Ru(II) Oxygen Sensors for Co(III) Complexes and Amphotericin B Antifungal Activity Detection by Phosphorescence Optical Respirometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization of the Coordination Compounds Studied
2.2. Monitoring Microbial Growth Using Phosphorescence Optical Respirometry
2.3. Study of the Effect of Co(III) Coordination Compounds and Amphotericin B on Yeast by Phosphorescence Optical Respirometry
2.3.1. Measurements Using Box, BsOx in RPMI Medium
2.3.2. Measurements Using Box and BsOx in 5% and 50% Bovine Serum Albumin (BSA)
3. Materials and Methods
3.1. Strains, Media, and Growth Conditions
3.2. Chemicals, Methodology, and Apparatus
3.3. The Synthesis of the Tris-[(4,7-Diphenyl-1,10-Phenanthrolinedisulphonic Acid Disodium) Ruthenium(II)] Chloride Hydrate (BsOx)
3.4. The Synthesis of the Tris-[(4,7-Diphenyl-1,10-Phenanthroline) Ruthenium(II)] Chloride Pentahydrate (Box)
3.5. The Synthesis of Compounds (1) and (2)
3.6. Study of the Effect of Co(III) Coordination Compounds and Amphotericin B on Yeast by Phosphorescence Optical Respirometry
3.6.1. Measurements Using Box and BsOx in RPMI Medium
3.6.2. Measurements Using Box and BsOx in 5% and 50% Bovine Serum Albumin (BSA)
3.7. Determination of the Minimum Inhibitory Concentration (MIC) in RPMI Medium and Bovine Serum Albumin
3.7.1. Determination of the Minimum Inhibitory Concentration in the RPMI Medium
3.7.2. Determination of the Minimum Inhibitory Concentration in Bovine Serum Albumin
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Riordan, C.T.; Buckley, D.; Ogurtsov, V.; O’Connor, R.; Papkovsky, D.B. A Cell Viability Assay Based on Monitoring Respiration by Optical Oxygen Sensing. Anal. Biochem. 2000, 278, 221–227. [Google Scholar] [CrossRef]
- Papkovsky, D.B. Respirometric screening technology (RST). Screen. Trends Drug. Discov. 2005, 6, 46–47. [Google Scholar]
- Jasionek, G.; Ogurtsov, V.; Papkovsky, D. Rapid detection and respirometric profiling of aerobic bacteria on panels of selective media. J. Appl. Microbiol. 2012, 114, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Alderman, J.; Hynes, J.; Floyd, S.M.; Krüger, J.; O’Connor, R.; Papkovsky, D.B. A low-volume platform for cell-respirometric screening based on quenched-luminescence oxygen sensing. Biosens. Bioelectron. 2004, 19, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Dmitriev, R.I.; Papkovsky, D.B. Optical probes and techniques for O2 measurement in live cells and tissue. Cell. Mol. Life Sci. 2012, 69, 2025–2039. [Google Scholar] [CrossRef]
- Opitz, N.; Lubbers, D.W. Increased resolution power in pO2 analysis at lower pO2 levels via sensitivity enhanced optical pO2 sensors (pO2 optodes) using fluorescence dyes. Adv. Exp. Med. Biol. 1984, 180, 261–267. [Google Scholar] [CrossRef]
- Rumsey, W.L.; Vanderkooi, J.M.; Wilson, D.F. Imaging of phosphorescence—A novel method for measuring oxygen distribution in perfused tissue. Science 1988, 241, 1649–1651. [Google Scholar] [CrossRef]
- Hynes, J.; Floyd, S.; Soini, A.E.; O’Connor, R.; Papkovsky, D.B. Fluorescence-based cell viability screening assays using water-soluble oxygen probes. J. Biomol. Screen. 2003, 8, 264–272. [Google Scholar] [CrossRef]
- Will, Y.; Hynes, J.; Ogurtsov, V.I.; Papkovsky, D.B. Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes. Nat. Protoc. 2006, 1, 2563–2572. [Google Scholar] [CrossRef]
- O’Mahony, F.C.; O’Donovan, C.; Hynes, J.; Moore, T.; Davenport, J.; Papkovsky, D.B. Optical oxygen microrespirometry as a platform for environment al toxicology and animal model studies. Environ. Sci. Technol. 2005, 39, 5010–5014. [Google Scholar] [CrossRef]
- O’Mahony, F.C.; Papkovsky, D.B. Rapid highthroughput assessment of aerobic bacteria in complex samples by fluorescence-based oxygen respirometry. Appl. Environ. Microbiol. 2006, 72, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Hałasa, R.; Turecka, K.; Orlewska, C.; Werel, W. Comparison of fluorescence optical respirometry and microbroth dilution methods for testing antimicrobal compounds. J. Microbiol. Methods 2014, 107, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Jońca, J.; Stachowska, A.; Chylewska, A.; Turecka, K.; Waleron, K.; Waleron, M. Practical considerations in the application of a polypyridyl complex of Ru(II) in physiological and biochemical studies of Pectobacterium spp. and other bacteria. Eur. J. Plant. Pathol. 2021, 159, 371–383. [Google Scholar] [CrossRef]
- Dmitriev, R.I.; Papkovsky, D.B. Intracellular probes for imaging oxygen concentration: How good are they? Methods Appl. Fluoresc. 2015, 3, 034001. [Google Scholar] [CrossRef]
- Xu, W.; McDonough, R.C.; Langsdorf, B.; Demas, J.N.; DeGraff, B.A. Oxygen sensors based on luminescence quenching: Interactions of metal complexes with the polymer supports. Anal. Chem. 1994, 66, 4133. [Google Scholar] [CrossRef] [PubMed]
- Bambot, S.B.; Holavanahali, R.; Lakowicz, J.R.; Carter, G.; Rao, G. Phase fluorometric sterilizable optical oxygen sensor. Biotechnol. Bioeng. 1994, 43, 1139–1145. [Google Scholar] [CrossRef]
- Castellano, F.N.; Lakowicz, J.R. A Water-Soluble Luminescence Oxygen Sensor. Photochem. Photobiol. 1998, 67, 179–183. [Google Scholar] [CrossRef]
- Wodnicka, M.; Guarino, R.D.; Hemperly, J.J.; Timmins, M.R.; Stitt, D.; Pitner, B. Novel fluorescent technology platform for high throughput cytotoxicity and proliferation assays. J. Biomol. Screen. 2000, 5, 141–152. [Google Scholar] [CrossRef]
- Makowska, J.; Bagińska, K.; Makowski, M.; Jagielska, A.; Liwo, A.; Kasprzykowski, F.; Chmurzyński, L.; Scheraga, H.A.H. Assessment of Two Theoretical Methods to Estimate Potentiometric Titration Curves of Peptides: Comparison with Experiment. J. Phys. Chem. B 2006, 110, 4451–4458. [Google Scholar] [CrossRef]
- Makowska, J.; Makowski, M.; Giełdoń, A.; Liwo, A.; Chmurzyński, L. Theoretical Calculations of Heteroconjugation Equilibrium Constants in Systems Modeling Acid−Base Interactions in Side Chains of Biomolecules Using the Potential of Mean Force. J. Phys. Chem. B 2004, 108, 12222–12230. [Google Scholar] [CrossRef]
- Bouskila, A.; Drahi, B.; Amouyal, E.; Sasaki, I.; Gaudemer, A. Mononuclear and binuclear ruthenium(II) heteroleptic complexes based on 1,10-phenanthroline ligands Part I: Synthesis, spectroscopic and photophysical study. J. Photochem. Photobiol. A Chem. 2004, 163, 381–388. [Google Scholar] [CrossRef]
- Coogan, M.P.; Court, J.B.; Gray, V.L.; Hayes, A.J.; Lloyd, S.H.; Millet, C.O.; Pope, S.J.A.; Lloyd, D. Probing intracellular oxygen by quenched phosphorescence lifetimes of nanoparticles containing polyacrylamide-embedded [Ru(dpp(SO3Na 2)3]Cl2. Photochem. Photobiol. Sci. 2010, 9, 103–109. [Google Scholar] [CrossRef]
- Mesa-Arango, A.C.; Scorzoni, L.; Zaragoza, O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front. Microb. 2012, 3, 286. [Google Scholar] [CrossRef] [PubMed]
- Turecka, K.; Chylewska, A.; Rychłowski, M.; Zakrzewska, J.; Waleron, K. Antibacterial Activity of Co(III) Complexes with Diamine Chelate Ligands against a Broad Spectrum of Bacteria with a DNA Interaction Mechanism. Pharmaceutics 2021, 13, 946. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Dominijani, A.; Rodriguez-Corrales, J.A.; Prussin, R.; Zhao, Z.; Li, T.; Robertson, J.L.; Brewer, K.J. Visible light-induced cytotoxicity of Ru,Os–polyazine complexes towards rat malignant glioma. Inorg. Chim. Acta 2017, 454, 155–161. [Google Scholar] [CrossRef]
- Elisseeva, S.; Santovito, E.; Linehan, E.; Kerry, J.P.; Papkovsky, D.B. Performance assessment of the two oxygen sensor based respirometric platforms with complex media and in selective bacterial assays. Sens. Actuators B Chem. 2023, 383, 133582. [Google Scholar] [CrossRef]
- Vanderkooi, J.M.; Maniara, G.; Green, T.J.; Wilson, D.F. Anoptical method formeasurement of dioxygen concentration based upon quenching of phosphorescence. J. Biol. Chem. 1987, 262, 5476–5482. [Google Scholar] [CrossRef]
- Papkowsky, D.B.; O’Riordan, T.C. Emerging Applications of Phosphorescent Metalloporphyrins. J. Fluoresc. 2005, 15, 569–584. [Google Scholar] [CrossRef]
- Kudva, A.K.; Manoj, M.N.; Swamy, B.M.; Ramadoss, C.S. Complexation of amphotericin B and curcumin with serum albumins: Solubility and effect on erythrocyte membrane damage. J. Exper. Pharmacol. 2010, 3, 1–6. [Google Scholar] [CrossRef]
- Shi, J.H.; Chen, J.; Wang, J.; Zhu, Y.Y.; Wang, Q. Binding interaction of sorafenib with bovine serum albumin: Spectroscopic methodologies and molecular docking. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 149, 630–637. [Google Scholar] [CrossRef]
- Thamilarasan, V.; Sengottuvelan, N.; Sudha, A.; Srinivasan, P.; Chakkaravarthi, G. Cobalt(III) complexes as potential anticancer agents: Physicochemical, structural, cytotoxic activity and DNA/protein interactions. J. Photochem. Photobiol. B Biol. 2016, 162, 558–569. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Saunders, D.G.; Hoban, D.J.; Karlowsky, J.A. Influence of human serum on antifungal pharmacodynamics with Candida albicans. Antimicrob. Agents Chemother. 2001, 45, 2018–2022. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, C.J.; Rajan, S.; Wong, S.S.; Tsang, D.N.C.; Lai, C.K.C.; Samaranayake, L.P.; Jin, L. Antifungal susceptibility in serum and virulence determinants of Candida bloodstream isolates from Hong Kong. Front. Microbiol. 2016, 7, 216. [Google Scholar] [CrossRef] [PubMed]
- Du Souich, P.; Verges, J.; Erill, S. Plasma protein binding and pharmacological response. Clin. Pharmacokin. 1993, 24, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Schäfer-Korting, M.; Korting, H.C.; Rittler, W.; Obermüller, W. Influence of Serum Protein Binding on the In Vitro Activity of Antifungal Agents. Infection 1995, 23, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Mendez, C.M.; McClain, C.J.; Marsano, L.S. Albumin therapy in clinical practice. Nutr. Clin. Prac. 2005, 20, 314–320. [Google Scholar] [CrossRef]
- Boghaei, D.M.; Farvid, S.S.; Gharagozlou, M. Interaction of copper(II) complex of compartmental Schiff base ligand N,N′-bis(3-hydroxysalicylidene)ethylenediamine with bovine serum albumin. Spectrochim. Acta Part A 2007, 66, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Pontoriero, A.; Mosconi, N.; Monti, L.; Bellú, S.; Williams, P.A.M.; Raimondi, M.; Lima, B.; Feresin, G.E.; Nerli, B.; Rizzotto, M. Synthesis, characterization and biological studies of a cobalt(III) complex of sulfathiazole. Chem.-Biol. Interact. 2017, 278, 152–161. [Google Scholar] [CrossRef]
- Vignesh, G.; Sugumar, K.; Arunchalam, S.; Vignesh, S.; Jamws, R.A. A comparative study on the binding of single and double chain surfactant–cobalt(III) complexes with bovine serum albumin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 113, 415–422. [Google Scholar] [CrossRef]
- Domżalska, A.; Dąbrowska, A.M.; Chojnowski, D.; Makowski, M.; Chylewska, A. Sensors to the diagnostic assessment of anticancer and antimicrobial therapies effectiveness by drugs a with pyrazine scaffold. Chemosensors 2022, 10, 24. [Google Scholar] [CrossRef]
- Edwin, S.A.; Constable, C.; Seddon, K.R.; Turp, J.E. Preparation and characterisation of 2,2′-bipyridine-4,4′-disulphonic and -5-sulphonic acids and their ruthenium(II) complexes. Excited-state properties and excited-state electron-transfer reactions of ruthenium(II) complexes containing 2,2′-bipyridine-4,4′-disulphonic acid or 2,2′-bipyridine-4,4′ dicarboxylic acid. Chem. Soc. Dalton Trans. 1985, 11, 2247–2261. [Google Scholar] [CrossRef]
- Matsumura-Inoue, T.; Tanabe, M.; Minai, T.; Ohashi, T. A remarkably rapid synthesis of Ru(II) polypyridine complexes by microwave irradiation. Chem. Lett. 1994, 23, 2443–2446. [Google Scholar] [CrossRef]
- Chylewska, A.; Turecka, K.; Dąbrowska, A.; Werel, W.; Chmurzyński, L. Sythesis, physicochemical characterization and antimicrobial activity of Co (III) complexes with diamine chelate ligands. IJAPBC 2013, 2, 4–464. [Google Scholar]
- Turecka, K.; Chylewska, A.; Kawiak, A.; Waleron, K. Antifungal activity and mechanism of action of the Co(III) coordination complexes with diamine chelate ligands against reference and clinical strains of Candida spp. Front. Microbiol. 2018, 9, 1594. [Google Scholar] [CrossRef]
- Bailar, J.C.; Rollinson, C.L. Cis- and Trans-Dichlorobis(ethylenediamine)cobalt(III) Chloride and the Resolution of the Cis Form; Inorg. Synth.; Conrad Fernelius, W., Ed.; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1946; Volume II, pp. 222–225. [Google Scholar]
- Method M27-A3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast; Approved Standard. 3rd ed. Clinical and Laboratory Standards Institute [CLSI]: Wayne, PA, USA, 2008.
Strains | MIC of (1) | MIC of (2) | MIC of AmB |
---|---|---|---|
C. albicans ATCC 10231 | 62.5 ± 4.93 | 62.5 ± 4.01 | 0.5 ± 0.06 |
C. albicans 12823 | 62.5 ± 4.01 | 62.5 ± 4.92 | 0.5 ± 0.06 |
Strains | MIC of (1) | MIC of (2) | MIC of AmB | |||
---|---|---|---|---|---|---|
5% BSA | 50% BSA | 5% BSA | 50% BSA | 5% BSA | 50% BSA | |
C. albicans ATCC 10231 | 500 ± 112 | 1000 ± 224 | >1000 | >1000 | 0.25 ± 0.06 | 0.25 ± 0.07 |
C. albicans 12823 | 500 ± 137 | 1000 ± 274 | >1000 | >1000 | 0.25 ± 0.07 | 0.25 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turecka, K.; Chylewska, A.; Dąbrowska, A.M.; Hałasa, R.; Orlewska, C.; Waleron, K. Ru(II) Oxygen Sensors for Co(III) Complexes and Amphotericin B Antifungal Activity Detection by Phosphorescence Optical Respirometry. Int. J. Mol. Sci. 2023, 24, 8744. https://doi.org/10.3390/ijms24108744
Turecka K, Chylewska A, Dąbrowska AM, Hałasa R, Orlewska C, Waleron K. Ru(II) Oxygen Sensors for Co(III) Complexes and Amphotericin B Antifungal Activity Detection by Phosphorescence Optical Respirometry. International Journal of Molecular Sciences. 2023; 24(10):8744. https://doi.org/10.3390/ijms24108744
Chicago/Turabian StyleTurecka, Katarzyna, Agnieszka Chylewska, Aleksandra M. Dąbrowska, Rafał Hałasa, Czesława Orlewska, and Krzysztof Waleron. 2023. "Ru(II) Oxygen Sensors for Co(III) Complexes and Amphotericin B Antifungal Activity Detection by Phosphorescence Optical Respirometry" International Journal of Molecular Sciences 24, no. 10: 8744. https://doi.org/10.3390/ijms24108744
APA StyleTurecka, K., Chylewska, A., Dąbrowska, A. M., Hałasa, R., Orlewska, C., & Waleron, K. (2023). Ru(II) Oxygen Sensors for Co(III) Complexes and Amphotericin B Antifungal Activity Detection by Phosphorescence Optical Respirometry. International Journal of Molecular Sciences, 24(10), 8744. https://doi.org/10.3390/ijms24108744