17β-Estradiol Induced Sex Reversal and Gonadal Transcriptome Analysis in the Oriental River Prawn (Macrobrachium nipponense): Mechanisms, Pathways, and Potential Harm
Abstract
:1. Introduction
2. Results
2.1. Effects of Different Concentrations of E2 of Juvenile Prawns
2.1.1. Sex Ratio
2.1.2. Histological Observations of the Gonad
2.2. The Comparative Transcriptomic Analysis
2.2.1. Overview of Transcriptome Sequencing
2.2.2. Identification and Functional Analysis of DEGs
2.2.3. GO and COG Enrichment Analysis of DEGs
2.2.4. KEGG Analysis and Important Differentially Expressed Pathways
2.2.5. The Response of Reproduction-Related Genes to Sex Reversal
2.2.6. Validation of DEGs by qRT-PCR
3. Discussion
4. Materials and Methods
4.1. Experimental Prawns
4.2. Dietary Preparation
4.3. Experimental Design
4.4. Determine Sex Reversal Concentration
4.4.1. Sex Ratio Statistics
4.4.2. Histological Observations
4.5. Transcriptomic Sequencing
4.5.1. RNA Isolation, Library Construction, and Sequencing
4.5.2. Assembly and Dataset Annotation
4.5.3. DEG Analysis and Quantitative Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, Y.; Lai, Y. Sex and sex identification of fish. Acta Hydrobiolocica Sin. 2006, 30, 221–226. [Google Scholar] [CrossRef]
- Piferrer, F. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 2001, 197, 229–281. [Google Scholar] [CrossRef]
- Pandian, T.; Sheela, S. Hormonal induction of sex reversal in fish. Aquaculture 1995, 138, 1–22. [Google Scholar] [CrossRef]
- Pandian, T.; Kirankumar, S. Recent advances in hormonal induction of sex-reversal in fish. J. Appl. Aquac. 2003, 13, 205–230. [Google Scholar] [CrossRef]
- Voorhees, J.; Mamer, E.; Schill, D.; Adams, M.; Martinez, C.; Barnes, M. 17β-Estradiol can induce sex reversal in Brown Trout. Fishes 2023, 8, 103. [Google Scholar] [CrossRef]
- Chevassus, B.; Devaux, A.; Chourrout, D.; Jalabert, B. Production of YY rainbow trout males by self-fertilization of induced hermaphrodites. J. Hered. 1988, 79, 89–92. [Google Scholar] [CrossRef]
- Cai, Y.; Ng, P. The freshwater palaemonid prawns (crustacea: Decapoda: Caridea) of Cyanmar. Hydrobiologia 2002, 487, 59–83. [Google Scholar] [CrossRef]
- De Grave, S.; Ghane, A. The establishment of the oriental river prawn, Macrobrachium nipponense (de Haan, 1849) in Anzali Lagoon, Iran. Aquat. Invasions 2006, 1, 204–208. [Google Scholar] [CrossRef]
- Harlıoğlu, M.; Yonar, M.; Harlıoğlu, A.; Yonar, S.; Farhadi, A. Effects of different methods and times of 17β-estradiol treatment on the feminization success in the narrow-clawed crayfish Astacus leptodactylus (Eschscholtz, 1823). Invertebr. Reprod. Dev. 2017, 61, 245–252. [Google Scholar] [CrossRef]
- Lin, S.; Benfey, T.; Martin, D. Hormonal sex reversal in Atlantic cod, Gadus morhua. Aquaculture 2012, 364, 192–197. [Google Scholar] [CrossRef]
- Jin, S.; Yue, D.; Fu, H.; Jiang, S.; Xiong, Y.; Qiao, H.; Zhang, W.; Gong, Y.; Wu, Y. Effects of dietary supplementation with 17β-estradiol and 17α-methyltestosterone on growth performance and gonadal development of the juvenile oriental river prawn (Macrobrachium nipponense). Aquac. Rep. 2022, 23, 101042. [Google Scholar] [CrossRef]
- Johnstone, R.; Macintosh, D.; Wright, R. Elimination of orally administered 17α-methyltestosterone by Oreochromis mossambicus (tilapia) and Salmo gairdneri (rainbow trout) juveniles. Aquaculture 1983, 35, 249–257. [Google Scholar] [CrossRef]
- Wang, X.; He, R.; Xiao, B.; Lu, Y. Therapeutic effects of 17β-estradiol on pelvic organ prolapse by inhibiting Mfn2 expression: An in vitro study. Front. Endocrinol. 2020, 11, 586242. [Google Scholar] [CrossRef]
- Karki, N.; Colombo, R.; Gaines, K.; Maia, A. Exposure to 17β-estradiol causes erosion of sexual dimorphism in Bluegill (Lepomis macrochirus). Environ. Sci. Pollut. Res. 2021, 28, 6450–6458. [Google Scholar] [CrossRef]
- Shull, J.; Dennison, K.; Chack, A.; Trentham, A. Rat models of 17β-estradiol-induced mammary cancer reveal novel insights into breast cancer etiology and prevention. Physiol. Genom. 2018, 50, 215–234. [Google Scholar] [CrossRef] [PubMed]
- Ingberg, E.; Theodorsson, A.; Theodorsson, E.; Strom, J. Methods for long-term 17β-estradiol administration to mice. Gen. Comp. Endocrinol. 2012, 175, 188–193. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Li, T.; Qiao, L.; Yang, Q.; Rong, W.; Liu, Q.; Wang, W.; Song, J.; Wang, X.; et al. Effects of 17α-Methyltestosterone on the transcriptome and sex hormones in the brain of Gobiocypris rarus. Int. J. Mol. Sci. 2023, 24, 3571. [Google Scholar] [CrossRef]
- Arukwe, A.; Goksøyr, A. Eggshell and egg yolk proteins in fish: Hepatic proteins for the next generation: Oogenetic, population, and evolutionary implications of endocrine disruption. Comp. Hepatol. 2003, 2, 4. [Google Scholar] [CrossRef]
- Teal, C.; Schill, D.; Fogelson, S.; Roberts, C.; Fitzsimmons, K.; Bauder, J.; Stewart, W.; Bonar, S. The effects of estradiol-17β on the sex reversal, survival, and growth of green sunfish Lepomis cyanellus. Aquaculture 2022, 15, 562. [Google Scholar] [CrossRef]
- Ono, K.; Sandell, L.; Trainor, P.; Wu, D. Retinoic acid synthesis and autoregulation mediate zonal patterning of vestibular organs and inner ear morphogenesis. Development 2020, 147, dev192070. [Google Scholar] [CrossRef]
- Bowles, J.; Feng, C.; Ineson, J.; Miles, K.; Spiller, C.; Harley, V.; Sinclair, A.; Koopman, P. Retinoic acid antagonizes testis development in mice. Cell Rep. 2018, 24, 1330–1341. [Google Scholar] [CrossRef] [PubMed]
- Kusakabe, M.; Onishi, Y.; Tada, H.; Kurihara, F.; Kusao, K.; Furukawa, M.; Iwai, S.; Yokoi, M.; Sakai, W.; Sugasawa, K. Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes Environ. 2019, 41, 2. [Google Scholar] [CrossRef] [PubMed]
- Falkenberg, M. Mitochondrial DNA replication in mammalian cells: Overview of the pathway. Essays Biochem. 2018, 62, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Catez, F.; Dalla, N.; Marcel, V.; Zorbas, C.; Lafontaine, D.; Diaz, J. Ribosome biogenesis: An emerging druggable pathway for cancer therapeutics. Biochem. Pharmacol. 2019, 159, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; López, J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef] [PubMed]
- Wright, W.; Shah, S.; Heyer, W. Homologous recombination and the repair of DNA double-strand breaks. J. Biol. Chem. 2018, 293, 10524–10535. [Google Scholar] [CrossRef]
- Zheng, Y.; Yuan, J.; Meng, S.; Chen, J.; Gu, Z. Testicular transcriptome alterations in zebrafish (Danio rerio) exposure to 17β-estradiol. Chemosphere 2019, 218, 14–25. [Google Scholar] [CrossRef]
- Lee, I.; Zhang, G.; Mesaros, C.; Penning, T. Estrogen receptor dependent and independent roles of benzo [a] pyrene in ishikawa cells. J. Endocrinol. 2020, 247, 139. [Google Scholar] [CrossRef]
- Kumar, N.; Raja, S.; Van, B. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res. 2020, 48, 11227–11243. [Google Scholar] [CrossRef]
- Cai, P.; Yuan, H.; Gao, Z.; Daka, P.; Qiao, H.; Zhang, W.; Jiang, S.; Xiong, Y.; Gong, Y.; Wu, Y.; et al. Sex reversal induced by dietary supplementation with 17α-Methyltestosterone during the critical period of sex differentiation in oriental river prawn (Macrobrachium nipponense). Animals 2023, 13, 1369. [Google Scholar] [CrossRef]
- Finkelstein, M.; Megnagi, B.; Ickowicz, D.; Breitbart, H. Regulation of sperm motility by PIP2(4,5) and actin polymerization. Dev. Biol. 2013, 381, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Breitbart, H.; Etkovitz, N. Role and regulation of EGFR in actin remodeling in sperm capacitation and the acrosome reaction. Asian J. Androl. 2011, 13, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Hamada, D.; Kamikubo, H.; Hirata, K.; Kataoka, M.; Yamamoto, M.; Ikawa, M.; Okabe, M.; Hagihara, Y. Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion. Development 2013, 140, 3221–3229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fu, H.; Jin, S. Molecular characterization, genomic organization, and expression analysis of sperm gelatinase gene during post-embryonic development in Macrobrachium nipponense. Biol. Turk. J. Fish. Aquat. Sci. 2014, 14, 689–696. [Google Scholar] [CrossRef]
- Zhu, J.; Fu, H.; Qiao, H.; Jin, S.; Zhang, W.; Jiang, S.; Gong, Y.; Xiong, Y. Expression and functional analysis of cathepsin L1 in ovarian development of the oriental river prawn, Macrobrachium nipponense. Aquac. Rep. 2021, 20, 100724. [Google Scholar] [CrossRef]
- Xu, L.; Fu, Y.; Fu, H.; Zhang, W.; Qiao, H.; Jiang, S.; Xiong, Y.; Jin, S.; Gong, Y.; Wang, Y. Transcriptome analysis of hepatopancreas from different living states oriental river prawn (Macrobrachium nipponense) in response to hypoxia. Comp. Biochem. Physiol. Part D: Genom. Proteom. 2021, 40, 100902. [Google Scholar] [CrossRef]
- Xiu, Y.; Feng, J.; Lu, W.; Liu, D.; Wu, T.; Zhu, H.; Liu, P.; Li, W.; Ren, Q.; Gu, W. Identification of a novel cognate cytosolic Hsp70 gene (MnHsc70-2) from oriental river prawn Macrobrachium nipponense and comparison of its expressions with the first cognate Hsc70 (MnHsc70-1) under different stresses. Cell Stress Chaperones 2014, 19, 949–961. [Google Scholar] [CrossRef]
- Ding, Z.; Zhang, Y.; Ye, J.; Du, Z.; Kong, Y. An evaluation of replacing fish meal with fermented soybean meal in the diet of Macrobrachium nipponense: Growth, nonspecific immunity, and resistance to Aeromonas hydrophila. Fish Shellfish Immunol. 2015, 44, 295–301. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiao, H.; Zhang, W.; Sun, S.; Jiang, S.; Gong, Y.; Xiong, Y.; Jin, S.; Fu, H. Molecular cloning and expression analysis of two sex-lethal homolog genes during development in the oriental river prawn, Macrobrachium nipponense. Genet. Mol. Res. 2013, 12, 4698–4711. [Google Scholar] [CrossRef]
- Du, Y.; Ma, K.; Qiu, G. Discovery of the genes in putative GnRH signaling pathway with focus on characterization of GnRH-like receptor transcripts in the brain and ovary of the oriental river prawn Macrobrachium nipponense. Aquaculture 2015, 442, 1–11. [Google Scholar] [CrossRef]
- Liu, X.; Luo, B.; Feng, J.; Zhou, L.; Ma, K.; Qiu, G. Identification and profiling of microRNAs during gonadal development in the giant freshwater prawn Macrobrachium rosenbergii. Sci. Rep. 2019, 9, 2406. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zheng, C.; Shi, X. Effect of paternal exposure to microcystin-lr on testicular dysfunction, reproduction, and offspring immune response in the oriental river prawn (Macrobrachium nipponense). Aquaculture 2021, 534, 736332. [Google Scholar] [CrossRef]
- Snoeren, E.; Bovens, A.; Refsgaard, L.; Westphal, K.; Waldinger, M.; Olivier, B.; Oosting, R. Combination of testosterone and vardenafil increases female sexual functioning in sub-primed rats. J. Sex. Med. 2011, 8, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Hodar, A.; Vasava, R.; Mahavadiya, D.; Joshi, N. Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: A review. J. Exp. Zool. India 2020, 23, 13–21. [Google Scholar]
- Saleh, S.M.; Widodo, M.S.; Kilawati, Y. The Effect of 17α-Methyltestosterone hormone application on masculinization and growth rate of vaname shrimp larvae (Litopenaeus Vannamei, Boone 1931). Russ. J. Agric. Socio-Econ. Sci. 2018, 79, 352–356. [Google Scholar] [CrossRef]
- Faeed, M.; Kasra, R.; PourKazemi, M.; Darboee, M.; Haghighi, S. Study on effect feedings with probiotics in increasing resistance to Aeromonas hydrophila and changes in gut bacterial communities Sander lucioperca. Biol. J. Microorg. 2018, 7, 1–12. [Google Scholar] [CrossRef]
- Ma, X.K.; Liu, X.; Wen, H.; Xu, Y.J.; Zhang, L.J. Histological observation on gonadal sex differentiation in Cynoglossus semilaevis Günther. Mar. Freshw. Res. 2006, 27, 55–61. [Google Scholar]
- Jin, S.; Zhang, Y.; Guan, H.; Fu, H.; Jiang, S.; Xiong, Y.; Qiao, H.; Zhang, W.; Gong, Y.; Wu, Y. Histological observation of gonadal development during post-larva in oriental river prawn, Macrobrachium nipponense. Chin. J. Fish. 2016, 29, 11–16. [Google Scholar]
- Thissen, D.; Steinberg, L.; Kuang, D. Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons. J. Educ. Behav. Stat. 2002, 27, 77–83. [Google Scholar] [CrossRef]
- Hu, Y.; Fu, H.; Qiao, H.; Sun, S.; Zhang, W.; Jin, S.; Jiang, S.; Gong, Y.; Xiong, Y.; Wu, Y. Validation and evaluation of reference genes for quantitative real-time PCR in Macrobrachium Nipponense. Int. J. Mol. Sci. 2018, 19, 2258. [Google Scholar] [CrossRef]
- Jin, S.; Fu, H.; Zhou, Q.; Sun, S.; Jiang, S.; Xiong, Y.; Gong, Y.; Qiao, H.; Zhang, W. Transcriptome analysis of androgenic gland for discovery of novel genes from the oriental river prawn, Macrobrachium nipponense, using Illumina Hiseq 2000. PLoS ONE 2013, 8, e76840. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Sample | Read Sum | Base Sum | GC (%) | Q20 (%) |
---|---|---|---|---|
M1 | 21,717,537 | 6,515,261,100 | 43.42 | 96.91 |
M2 | 19,968,322 | 5,990,496,600 | 43.19 | 97.04 |
M3 | 23,125,728 | 6,937,718,400 | 43.18 | 97.00 |
M4 | 24,640,844 | 7,392,253,200 | 43.83 | 96.64 |
FM1 | 21,357,638 | 6,407,291,400 | 43.00 | 96.88 |
FM2 | 23,085,893 | 6,925,767,900 | 42.96 | 96.86 |
FM3 | 21,412,841 | 6,423,852,300 | 43.27 | 96.72 |
FM4 | 18,150,368 | 5,445,110,400 | 42.71 | 96.82 |
RM1 | 23,917,031 | 7,175,109,300 | 41.40 | 96.95 |
RM2 | 22,740,630 | 6,822,189,000 | 43.41 | 96.70 |
RM3 | 24,818,214 | 7,445,464,200 | 42.96 | 96.54 |
RM4 | 25,021,439 | 7,506,431,700 | 43.52 | 96.38 |
NRM1 | 23,205,568 | 6,961,670,400 | 43.61 | 96.98 |
NRM2 | 25,279,785 | 7,583,935,500 | 43.89 | 96.45 |
NRM3 | 21,908,658 | 6,572,597,400 | 44.62 | 97.09 |
NRM4 | 19,861,207 | 5,958,362,100 | 44.75 | 96.64 |
No. | Pathway ID | Pathway | Number of DEGs | q-Value |
---|---|---|---|---|
male prawns (M) vs. female prawns (FM) | ||||
1 | map02010 | ABC transporters | 14 | 0.0170 |
2 | map04142 | Lysosome | 39 | 0.0170 |
3 | map00520 | Amino sugar and nucleotide sugar metabolism | 25 | 0.0170 |
4 | map00511 | Other glycan degradation | 13 | 0.0616 |
5 | map03430 | Mismatch repair | 9 | 0.0652 |
6 | map00981 | Insect hormone biosynthesis | 9 | 0.0703 |
7 | map00900 | Terpenoid backbone biosynthesis | 6 | 0.0970 |
8 | map00052 | Galactose metabolism | 9 | 0.0970 |
9 | map00531 | Glycosaminoglycan degradation | 10 | 0.0970 |
male prawns (M) vs. neo-male prawns (RM) | ||||
1 | map04142 | Lysosome | 50 | 0.0000 |
2 | map00981 | Insect hormone biosynthesis | 13 | 0.0001 |
3 | map00520 | Amino sugar and nucleotide sugar metabolism | 25 | 0.0021 |
4 | map00830 | Retinol metabolism | 15 | 0.0095 |
5 | map02010 | ABC transporters | 11 | 0.0862 |
female prawns (FM) vs. unsex-reversed male prawns (NRM) | ||||
1 | map03420 | Nucleotide excision repair | 22 | 0.0003 |
2 | map03030 | DNA replication | 20 | 0.0010 |
3 | map03008 | Ribosome biogenesis in eukaryotes | 29 | 0.0013 |
4 | map03022 | Basal transcription factors | 17 | 0.0076 |
5 | map04215 | Apoptosis—multiple species | 12 | 0.0097 |
6 | map03440 | Homologous recombination | 18 | 0.0097 |
7 | map00520 | Amino sugar and nucleotide sugar metabolism | 29 | 0.0114 |
No. | Name | Accession Number | Up or Down | ||
---|---|---|---|---|---|
M/FM | M/RM | FM/NRM | |||
1 | sperm gelatinase | AFM38794.1 | down | down | |
2 | doublesex and mab-3 related transcription factor | QDE10512.1 | down | down | up |
3 | cyclin B | ADB44902.1 | up | up | down |
4 | cystatin | AXS76129.1 | up | up | down |
5 | cathepsin B | AUG69383.1 | up | down | |
6 | cathepsin C | ROT62942.1 | down | ||
7 | cathepsin L | AHW49157.1 | down | up | |
8 | VASA-like protein | AEQ19569.1 | up | up | down |
9 | heat shock protein cognate | AKB96209.1 | down | ||
10 | vitellogenin | AJP60219.1 | up | up | down |
11 | vitellogenin receptor | AJP60220.1 | up | up | down |
12 | ferritin | QDA69873.1 | up | up | down |
13 | Fem1b | ANN47504.1 | up | up | down |
14 | feminization-1 | ALE66150.1 | up | up | down |
15 | Kazal-type protease inhibitor | AEW24505.1 | down | down | up |
16 | chitinase 3C | AHL28108.1 | down | down | up |
17 | chitinase 1B | AHL28105.1 | down | down | up |
18 | chitinase 3A | AHL28106.1 | down | down | up |
19 | double-sex | QDE10516.1 | down | ||
20 | legumain-like protein | AJG06865.1 | down | up | |
21 | gametocyte-specific factor | AMY62701.1 | up | up | down |
22 | gonadotropin-releasing hormone receptor | AHB33640.1 | up | down | |
23 | male reproductive-related protein | ABQ41234.1 | down | down | up |
24 | peritrophin | ADB44903.1 | up | ||
25 | gustavus | ADK46867.1 | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, P.; Yuan, H.; Gao, Z.; Qiao, H.; Zhang, W.; Jiang, S.; Xiong, Y.; Gong, Y.; Wu, Y.; Jin, S.; et al. 17β-Estradiol Induced Sex Reversal and Gonadal Transcriptome Analysis in the Oriental River Prawn (Macrobrachium nipponense): Mechanisms, Pathways, and Potential Harm. Int. J. Mol. Sci. 2023, 24, 8481. https://doi.org/10.3390/ijms24108481
Cai P, Yuan H, Gao Z, Qiao H, Zhang W, Jiang S, Xiong Y, Gong Y, Wu Y, Jin S, et al. 17β-Estradiol Induced Sex Reversal and Gonadal Transcriptome Analysis in the Oriental River Prawn (Macrobrachium nipponense): Mechanisms, Pathways, and Potential Harm. International Journal of Molecular Sciences. 2023; 24(10):8481. https://doi.org/10.3390/ijms24108481
Chicago/Turabian StyleCai, Pengfei, Huwei Yuan, Zijian Gao, Hui Qiao, Wenyi Zhang, Sufei Jiang, Yiwei Xiong, Yongsheng Gong, Yan Wu, Shubo Jin, and et al. 2023. "17β-Estradiol Induced Sex Reversal and Gonadal Transcriptome Analysis in the Oriental River Prawn (Macrobrachium nipponense): Mechanisms, Pathways, and Potential Harm" International Journal of Molecular Sciences 24, no. 10: 8481. https://doi.org/10.3390/ijms24108481
APA StyleCai, P., Yuan, H., Gao, Z., Qiao, H., Zhang, W., Jiang, S., Xiong, Y., Gong, Y., Wu, Y., Jin, S., & Fu, H. (2023). 17β-Estradiol Induced Sex Reversal and Gonadal Transcriptome Analysis in the Oriental River Prawn (Macrobrachium nipponense): Mechanisms, Pathways, and Potential Harm. International Journal of Molecular Sciences, 24(10), 8481. https://doi.org/10.3390/ijms24108481