google Scholar] [CrossRef] [Green Version]
- Bouharmont, J. Application of somaclonal variation and in vitro selection to plant improvement. Acta Hortic. 1994, 355, 213–218. [Google Scholar] [CrossRef]
- Mehta, Y.R.; Angra, D.C. Somaclonal variation for disease resistance in wheat and production of dihaploids through wheat × maize hybrids. Genet. Mol. Biol. 2000, 23, 617–622. [Google Scholar] [CrossRef]
- Predieri, S. Mutation induction and tissue culture in improving fruits. Plant Cell Tissue Organ Cult. 2001, 64, 185–210. [Google Scholar] [CrossRef]
- Bhatia, S.; Sharma, K. Chapter 13—Technical glitches in micropropagation. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences; Bhatia, S., Sharma, K., Dahiya, R., Bera, T., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 393–404. ISBN 9780128022214. [Google Scholar]
- Modi, A.; Kanakala, S. Protocols Used in Molecular Biology; Singh, S., Kumar, D., Eds.; Bentham Science Publisher: Sharjah, United Arab Emirates, 2020; Volume 1, pp. 153–161. [Google Scholar]
- Chatterjee, T.; Ghosh, B. Micropropagation of medicinal plants: A review. IJEP 2020, 7, 066–072. [Google Scholar] [CrossRef]
- Moradi, Z.; Farahani, Z.; Sheidai, M.; Satari, T.N. Somaclonal variation in banana (Musa acuminate Colla cv. Valery) regenerated plantlets from somatic embryogenesis: Histological and cytogenetic approaches. Caryologia 2017, 70, 1–6. [Google Scholar] [CrossRef]
- Saravanan, S.; Sarvesan, R.; Vinod, M.S. Identification of DNA elements involved in somaclonal variants of Rauvolfia serpentina (L.) arising from indirect organogenesis as evaluated by ISSR analysis. Indian J. Sci. Technol. 2011, 4, 1241–1245. [Google Scholar] [CrossRef]
- Vazquez, A.M. Insight into somaclonal variation. Plant Biosyst. 2001, 135, 57–62. [Google Scholar] [CrossRef]
- Farahani, F.; Yari, R.; Masoud, S. Somaclonal variation in Dezful cultivar of olive (Olea europaea subsp. europaea). Gene Conserve 2011, 10, 216–221. [Google Scholar]
- Bhojwani, S.S.; Dantu, P.K. Plant Tissue Culture: An Introductory Text; Springer Link: New Delhi, India, 2013; Chapter 1; pp. 11–25. [Google Scholar]
- Das, A.; Mukherjee, P.; Ghorai, A.; Jha, T.B. Comparative karyomorphological analyses of in vitro and in vivo grown plants of Aloe vera L. BURM. f. Nucleus 2010, 53, 89–94. [Google Scholar] [CrossRef]
- Al-Zahim, M.A.; Ford-Lloyd, B.V.; Newbury, H.J. Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis. Plant Cell Rep. 1999, 18, 473–477. [Google Scholar] [CrossRef]
- Gokhale, M.; Bansal, Y.K. Assessment of genetic fidelity in somaclonal variants with cytological and RAPD analysis in Oroxylum indicum (L.) Vent.—An endangered medicinal tree. Indian J. Bitehnol. 2015, 14, 581–584. [Google Scholar]
- Hao, Y.J.; Deng, X.X. Occurrence of chromosomal variations and plant regeneration from long-term-cultured citrus callus. In Vitro Cell Dev. Biol. Plant 2002, 38, 472–476. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Panda, A.; Nayak, P.K.; Dash, S.; Lenka, D.; Mishra, D.R.; Kar, R.K.; Senapati, N.; Dash, G.B. Somaclonal variation for genetic improvement in grasspea (Lathyrus sativus L.). Legum. Res. 2016, 39, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Radic, S.; Prolic, M.; Pavlica, M.; Pevalek-Kozlina, B. Cytogenetic stability of Centaurea ragusina long-term culture. PCTOC 2005, 82, 343–348. [Google Scholar] [CrossRef]
- Krishna, H.; Singh, S.K. Biotechnological advances in mango (Mangifera indica L.) and their future implication in crop improvement—A review. Biotechnol. Adv. 2007, 25, 223–243. [Google Scholar] [CrossRef]
- Pathak, H.; Dhawan, V. ISSR assay for ascertaining genetic fidelity of micropropagated plants of apple rootstock Merton 793. In Vitro Cell Dev. Biol. Plant. 2012, 48, 137–143. [Google Scholar] [CrossRef]
- Hossain, M.M.; Kant, R.; Van, P.T.; Winarto, B.; Zeng, S.; Teixeira da Silva, J.A. The application of biotechnology to orchids. Crit. Rev. Plant. Sci. 2013, 32, 69–139. [Google Scholar] [CrossRef]
- Bello-Bello, J.J.; Iglesias-Andreu, L.G.; Avilés-Viñas, S.A.; Gómez-Uc, E.; Canto-Flick, A.; Santana-Buzzy, N. Somaclonal variation in habanero pepper (Capsicum chinense Jacq.) as assessed ISSR molecular markers. HortScience 2014, 49, 481–485. [Google Scholar] [CrossRef] [Green Version]
- Attia, O.; Attia, I.A.; El Dessoky, S.; Aljuaid, B.S. Using of DNA-barcoding, SCoT and SDS-PAGE protein to assess soma-clonal variation in micro-propagated fig (Ficus carica L.) plant. PJBS 2022, 25, 415–425. [Google Scholar] [CrossRef]
- Ahmed, K.Z.; Aly, H.M.K.A.; Ahmed, S.K.; Teixeira da Silva, J.A.; Kamel, H.M. Establishment of embryogenic cell suspension culture and plant regeneration of Egyptian cumin (Cuminum cyminum L.). Funct. Plant Sci. Biotechnol. 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Wakhlu, A.K.; Barns, K.S. Chromosome studies in hypocotyl callus cultures and regenerated plants of Plantago ovata Forssk. Nucleus 1988, 31, 14–17. [Google Scholar]
- Pramanik, S.; Raychaudhuri, S.S. DNA content, chromosome composition, and isozyme patterns in Plantago L. Bot. Rev. 1977, 63, 124–139. [Google Scholar] [CrossRef]
- Landey, R.B.; Alberto Cenci, A.; Guyot, R.; Bertrand, B.; Georget, F.; Dechamp, E.; Herrera, J.-C.; Aribi, J.; Lashermes, P.; Etienne, H. Assessment of genetic and epigenetic changes during cell culture ageing and relations with somaclonal variation in Coffea arabica. Plant Cell Tiss Organ. Cult. 2015, 122, 517–531. [Google Scholar] [CrossRef] [Green Version]
- Currais, L.; Loureiro, J.; Santos, C.; Canhoto, J.M. Ploidy stability in embryogenic cultures and regenerated plantlets of tamarillo. Plant Cell Tiss. Organ Cult. 2013, 114, 149–159. [Google Scholar] [CrossRef]
- Čellárová, E.; Brutovská, R.; Bruňáková, K.; Daxnerová, Z.; Weigel, R.C. Correlation between hypericin content and the ploidy of somaclones of Hypericum perforatum L. Acta Biotechnol. 2004, 17, 83–90. [Google Scholar] [CrossRef]
- Rana, S.; Dhar, N.; Bhat, W.W.; Razdan, S.; Khan, S.; Dhar, R.S.; Dutt, P.; Lattoo, S.K. A 12-deoxywithastramonolide-rich somaclonal variant in Withania somnifera (L.) Dunal—Molecular cytogenetic analysis and significance as a chemotypic resource. In Vitro Cell. Dev. Biol. Plant 2012, 48, 546–554. [Google Scholar] [CrossRef]
- Abreu, I.S.; Carvalho, C.R.; Clarindo, W. Massal induction of Carica papaya L. ”golden” Somatic embryos and somaclone screening by flow cytometry and cytogenetic analysis. Cytologia 2014, 79, 475–484. [Google Scholar] [CrossRef]
- Sen, J.; Mitra, G.C.; Sharma, A.K. An evaluation of a somaclone of Dioscorea floribunda Mart & Gall. Experientia 1991, 47, 284–288. [Google Scholar] [CrossRef]
- Kuanar, A.; Kar, B.; Acharya, L.; Nayak, S. Nuclear DNA, DNA finger printing and essential oil content variation in callus derived regenerants of Curcuma longa L. Nucleus 2012, 55, 101–106. [Google Scholar] [CrossRef]
- Haque, S.M.; Ghosh, B. Field evaluation and genetic stability assessment of regenerated plants produced via direct shoot organogenesis from leaf explant of an endangered ‘asthma plant’ (Tylophora indica) along with their in vitro conservation. Natl. Acad. Sci. Lett. 2013, 36, 551–562. [Google Scholar] [CrossRef]
- Horáček, J.; Švábová, L.; Šarhanová, P.; Lebeda, A. Variability for resistance to Fusarium solani culture filtrate and fusaric acid among somaclones in pea. Biol Plant. 2013, 57, 133–138. [Google Scholar] [CrossRef]
- Dey, T.; Saha, S.; Ghosh, P.D. Somaclonal variation among somatic embryo derived plants—Evaluation of agronomically important somaclones and detection of genetic changes by RAPD in Cymbopogon winterianus. S. Afr. J. Bot. 2015, 96, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Liberatore, C.M.; Rodolfi, M.; Beghè, D.; Fabbri, A.; Ganino, T.; Chiancone, B. In vitro leaf-derived organogenesis and somaclonal variant detection in Humulus lupulus L. In Vitro Cell. Dev. Biol. Plant 2020, 56, 865–874. [Google Scholar] [CrossRef]
- Sahu, A.R.; Panigrahi, J. Assessment of genetic fidelity of micro propagated plants of Aerva lanata (L.) Juss. ex Schult. using DNA markers. ASAG 2018, 2, 121–125. [Google Scholar]
- Mahmood, T.; Nazar, N.; Abbasi, B.; Khan, M.; Ahmad, M. Detection of somaclonal variations using RAPD fingerprinting in Silybum marianum (L.). J. Med. Plant Res. 2010, 4, 1822–1824. [Google Scholar]
- Samantaray, S.; Maiti, S. An assessment of genetic fidelity of micropropagated plants of Chlorophytum borivilianum using RAPD markers. Biol. Plant. 2010, 54, 334–338. [Google Scholar] [CrossRef]
- Govinden-Soulange, J.; Somanah, D.; Ranghoo-Sanmukhiya, M.; Boodia, N.; Rajkomar, B. Detection of somaclonal variation in micropropagated Hibiscus sabdariffa L. using RAPD markers. Univ. Maurit. Res. J. 2010, 16, 435–447. [Google Scholar]
- Ali, H.; Musa, I.F.; Abu Bakar, N.A.; Karsani, S.A.; Yaacob, J.S. In vitro regeneration and ISSR-based genetic fidelity analysis of orthosiphon stamineus benth. Agronomy 2019, 9, 778. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Lv, Y.; Dong, H.; Guo, S. Analysis of genetic stability through intersimple sequence repeats molecular markers in micropropagated plantlets of Anoectochilus formosanus Hayata, a medicinal plant. Biol. Pharm. Bull. 2010, 33, 384–388. [Google Scholar] [CrossRef] [Green Version]
- Grzegorczyk-Karolak, I.; Hnatuszko-Konka, K.; Krzemińska, M.; Olszewska, M.A.; Owczarek, A. Cytokinin-based tissue cultures for stable medicinal plant production: Regeneration and phytochemical profiling of salvia bulleyana shoots. Biomolecules 2021, 11, 1513. [Google Scholar] [CrossRef]
- Senapati, S.; Aparajita, S.; Rout, G. Micropropagation and assessment of genetic stability in Celastrus paniculatus: An endangered medicinal plant. Biologia 2013, 68, 627–632. [Google Scholar] [CrossRef]
- Sultana, K.W.; Das, S.; Chandra, I.; Roy, A. Efficient micropropagation of Thunbergia coccinea Wall. and genetic homogeneity assessment through RAPD and ISSR markers. Sci. Rep. 2022, 12, 1683. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, K.; Saravanan, S. Genetic fidelity of the in vitro micropropagated Pavetta indica by RAPD and ISSR markers assay. IJSTR 2020, 9, 1759–1763. [Google Scholar]
- Tikendra, L.; Potshangbam, A.M.; Dey, A.; Devi, T.R.; Sahoo, M.R.; Nongdam, P. RAPD, ISSR, and SCoT markers based genetic stability assessment of micropropagated Dendrobium fimbriatum Lindl. var. oculatum Hk. f.—An important endangered orchid. Physiol. Mol. Biol. Plants 2021, 27, 341–357. [Google Scholar] [CrossRef] [PubMed]
- Rohela, G.; Jogam, P.; Bylla, P.; Reuben, C. Indirect regeneration and assessment of genetic fidelity of acclimated plantlets by SCoT, ISSR, and RAPD markers in Rauwolfia tetraphylla L.: An endangered medicinal plant. Biomed Res. Int. 2019, 2019, 3698742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, J.; Dwivedi, M.D.; Sourabh, P.; Uniyal, P.L.; Pandey, A.K. Genetic homogeneity revealed using SCoT, ISSR and RAPD markers in micropropagated Pittosporum eriocarpum Royle—An endemic and endangered medicinal plant. PLoS ONE 2016, 11, e0159050. [Google Scholar] [CrossRef] [Green Version]
- Shooshtari, L.; Omidi, M.; Majidi, E.; Naghavi, M.R.; Ghorbanpour, M.; Etminan, A. Assessment of somaclonal variation of regenerated Ducrosia anethifolia plants using AFLP markers. J. Hortic. For. 2013, 17, 99–106. [Google Scholar]
- Śliwińska, A.A.; Białek, A.; Orłowska, R.; Mańkowski, D.; Sykłowska-Baranek, K.; Pietrosiuk, A. Comparative study of the genetic and biochemical variability of Polyscias filicifolia (Araliaceae) regenerants obtained by indirect and direct somatic embryogenesis as a source of triterpenes. Int. J. Mol. Sci. 2021, 22, 5752. [Google Scholar] [CrossRef]
- Elshafei, A.A.; Esmaiel, N.M. Analysis of diversity using simple sequence repeat (SSR): Distinctions between original Parmentiera cereifera tree and somaclones. Bull. Natl. Res. Cent. 2018, 42, 33. [Google Scholar] [CrossRef]
- Tokgöz, H.B.; Altan, F. Callus induction and micropropagation of Lilium candidum L. using stem bulbils and confirmation of genetic stability via SSR-PCR. IJSM 2020, 7, 286–296. [Google Scholar] [CrossRef]
- Ioannidis, K.; Tomprou, I.; Mitsis, V.; Koropouli, P. Genetic evaluation of in vitro micropropagated and regenerated plants of Cannabis sativa L. using SSR molecular markers. Plants 2022, 11, 2569. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Khadivi-Khub, A. Somaclonal variation in callus samples of Plantago major using inter-simple sequence repeat marker. Caryologia 2015, 68, 19–24. [Google Scholar] [CrossRef]
- El-Hameid, A.R.; Abo El-kheir, Z.A.; Abdel-Hady, M.S.; Helmy, W.A. Identification of DNA variation in callus derived from Zingiber officinale and anticoagulation activities of ginger rhizome and callus. Bull. Natl. Res. Cent. 2020, 44, 28. [Google Scholar] [CrossRef] [Green Version]
- Armijos, R.; Espinosa-Delgado, L.; Cueva, A. Indirect shoot regeneration using 2,4-D induces somaclonal variations in Cinchona officinalis. Floresta Ambiente 2021, 28, e20210017. [Google Scholar] [CrossRef]
- Elsherbeny, E.A.; Hassanen, S.A.; Diab, M.I. In vitro propagation and DNA barcoding of the rare medicinal plant Aerva lanata (L.) Juss. ex Schult. grown in Gebel Elba, Egypt. J. Exp. Biol. 2021, 17, 43–53. [Google Scholar] [CrossRef]
- Ismail, I.A.; Aljuaid, B.S.; Dessoky, E.; Dessoky, S.; Attia, O.A. DNA-barcoding, SCoT and SRAP based somaclonal variation in micropropagated Withania somnifera plantlets. JAC 2022, 8, 75–86. [Google Scholar] [CrossRef]
- Kour, B.; Kour, G.; Kaul, S.; Dhar, M.K. In vitro mass multiplication and assessment of genetic stability of in vitro raised Artemisia absinthium L. plants using ISSR and SSAP molecular markers. Adv. Bot. 2014, 2014, 727020. [Google Scholar] [CrossRef] [Green Version]
- Pfluger, J.; Wagner, D. Histone modifications and dynamic regulation of genome accessibility in plants. Curr. Opin. Plant Biol. 2007, 10, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Miguel, C.; Marum, L. An epigenetic view of plant cells cultured in vitro: Somaclonal variation and beyond. JXB 2011, 62, 3713–3725. [Google Scholar] [CrossRef] [Green Version]
- Bernatavichute, Y.V.; Zhang, X.; Cokus, S.; Pellegrini, M.; Jacobsen, S.E. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS ONE 2008, 3, e3156. [Google Scholar] [CrossRef] [Green Version]
- Smulders, M.J.M.; Klerk, G.J.M. Epigenetics in plant tissue culture. Plant Growth Regul. 2011, 63, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Sura, W.; Kabza, M.; Karlowski, W.M.; Bieluszewski, T.; Kus-Slowinska, M.; Pawełoszek, L.; Sadowski, J.; Ziolkowskia, P.A. Dual role of the histone variant H2A.Z in transcriptional regulation of stress-response genes. Plant Cell 2017, 29, 791–807. [Google Scholar] [CrossRef]
- Kaeppler, S.M.; Kaeppler, H.F.; Rhee, Y. Epigenetic aspects of somaclonal variation in plants. Plant Mol. Biol. 2000, 43, 179–188. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Diao, S.; Zhong, S.; Wu, S.; Wang, L.; Su, X.; Zhang, B. Assessment of epigenetic and phenotypic variation in Populus nigra regenerated via sequential regeneration. Front. Plant Sci. 2021, 12, 632088. [Google Scholar] [CrossRef]
- Oh, T.J.; Cullis, M.A.; Kunert, K.; Engelborghs, I.; Swennen, R.; Cullis, C.A. Genomic changes associated with somaclonal variation in banana (Musa spp.). Physiol. Plant. 2007, 129, 766–774. [Google Scholar] [CrossRef] [Green Version]
- Azizi, P.; Hanafi, M.M.; Sahebi, M.; Harikrishna, J.A.; Taheri, S.; Yassoralipour, A.; Nasehi, A. Epigenetic changes and their relationship to somaclonal variation: A need to monitor the micropropagation of plantation crops. Funct. Plant. Biol. 2020, 47, 508–523. [Google Scholar] [CrossRef]
- Wang, X.; Wu, R.; Lin, X.; Bai, Y.; Song, C.; Yu, X.; Xu, C.; Zhao, N.; Dong, Y.; Liu, B. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids. BMC Plant Biol. 2013, 13, 77. [Google Scholar] [CrossRef] [Green Version]
- Alfalahi, A.O.; Hussein, Z.T.; Sadder, A.K.M.T.; Qasem, J.R.; Al-Khayri, J.M.; Jain, S.M.; Almehemdi, A.F. Epigenetic variation as a new plant breeding tool: A review. J. King Saud Univ. Sci. 2022, 34, 102302. [Google Scholar] [CrossRef]
- Wibowoa, A.; Beckerb, C.; Durra, J.; Pricea, J.; Spaepend, S.; Hiltona, S.; Putraa, S.H.; Papareddya, P.; Saintaina, Q.; Harveya, S.; et al. Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation. Proc. Natl. Acad. Sci. USA 2022, 115, e9145–e9152. [Google Scholar] [CrossRef] [Green Version]
- Madlung, A.; Comai, L. The effect of stress on genome regulation and structure. Ann. Bot. 2004, 94, 481–495. [Google Scholar] [CrossRef] [Green Version]
- Grandbastien, M.A.; Audeon, C.; Bonnivard, E.; Casacuberta, J.M.; Chalhoub, B.; Costa, A.P.; Le, Q.H.; Melayah, D.; Petit, M.; Poncet, C.; et al. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet. Genome Res. 2005, 110, 229–241. [Google Scholar] [CrossRef]
- Lisch, D. Epigenetic regulation of transposable elements in plants. Annu. Rev. Plant. Biol. 2009, 60, 43–66. [Google Scholar] [CrossRef]
- Yaakov, B.; Kashkush, K. Methylation, transcription, and rearrangements of transposable elements in synthetic allopolyploids. Int. J. Plant Genomics 2011, 2011, 569826. [Google Scholar] [CrossRef] [Green Version]
- Pecinka, A.; Mittelsten Scheid, O. Stress-induced chromatin changes: A critical view on their heritability. Plant Cell Physiol. 2012, 53, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Miyao, A.; Nakagme, M.; Ohnuma, T.; Yamagata, H.; Kanamori, H.; Katayose, Y.; Takahashi, A.; Matsumoto, T.; Hirochika, H. Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol. 2012, 53, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Sabot, F.; Picault, N.; El-Baidouri, M.; Llauro, C.; Chaparro, C.; Piegu, B.; Roulin, A.; Guiderdoni, E.; Delabastide, M.; McCombie, R.; et al. Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data. Plant J. 2011, 66, 241–246. [Google Scholar] [CrossRef]
- Lin, C.; Lin, X.; Hu, L.; Yang, J.; Zhou, T.; Long, L.; Xu, C.; Xing, S.; Qi, B.; Dong, Y.; et al. Dramatic genotypic difference in, and effect of genetic crossing on, tissue culture-induced mobility of retrotransposon Tos17 in rice. Plant. Cell. Rep. 2012, 31, 2057–2063. [Google Scholar] [CrossRef]
- Karim, R.; Nuruzzaman, M.; Khalid, N.; Harikrishna, J. Importance of DNA and histone methylation in in vitro plant propagation for crop improvement: A review. Ann. Appl. Biol. 2016, 169, 1–16. [Google Scholar] [CrossRef]
- Fraga, H.P.; Vieira, L.V.; Caprestano, C.A.; Steinmacher, D.A.; Micke, G.A.; Spudeit, D.A.; Pescador, R.; Guerr, M.P. 5-Azacytidine combined with 2,4-D improves somaticembryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels. Plant. Cell. Rep. 2012, 31, 2165–2176. [Google Scholar] [CrossRef]
- Keller, H.A.; Tressens, S.G. Presencia en argentina de dos especies de uso múltiple: Acca sellowiana (Myrtaceae) y Casearia lasiophylla (Flacourtiaceae). Darwiniana 2007, 45, 204–212. [Google Scholar]
- Nic-Can, G.I.; López-Torres, A.; Barredo-Pool, F.; Wrobel, K.; Loyola-Vargas, V.M.; Rojas-Herrera, R.; De-la-Peña, C. New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora. PLoS ONE 2013, 8, e72160. [Google Scholar] [CrossRef] [Green Version]
- AL-Asmari, K.M.; Abu Zeid, I.M.; Al-Attar, A.M. Medicinal properties of Arabica coffee (Coffea arabica) oil: An overview. Adv. Life Sci. 2020, 8, 20–29. [Google Scholar]
- Chakrabarty, D.; Yu, K.W.; Paek, K.Y. Detection of DNA methylation changes during somaticembryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Sci. 2003, 165, 61–68. [Google Scholar] [CrossRef]
- Jaligot, E.; Rival, A.; Beulé, T.; Dussert, S.; Verdeil, J.L. Somaclonal variation in oil palm (Elaeis guineensis Jacq.): The DNA methylation hypothesis. Plant Cell Rep. 2000, 19, 684–690. [Google Scholar] [CrossRef]
- Fiuk, A.; Piotr, T.; Bednarek, P.; Rybczyński, J. Flow cytometry, HPLC-RP, and metAFLP analyses to assess genetic variability in somatic embryo-derived plantlets of Gentiana pannonica Scop. Plant Mol. Biol. Rep. 2010, 28, 413–420. [Google Scholar] [CrossRef]
- Gillis, K.; Gielis, J.; Peeters, H.; Dhooghe, E.; Oprins, J. Somatic embryogenesis from mature Bambusa balcooa Roxburgh as basis for mass production of elite forestry bamboos. PCTOC 2007, 91, 115–123. [Google Scholar] [CrossRef]
- Parra, R.; Pastor, M.; Pérez-Payá, E.; Amo-Marco, J.B. Effect of in vitro shoot multiplication and somatic embryogenesis on 5-methylcytosine content in DNA of Myrtus communis L. Plant Growth Regul. 2001, 33, 131–136. [Google Scholar] [CrossRef]
- Duarte-Aké, F.; Castillo-Castro, E.; Pool, F.B.; Espadas, F.; Santamaría, J.M.; Robert, M.L.; De-la-Peña, C. Physiological differences and changes in global DNA methylation levels in Agave angustifolia Haw. albino variant somaclones during the micropropagation process. Plant. Cell Rep. 2016, 35, 2489–2502. [Google Scholar] [CrossRef]
- Peredo, E.L.; Revilla, M.A.; Arroyo-García, R. Assessment of genetic and epigenetic variation in hop plants regenerated from sequential subcultures of organogenic calli. J. Plant. Physiol. 2006, 163, 1071–1079. [Google Scholar] [CrossRef]
- Peredo, E.L.; Arroyo-García, R.; Revilla, M.A. Epigenetic changes detected in micropropagated hop plants. J. Plant. Physiol. 2009, 66, 1101–1111. [Google Scholar] [CrossRef]
- Xu, M.; Li, X.; Korban, S.S. DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.). Theor. Appl. Genet. 2004, 109, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Bednarek, P.T.; Orłowska, R. Plant tissue culture environment as a switch key of (epi)genetic changes. PCTOC 2020, 140, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Misra, A.K.; Varma, S.K.; Kumar, R. Anti-inflammatory effect of an extract of agave americana on experimental animals. Pharmacogn. Res. 2018, 10, 104–108. [Google Scholar] [CrossRef]
- De-la-Peña, C.; Nic-Can, G.; Ojeda, G.; Herrera-Herrera, J.J.; López-Torres, A.; Wrobel, K.; Robert-Díaz, R. KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp. BMC Plant Biol. 2012, 12, 203. [Google Scholar] [CrossRef]
- Brodersen, P.; Sakvarelidze-Achard, L.; Bruun-Rasmussen, M.; Dunoyer, P.; Yamamoto, Y.Y.; Sieburth, L.; Voinnet, O. Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008, 320, 1185–1190. [Google Scholar] [CrossRef]
- Chellappan, P.; Xia, J.; Zhou, X.; Gao, S.; Zhang, X.; Coutino, G.; Vazquez, F.; Zhang, W.; Jin, H. siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res. 2010, 38, 6883–6894. [Google Scholar] [CrossRef]
- Azman, A.S.; Mhiri, C.; Grandbastien, M.A.; Tam, S.M. Transposable elements and the detection of somaclonal variation in plant tissue culture: A review. Malays. Appl. Biol. 2014, 43, 1–12. [Google Scholar]
- Li, H.; Zhang, Z.; Huang, F.; Chang, L.; Ma, Y. MicroRNA expression profiles in conventional and micropropagated strawberry (Fragaria x ananassa Duch.) plants. Plant Cell Rep. 2009, 28, 891–902. [Google Scholar] [CrossRef]
- Giampieri, F.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Alvarez-Suarez, J.M.; Afrin, S.; Bompadre, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Strawberry as a health promoter: An evidence based review. Food Funct 2005, 6, 1386–1398. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhao, X.; Zhao, X.; Dai, H.; Dai, H.; Wu, W.; Mao, W.; Zhang, Z. Tissue Culture Responsive MicroRNAs in Strawberry. Plant Mol. Biol. Rep. 2010, 30, 1047–1054. [Google Scholar] [CrossRef]
- Rodriguez-Enriquez, J.; Dickinson, H.G.; Grant-Downton, R.T. MicroRNA misregulation: An overlooked factor generating somaclonal variation? Trends Plant. Sci. 2011, 16, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Slotkin, R.K.; Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 2007, 8, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Tanurdzic, M.; Vaughn, M.W.; Jiang, H.; Lee, T.J.; Slotkin, R.K.; Sosinski, B.; Thompson, W.F.; Doerge, R.W.; Martienssen, R.A. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol. 2008, 6, 2880–2895. [Google Scholar] [CrossRef] [PubMed]
- Alves, E.; Ballesteros, I.; Linacero, R.; Vázquez, A.M. RYS1, a foldback transposon, is activated by tissue culture and shows preferential insertion points into the rye genome. Theor. Appl. Genet. 2005, 111, 431–436. [Google Scholar] [CrossRef]
- Barret, P.; Brinkman, M.; Beckert, M. A sequence related to rice Pong transposable element displays transcriptional activation by in vitro culture and reveals somaclonal variations in maize. Genome 2006, 49, 1399–1407. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, K.; Shen, Y.; Huang, Z.; Li, M.; Tang, D. Identifcation of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice. Genomics 2009, 93, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Roopadarshini, V.; Gayatri, M.C. Isolation of somaclonal variants for morphological and biochemical traits in Curcuma longa (Turmeric). Res. Plant Biol. 2012, 2, 31–37. [Google Scholar]
- Kintzios, S.; Barberaki, M.; Drossopoulos, J.; Turgelis, P.; Konstas, J. Effect of medium composition and explant source on the distribution profiles selected micronutrients in mistletoe tissue cultures. J. Plant Nutr. 2003, 26, 369–397. [Google Scholar] [CrossRef]
- Shyam, C.; Tripathi, M.K.; Tiwari, S.; Tripathi, N.; Solanki, R.S.; Sapre, S.; Ahuja, A.; Tiwari, S. In vitro production of somaclones with decreased erucic acid content in indian mustard [Brassica juncea (Linn.) Czern&Coss]. Plants 2021, 10, 1297. [Google Scholar] [CrossRef]
- Kumar, V.; Thakur, A.K.; Barothia, N.D.; Chatterjee, S.S. Therapeutic potentials of Brassica juncea: An overview. TANG 2011, 1, 2.1–2.16. [Google Scholar] [CrossRef] [Green Version]
- Radomir, A.M.; Stan, R.; Pandelea, M.L.; Vizitiu, D.E. In vitro multiplication of Mentha piperita L. and comparative evaluation of some biochemical compounds in plants regenerated by micropropagation and conventional method. Acta Sci. Pol. Hortorum Cultus 2022, 21, 45–52. [Google Scholar] [CrossRef]
- Shelepova, O.V.; Dilovarova, T.A.; Gulevich, A.A.; Olekhnovich, L.S.; Shirokova, A.V.; Ushakova, I.T.; Baranova, E.N. Chemical components and biological activities of essential oils of Mentha × piperita L. from field-grown and field-acclimated after in vitro propagation plants. Agronomy 2021, 11, 2314. [Google Scholar] [CrossRef]
- Hariedy, I.M.; Rashed, M.A.; Mahassen, M.A. Development of in vitro somaclonal variation for Pelargonium raveolens l’herit, ait. AJS 2019, 27, 563–577. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Gardezi, D.A.; Batley, J.; Satomi, H.; Zander, M.; Javid, A.; Iqbal, M.Z.; Awan, S.I. Somaclonal variations for red rot and sugarcane mosaic virus resistance and candidate genes integrity assessment in somaclones of selected sugarcane varieties (Saccharum officinarum L.). Pak. J. Agric. Sci. 2019, 56, 15–17. [Google Scholar]
- Abo-Elwafa, A.; Bakheit, B.R.; El-Taib, A.B.; Noby, N.Y. Evaluation of some new somaclones of sugarcane for yield and quality. SVUIJAS 2021, 3, 129–139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duta-Cornescu, G.; Constantin, N.; Pojoga, D.-M.; Nicuta, D.; Simon-Gruita, A. Somaclonal Variation—Advantage or Disadvantage in Micropropagation of the Medicinal Plants. Int. J. Mol. Sci. 2023, 24, 838. https://doi.org/10.3390/ijms24010838
Duta-Cornescu G, Constantin N, Pojoga D-M, Nicuta D, Simon-Gruita A. Somaclonal Variation—Advantage or Disadvantage in Micropropagation of the Medicinal Plants. International Journal of Molecular Sciences. 2023; 24(1):838. https://doi.org/10.3390/ijms24010838
Chicago/Turabian StyleDuta-Cornescu, Georgiana, Nicoleta Constantin, Daniela-Maria Pojoga, Daniela Nicuta, and Alexandra Simon-Gruita. 2023. "Somaclonal Variation—Advantage or Disadvantage in Micropropagation of the Medicinal Plants" International Journal of Molecular Sciences 24, no. 1: 838. https://doi.org/10.3390/ijms24010838
APA StyleDuta-Cornescu, G., Constantin, N., Pojoga, D.-M., Nicuta, D., & Simon-Gruita, A. (2023). Somaclonal Variation—Advantage or Disadvantage in Micropropagation of the Medicinal Plants. International Journal of Molecular Sciences, 24(1), 838. https://doi.org/10.3390/ijms24010838