Preparation of Symmetrical Capacitors from Lignin-Derived Phenol and PANI Composites with Good Electrical Conductivity
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Raw Materials and Reagents
3.2. Preparation of Lignin Degradation Product/Polyaniline (LDP/PANI) Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, D.W.; Jin, M.H.; Park, J.H.; Lee, Y.J.; Choi, Y.C. Flexible synthetic strategies for lignin-derived hierarchically porous carbon materials. ACS Sustain. Chem. Eng. 2018, 6, 10454–10462. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, M.; Li, X.; Zhang, B.; Jiao, M.; Chen, B.Z. Promising and efficient lignin degradation versatile strategy based on DFT calculations. iScience 2022, 25, 103755. [Google Scholar] [CrossRef] [PubMed]
- Li, P.H.; Ren, J.P.; Jiang, Z.W.; Huang, L.J.; Wu, C.W.; Wu, W.J. Review on the preparation of fuels and chemicals based on lignin. RSC Adv. 2022, 12, 10289–10305. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, Z.; Xi, X.; Liu, B.; Cao, Y.; Xu, H.; Hu, Y. A bifunctional brønsted acidic deep eutectic solvent to dissolve and catalyze the depolymerization of alkali lignin. J. Renew. Mater. 2021, 9, 219–235. [Google Scholar] [CrossRef]
- Jung, J.W.; Son, S.H.; Choi, J. Polyaniline/reduced graphene oxide composites for hole transporting layer of high-performance inverted perovskite solar cells. Polymers 2021, 13, 1281. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, R.; Chen, Y.; Bai, H.; Zhang, T.Y. Superacid-doped polyaniline as a soluble polymeric active electrolyte for supercapacitors. Soft Matter. 2020, 16, 7305–7311. [Google Scholar] [CrossRef]
- Zhu, Z.Z.; Wang, G.C.; Sun, M.Q.; Li, X.W.; Li, C.Z. Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochim. Acta 2011, 56, 1366–1372. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Wang, G. Construction of an electrochemical stable conductive network to improve the pseudocapacitance of polyaniline. Electrochim. Acta 2020, 331, 135279. [Google Scholar] [CrossRef]
- Ryosuke, K.; Goto, H. Polyaniline/lignin composite prepared by oxidative polymerization. Mater. Sci. 2017, 1, 96427818. [Google Scholar]
- MacDiarmid, A.G.; Epstein, A.J. The concept of secondary doping as applied to polyaniline. Synth. Met. 1994, 65, 103–116. [Google Scholar] [CrossRef]
- Jyothibasu, J.P.; Wang, R.H.; Tien, Y.C.; Kuo, C.C.; Lee, R.H. Lignin-derived quinone redox moieties for bio-based supercapacitors. Polymers 2022, 14, 3106. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Z.; Liu, W.; Shao, Y.; Ren, X.; Lv, C.; Liu, Q. Hierarchical porous carbon/Kraft lignin composite with significantly improved superior pseudocapacitive behavior. Electrochim. Acta 2021, 398, 139307. [Google Scholar] [CrossRef]
- Admassie, S.; Ajjan, F.N.; Elfwing, A.; Inganäs, O. Biopolymer hybrid electrodes for scalable electricity storage. Mater. Horiz. 2016, 3, 174–185. [Google Scholar] [CrossRef]
- Liu, H.; Xu, T.; Liu, K.; Zhang, M.; Liu, W.; Li, H.; Du, H.; Si, C. Lignin-based electrodes for energy storage application. Ind. Crop. Prod. 2021, 165, 113425. [Google Scholar] [CrossRef]
- Ehsani, A.; Moftakhar, M.K.; Karimi, F. Lignin-derived carbon as a high efficient active material for enhancing pseudocapacitance performance of p-type conductive polymer. J. Energy Storage 2021, 35, 102291. [Google Scholar] [CrossRef]
- Gonçalves, R.V.; Zanini, M.L.; Malmonge, J.A.; Bonnaud, L.; de Basso, N.R.S. Pristine cardanol as biobased dopant for polyaniline. Mater. Lett. 2016, 185, 327–330. [Google Scholar] [CrossRef]
- Aoyagi, M.; Funaoka, M. Conductive composites of lignophenol and polyaniline. Trans. Mater. Res. Soc. Jpn. 2007, 32, 1115–1118. [Google Scholar] [CrossRef]
- Li, P.H.; Wei, Y.M.; Wu, C.W.; Yang, C.; Jiang, B.; Wu, W.J. Lignin-based composites for high-performance supercapacitor electrode materials. RSC Adv. 2022, 12, 19485–19494. [Google Scholar] [CrossRef]
- Kazzaz, A.E.; Fatehi, P. Fabrication of amphoteric lignin and its hydrophilicity/oleophilicity at oil/water interface. J. Colloid. Interfaces Sci. 2022, 561, 231–243. [Google Scholar] [CrossRef]
- Zengin, H.; Kalaycı, G. Synthesis and characterization of polyaniline/activated carbon composites and preparation of conductive films. Mater. Chem. Phys. 2010, 120, 46–53. [Google Scholar] [CrossRef]
- Balakrishnan, D.; Pragathiswaran, C.; Thanikasalam, K.; Mohanta, Y.K.; Saravanan, M.; Abdellattif, M.H. Molecular docking and in vitro inhibitory effect of polyaniline (PANI)/ZnO nanocomposite on the growth of struvite crystal: A step towards control of UTI. Appl. Biochem. Biotech. 2022, 194, 4462–4476. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, X.W.; Xu, H.L.; Wang, G.C. Construction of polyaniline/lignin composite with interpenetrating fibrous networks and its improved electrochemical capacitance performances. Synth. Met. 2019, 248, 40–46. [Google Scholar] [CrossRef]
- Yin, Z.X.; Zhou, H.H.; Fu, C.P.; Zhang, N.S.; Liu, D.; Kuang, Y.F. Synthesis of curly graphene nanoribbon/polyaniline/MnO2 composite and its application in supercapacitor. RSC Adv. 2016, 6, 41142–41150. [Google Scholar] [CrossRef]
- He, Z.W.; Lu, Q.F.; Zhang, J.Y. Facile preparation of hierarchical polyaniline-lignin composite with a reactive silver-ion adsorbability. ACS Appl. Mater. Inter. 2012, 4, 369–374. [Google Scholar] [CrossRef]
- Dong, J.Q.; Shen, Q. Comparison of polyanilines doped by lignosulfonates with three different ions. J. Appl. Pharm. Sci. 2012, 126, E10–E16. [Google Scholar] [CrossRef]
- Altinisik, H.; Getiren, B.; Ciplak, Z.; Soysal, F.; Yildiz, N. Energy storage performance of nitrogen doped reduced graphene oxide/co-doped polyaniline nanocomposites. J. Inorg. Organomet. Polym. Mater. 2022, 33, 353–367. [Google Scholar] [CrossRef]
- Dianat, N.; Rahmanifar, M.S.; Noori, A.; El-Kady, M.F.; Chang, X.Y.; Kaner, R.B.; Mousavi, M.F. Polyaniline-lignin interpenetrating network for supercapacitive energy storage. Nano Lett. 2022, 21, 9485–9493. [Google Scholar] [CrossRef]
- Seo, J.H.; Choi, C.S.; Bae, J.H.; Jeong, H.; Lee, S.H.; Kim, Y.S. Preparation of a lignin/polyaniline composite and its application in Cr(VI) removal from aqueous solutions. Bioresources 2019, 14, 9169–9182. [Google Scholar] [CrossRef]
- Pawar, S.G.; Patil, S.L.; Chougule, M.A.; Raut, B.T.; Sen, S.; Patil, V.B. Camphor sulfonic acid doped polyaniline-titanium dioxide nanocomposite: Synthesis, structural, morphological, and electrical properties. Int. J. Polym. Mater. Polym. Biomater. 2011, 60, 979–987. [Google Scholar] [CrossRef]
- Li, P.H.; Yang, C.; Wu, C.W.; Wei, Y.M.; Jiang, B.; Wu, W.J. Bio-based carbon materials for high-performance supercapacitors. Nanomaterials 2022, 17, 2931. [Google Scholar] [CrossRef]
- Xiong, C.Y.; Li, M.R.; Nie, S.X.; Dang, W.H.; Zhao, W.; Dai, L.; Ni, Y.H. Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free wood@polyaniline supercapacitor material for renewable energy storage application. J. Power Sources 2020, 471, 228448. [Google Scholar] [CrossRef]
- Gu, D.W.; Ding, C.; Qin, Y.L.; Jiang, H.Y.; Wang, L.; Shen, L.J. Behavior of electrical charge storage/release in polyaniline electrodes of symmetric supercapacitor. Electrochim. Acta 2017, 245, 138–147. [Google Scholar] [CrossRef]
- Xi, X.; Liu, R.L.; Huang, T.; Xu, Y.; Wu, D.Q. Strongly coupled polyaniline/graphene hybrids with much enhanced capacitance performance. J. Colloid Interfaces Sci. 2016, 483, 34–40. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Li, Y.; Feng, Y.Y.; Feng, W. Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor. Electrochim. Acta 2013, 90, 95–100. [Google Scholar] [CrossRef]
- Hong, X.D.; Lu, Y.G.; Li, S.L.; Wang, X.L.; Wang, X.W.; Liang, J. Carbon foam@reduced graphene oxide scaffold grown with polyaniline nanofibers for high performance symmetric supercapacitor. Electrochim. Acta 2018, 294, 376–382. [Google Scholar] [CrossRef]
- Trung, N.B.; Tam, T.V.; Kim, H.R.; Hur, S.H.; Kim, E.J.; Choi, W.M. Three-dimensional hollow balls of graphene-polyaniline hybrids for supercapacitor applications. Chem. Eng. J. 2014, 255, 89–96. [Google Scholar] [CrossRef]
- Devarayan, K.; Lei, D.; Kim, H.; Kim, B. Flexible transparent electrode based on PANi nanowire/nylon nanofiber reinforced cellulose acetate thin film as supercapacitor. Chem. Eng. J. 2015, 273, 603–609. [Google Scholar] [CrossRef]
- Cho, S.H.; Shin, K.H.; Jang, J. Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. ACS Appl. Mater. Interfaces 2013, 5, 9186–9193. [Google Scholar] [CrossRef]
- Du, P.C.; Lin, L.; Wang, H.X.; Liu, D.; Wei, W.L.; Li, J.G.; Liu, P. Fabrication of porous polyaniline modified MWNTs core-shell structure for high performance supercapacitors with high rate capability. Mater. Des. 2017, 127, 76–83. [Google Scholar] [CrossRef]
- Luo, J.; Ma, Q.; Gu, H.H.; Zheng, Y.; Liu, X.Y. Three-dimensional graphene-polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor. Electrochim. Acta 2015, 173, 184–192. [Google Scholar] [CrossRef]
- Li, Z.F.; Zhang, H.Y.; Liu, Q.; Liu, Y.D.; Stanciu, L.; Xie, J. Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon 2014, 71, 257–267. [Google Scholar] [CrossRef]
- Du, P.C.; Wei, W.L.; Liu, D.; Kang, H.X.; Liu, P. Fabrication of hierarchical carbon layer encapsulated polyaniline core-shell structure nanotubes and application in supercapacitors. Chem. Eng. J. 2018, 335, 373–383. [Google Scholar] [CrossRef]
- Miao, Y.E.; Fan, W.; Chen, D.; Liu, T.X. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. ACS Appl. Mater. Interfaces 2013, 5, 4423–4428. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Zhang, C.; Weei, T.W.; Pallathadka, P.K.; He, C.B.; Liu, T.X. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl. Mater. Interfaces 2013, 5, 3382–3391. [Google Scholar] [CrossRef]
- Liu, G.; Chen, X.; Liu, C.; Jiang, Q.; Jiang, F.; An, J.; Xu, J.; Liu, P. DMSO-treated flexible PEDOT:PSS/PANi fiber electrode for high performance supercapacitors. J. Mater. Sci. 2021, 56, 14632–14643. [Google Scholar] [CrossRef]
Samples | Conductivity (S/cm) |
---|---|
Pure PANI | 0.18 |
LDP0.5/PANI | 0.57 |
LDP1.0/PANI | 1.10 |
LDP3.0/PANI | 1.36 |
Samples | Current Density (A/g) | Specific Capacitance (F/g) | Cycle Numbers | Capacitance Retention (%) | Ref. |
---|---|---|---|---|---|
Ligninsulfonate/PANI | 1 | 554 | 5000 | 55 | [18] |
3D hollow rGO/PANI ball | 1 | 331 | 500 | 86 | [36] |
PANI nanowire/ NA/CA | 0.3 | 402 | 1000 | 61 | [37] |
Porous PANI film | 0.25 | 361 | 500 | 72.3 | [38] |
Porous PANI-CNTs | 0.5 | 407 | 2200 | 55 | [39] |
GR-PANI hollow sphere | 0.5 | 456 | 1000 | 83 | [40] |
PANI-GO composite | 1 | 442 | 2000 | 83 | [41] |
PANI-C nanotubes | 0.5 | 483 | 2000 | 63 | [42] |
Hollow PANI nanofiber | 1 | 601 | 500 | 62 | [43] |
Hollow PANI/rGO sphere | 1 | 614 | 500 | 90 | [44] |
DMSO-PEDOT:PSS/PANI | 1 | 340 | 5000 | 69 | [45] |
LDP3.0/PANI | 1 | 417 | 5000 | 42 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Yu, J.; Wang, M.; Su, W.; Yang, C.; Jiang, B.; Wu, W. Preparation of Symmetrical Capacitors from Lignin-Derived Phenol and PANI Composites with Good Electrical Conductivity. Int. J. Mol. Sci. 2023, 24, 8661. https://doi.org/10.3390/ijms24108661
Li P, Yu J, Wang M, Su W, Yang C, Jiang B, Wu W. Preparation of Symmetrical Capacitors from Lignin-Derived Phenol and PANI Composites with Good Electrical Conductivity. International Journal of Molecular Sciences. 2023; 24(10):8661. https://doi.org/10.3390/ijms24108661
Chicago/Turabian StyleLi, Penghui, Jiangdong Yu, Mingkang Wang, Wanting Su, Chi Yang, Bo Jiang, and Wenjuan Wu. 2023. "Preparation of Symmetrical Capacitors from Lignin-Derived Phenol and PANI Composites with Good Electrical Conductivity" International Journal of Molecular Sciences 24, no. 10: 8661. https://doi.org/10.3390/ijms24108661
APA StyleLi, P., Yu, J., Wang, M., Su, W., Yang, C., Jiang, B., & Wu, W. (2023). Preparation of Symmetrical Capacitors from Lignin-Derived Phenol and PANI Composites with Good Electrical Conductivity. International Journal of Molecular Sciences, 24(10), 8661. https://doi.org/10.3390/ijms24108661