In Situ Construction of Nitrogen-Doped and Zinc-Confined Microporous Carbon Enabling Efficient Na+-Storage Abilities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of Zeolitic Imidazolate Framework-8 (ZIF-8)
2.2. Characterizations of Nitrogen-Doped and Zinc-Confined Microporous Carbon (N,Z-MPC)
2.3. Electrochemical Measurements of Nitrogen-Doped and Zinc-Confined Microporous Carbon (N,Z-MPC)
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8)
3.3. Preparation of Nitrogen-Doped and Zinc-Confined Microporous Carbon (N,Z-MPC)
3.4. Characterizations
3.5. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Yu, Y.; Lee, S.J.; Theethagiri, J.; Lee, Y.; Choi, M.Y. Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: Comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation. Appl. Catal. B Environ. 2022, 316, 121603. [Google Scholar] [CrossRef]
- Shreyanka, S.N.; Theethagiri, J.; Lee, S.J.; Yu, Y.; Choi, M.Y. Multiscale design of 3D metal–organic frameworks (M−BTC, M: Cu, Co, Ni) via PLAL enabling bifunctional electrocatalysts for robust overall water splitting. Chem. Eng. J. 2022, 446, 137045. [Google Scholar] [CrossRef]
- Mitali, J.; Dhinakaran, S.; Mohamad, A.A. Energy storage systems: A review. Energy Storage Sav. 2022, 1, 166–216. [Google Scholar] [CrossRef]
- DOE Global Energy Storage Database. Available online: https://sandia.gov/ess-ssl/gesdb/public/projects.html (accessed on 1 March 2023).
- Hung, T.-F.; Hsieh, T.-H.; Tseng, F.-S.; Wang, L.-Y.; Yang, C.-C.; Yang, C.-C. High-mass loading hierarchically porous activated carbon electrode for pouch-type supercapacitors with propylene carbonate-based electrolyte. Nanomaterials 2021, 11, 785. [Google Scholar] [CrossRef]
- TRADING ECONOMICS. Available online: https://tradingeconomics.com/commodity/lithium (accessed on 1 March 2023).
- Sayahpour, B.; Hirsh, H.; Parab, S.; Nguyen, L.H.B.; Zhang, M.; Meng, Y.S. Perspective: Design of cathode materials for sustainable sodium-ion batteries. MRS Energy Sustain. 2022, 9, 183–197. [Google Scholar] [CrossRef]
- Liao, W.-L.; Hung, T.-F.; Abdelaal, M.M.; Chao, C.-H.; Fang, C.-C.; Mohamed, S.G.; Yang, C.-C. Highly efficient sodium-ion capacitor enabled by mesoporous NaTi2(PO4)3/C anode and hydrogel-derived hierarchical porous activated carbon cathode. J. Energy Storage 2022, 55, 105719. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, Y.; Chao, D.; Li, W.; Zhao, D. Recent advances in hard carbon anodes with high initial coulombic efficiency for sodium-ion batteries. Nano Mater. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Alvira, D.; Antorán, D.; Manyà, J.J. Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research. Chem. Eng. J. 2022, 447, 137468. [Google Scholar] [CrossRef]
- Stevens, D.A.; Dahn, J.R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273. [Google Scholar] [CrossRef]
- Hu, M.; Yang, L.; Zhou, K.; Zhou, C.; Huang, Z.-H.; Kang, F.; Lv, R. Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation. Carbon 2017, 122, 680–686. [Google Scholar] [CrossRef]
- Dong, R.; Wu, F.; Bai, Y.; Li, Q.; Yu, X.; Li, Y.; Ni, Q.; Wu, C. Tailoring defects in hard carbon anode towards enhanced Na storage performance. Energy Mater. Adv. 2022, 2022, 9896218. [Google Scholar] [CrossRef]
- Wu, J.; Pan, Z.; Zhang, Y.; Wang, B.; Peng, H. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. J. Mater. Chem. A 2018, 6, 12932–12944. [Google Scholar] [CrossRef]
- Chen, W.; Wan, M.; Liu, Q.; Xiong, X.; Yu, F.; Huang, Y. Heteroatom-doped carbon materials: Synthesis, mechanism, and application for sodium-ion batteries. Small Methods 2019, 3, 1800323. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, J.; Lv, W.; Ma, J.; He, Y.; Kang, F.; Yang, Q.-H. A functionalized carbon surface for high-performance sodium-ion storage. Small 2020, 16, 1902603. [Google Scholar] [CrossRef] [PubMed]
- Wickramaarachchi, K.; Minakshi, M.; Assa Aravindh, S.; Dabare, R.; Gao, X.; Jiang, Z.T.; Wong, K.W. Repurposing N-doped grape marc for the fabrication of supercapacitors with theoretical and machine learning models. Nanomaterials 2022, 12, 1847. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Singh, D.; Minakshi, M.; Quadsia, S.; Ahuja, R. Activation-induced surface modulation of biowaste-derived hierarchical porous carbon for Supercapacitors. ChemPlusChem 2022, 87, e202200126. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Bai, Y.; Zheng, L.; Liu, M.; Li, Y.; Zhao, R.; Li, Y.; Wu, C. Effect of different nitrogen configurations on sodium storage properties of carbon anodes for sodium ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 56285–56295. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Z.; Li, W.; Gu, L.; Yu, Y. Superior sodium storage in 3D interconnected nitrogen and oxygen dual-doped carbon network. Small 2016, 12, 2559–2566. [Google Scholar] [CrossRef]
- Chang, X.; Zhou, X.; Ou, X.; Lee, C.-S.; Zhou, J.; Tang, Y. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 2019, 9, 1902672. [Google Scholar] [CrossRef]
- Ahmad, R.; Khan, U.A.; Iqbal, N.; Noor, T. Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: An overview. RSC Adv. 2020, 10, 43733–43750. [Google Scholar] [CrossRef] [PubMed]
- Geng, D.; Zhang, S.; Jiang, Y.; Jiang, Z.; Shi, M.; Chang, J.; Liang, S.; Zhang, M.; Feng, J.; Wei, T.; et al. 3D interconnected porous carbon derived from spontaneous merging of the nano-sized ZIF-8 polyhedrons for high-mass-loading supercapacitor electrodes. J. Mater. Chem. A 2022, 10, 2027–2034. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, R.; Pan, Y.; Cao, Z.; Liu, Y.; Wang, L.; Yu, J.; Song, H.; Ye, Z.; Zhang, S. ZIF-8-derived N-doped porous carbon wrapped in porous carbon films as an air cathode for flexible solid-state Zn-air batteries. J. Colloid Interface Sci. 2022, 628, 691–700. [Google Scholar] [CrossRef]
- Li, J.; Kou, J.; Xiang, Y.; Chen, M.; Zhang, J.; Zhan, X.; Zhang, H.; Wang, F.; Dong, Z. ZIF-8 derived N-doped porous carbon confined ultrafine PdNi bimetallic nanoparticles for semi-hydrogenation of alkynes. Mol. Catal. 2023, 535, 112865. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, Z.; Fu, Y.; Gan, Y. Self-template synthesis of nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 as an anode for sodium ion batteries. Mater. Lett. 2015, 161, 332–335. [Google Scholar] [CrossRef]
- Chen, J.; Mao, Z.; Zhang, L.; Tang, Y.; Wang, D.; Bie, L.; Fahlman, B.D. Direct production of nitrogen-doped porous carbon from urea via magnesiothermic reduction. Carbon 2018, 130, 41–47. [Google Scholar] [CrossRef]
- Bustamante, E.L.; Fernández, J.L.; Zamaro, J.M. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J. Colloid Interface Sci. 2014, 424, 37–43. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Jang, M.-S.; Cho, H.-Y.; Kwon, H.-J.; Kim, S.; Ahn, W.-S. ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 2015, 271, 276–280. [Google Scholar] [CrossRef]
- Mathur, P.; Shih, J.-Y.; Li, Y.-J.J.; Hung, T.-F.; Thirumalraj, B.; Ramaraj, S.K.; Jose, R.; Karuppiah, C.; Yang, C.-C. In situ metal organic framework (ZIF-8) and mechanofusion-assisted MWCNT coating of LiFePO4/C composite material for lithium-ion batteries. Batteries 2023, 9, 182. [Google Scholar] [CrossRef]
- Shekhah, O.; Swaidan, R.; Belmabkhout, Y.; du Plessis, M.; Jacobs, T.; Barbour, L.J.; Pinnau, I.; Eddaoudi, M. The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: Pure and mixed gas transport study. Chem. Commun. 2014, 50, 2089–2092. [Google Scholar] [CrossRef]
- Yu, R.; Wu, Z. High adsorption for ofloxacin and reusability by the use of ZIF-8 for wastewater treatment. Microporous Mesoporous Mat. 2020, 308, 110494. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, J.; Wan, Z.; Jiang, W.; Ling, M.; Yan, L.; Liang, C. Controllably electrodepositing ZIF-8 protective layer for highly reversible zinc anode with ultralong lifespan. J. Phys. Chem. Lett. 2021, 12, 9055–9059. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.I.A.; Abdel-Wahab, A.-M.A.; Abdelhamid, H.N. Hierarchical porous zeolitic imidazolate frameworks (ZIF-8) and ZnO@N-doped carbon for selective adsorption and photocatalytic degradation of organic pollutants. RSC Adv. 2022, 12, 7075–7084. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, F.; Xu, W.; Zeng, Y.; He, J.; Lu, X. Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 2020, 7, 2002173. [Google Scholar] [CrossRef]
- Yuksel, R.; Buyukcakir, O.; Seong, W.K.; Ruoff, R.S. Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 2020, 10, 1904215. [Google Scholar] [CrossRef]
- Amirtha, R.M.; Hsu, H.-H.; Abdelaal, M.M.; Anbunathan, A.; Mohamed, S.G.; Yang, C.-C.; Hung, T.-F. Constructing a carbon-encapsulated carbon composite material with hierarchically porous architectures for efficient capacitive storage in organic supercapacitors. Int. J. Mol. Sci. 2022, 23, 6774. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Jian, Z.; Xing, Z.; Wang, W.; Bommier, C.; Lerner, M.M.; Ji, X. Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent. Sci. 2015, 1, 516–522. [Google Scholar] [CrossRef]
- Cao, B.; Liu, H.; Xu, B.; Lei, Y.; Chen, X.; Song, H. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J. Mater. Chem. A 2016, 4, 6472–6478. [Google Scholar] [CrossRef]
- Abdelaal, M.M.; Hung, T.-C.; Mohamed, S.G.; Yang, C.-C.; Hung, T.-F. Two birds with one stone: Hydrogel-derived hierarchical porous activated carbon toward the capacitive performance for symmetric supercapacitors and lithium-ion capacitors. ACS Sustain. Chem. Eng. 2022, 10, 4717–4727. [Google Scholar] [CrossRef]
- Zolkin, A.; Semerikova, A.; Chepkasov, S.; Khomyakov, M. Characteristics of the Raman spectra of diamond-like carbon films. Influence of methods of synthesis. Mater. Today Proc. 2017, 4, 11480–11485. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Zhang, L.; Xie, F.; Vasileff, A.; Qiao, S.-Z. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries. Adv. Mater. 2019, 31, 1901261. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Li, W.; Wang, K.; Li, H.; Feng, P.; Zhang, Z.; Wang, W.; Jiang, K. Tailoring 2D heteroatom-doped carbon nanosheets with dominated pseudocapacitive behaviors enabling fast and high-performance sodium storage. Adv. Funct. Mater. 2020, 30, 1909907. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Y.; Li, Y.; Dravid, V.; Wu, J.; Huang, Y. Sodium storage in hard carbon with curved graphene platelets as the basic structural units. J. Mater. Chem. A 2019, 7, 3327–3335. [Google Scholar] [CrossRef]
- Mehmood, A.; Ali, G.; Koyutürk, B.; Pampel, J.; Chung, K.Y.; Fellinger, T.-P. Nanoporous nitrogen doped carbons with enhanced capacity for sodium ion battery anodes. Energy Storage Mater. 2020, 28, 101–111. [Google Scholar] [CrossRef]
- Tai, Z.; Shi, M.; Chong, S.; Chen, Y.; Shu, C.; Dai, X.; Tan, Q.; Liu, Y. N-doped ZIF-8-derived carbon (NC-ZIF) as an anodic material for lithium-ion batteries. J. Alloys Compd. 2019, 800, 1–7. [Google Scholar] [CrossRef]
- Futsuhara, M.; Yoshioka, K.; Takai, O. Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films 1998, 322, 274–281. [Google Scholar] [CrossRef]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, J.R., Jr. NIST X-ray Photoelectron Spectroscopy Database. Available online: https://srdata.nist.gov/xps/selEnergyType.aspx (accessed on 1 March 2023).
- Wang, Z.; Huang, J.; Guo, Z.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019, 3, 1289–1300. [Google Scholar] [CrossRef]
- Yang, T.; Qian, T.; Sun, Y.; Zhong, J.; Rosei, F.; Yan, C. Mega high utilization of sodium metal anodes enabled by single zinc atom sites. Nano Lett. 2019, 19, 7827–7835. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, G.; Pan, L.; Xiong, M.; Yan, H.; Li, Y.; Lu, C.; Qiao, Y. Rhombic dodecahedron ZIF-8 precursor: Designing porous N-doped carbon for sodium-ion batteries. ChemElectroChem 2017, 4, 3244–3249. [Google Scholar] [CrossRef]
- Fan, J.-M.; Chen, J.-J.; Zhang, Q.; Chen, B.-B.; Zang, J.; Zheng, M.-S.; Dong, Q.-F. An amorphous carbon nitride composite derived from ZIF-8 as anode material for sodium-ion batteries. ChemSusChem 2015, 8, 1856–1861. [Google Scholar] [CrossRef]
- Yang, I.; Kim, S.-G.; Kwon, S.H.; Kim, M.-S.; Jung, J.C. Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes. Electrochim. Acta 2017, 223, 21–30. [Google Scholar] [CrossRef]
- Zhong, X.; Li, Y.; Zhang, L.; Tang, J.; Li, X.; Liu, C.; Shao, M.; Lu, Z.; Pan, H.; Xu, B. High-performance sodium-ion batteries based on nitrogen-doped mesoporous carbon spheres with ultrathin nanosheets. ACS Appl. Mater. Interfaces 2019, 11, 2970–2977. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Guo, M.; Wang, X.; Yuan, C. Novel nitrogen-doped ordered mesoporous carbon as high-performance anode material for sodium-ion batteries. J. Alloys Compd. 2019, 791, 874–882. [Google Scholar] [CrossRef]
- Xue, K.; Si, Y.; Xie, S.; Yang, J.; Mo, Y.; Long, B.; Wei, W.; Cao, P.; Wei, H.; Guan, H.; et al. Free-standing N-doped porous carbon fiber membrane derived from Zn–MOF-74: Synthesis and application as anode for sodium-ion battery with an excellent performance. Front. Chem. 2021, 9, 647545. [Google Scholar] [CrossRef] [PubMed]
- Yanilmaz, M.; Atıcı, B.; Zhu, J.; Toprakci, O.; Kim, J. N-doped carbon nanoparticles on highly porous carbon nanofiber electrodes for sodium ion batteries. RSC Adv. 2023, 13, 7834–7842. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Feng, X.; Yang, J.; Yang, X.; Guan, H.-Y.; Argueta, M.; Wu, X.-L.; Liu, D.-S.; Austin, D.J.; Nie, P.; et al. Hierarchical porous carbon pellicles: Electrospinning synthesis and applications as anodes for sodium-ion batteries with an outstanding performance. Carbon 2020, 157, 308–315. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Qu, X.; Xu, G.; Fan, B.; Yan, Z.; Gui, F.; Yang, L. Hierarchically pyridinic-nitrogen enriched porous carbon for advanced sodium-ion and lithium-sulfur batteries: Electrochemical performance and in situ Raman spectroscopy investigations. Appl. Surf. Sci. 2022, 574, 151559. [Google Scholar] [CrossRef]
- Galarneau, A.; Villemot, F.; Rodriguez, J.; Fajula, F.; Coasne, B. Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir 2014, 30, 13266–13274. [Google Scholar] [CrossRef]
- Nie, W.; Cheng, H.; Liu, X.; Sun, Q.; Tian, F.; Yao, W.; Liang, S.; Lu, X.; Zhou, J. Surface organic nitrogen-doping disordered biomass carbon materials with superior cycle stability in the sodium-ion batteries. J. Power Sources 2022, 522, 230994. [Google Scholar]
- Chen, Y.; Wu, Y.; Liao, Y.; Zhang, Z.; Luo, S.; Li, L.; Wu, Y.; Qing, Y. Tuning carbonized wood fiber via sacrificial template-assisted hydrothermal synthesis for high-performance lithium/sodium-ion batteries. J. Power Sources 2022, 546, 231993. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, W.-L.; Abdelaal, M.M.; Amirtha, R.-M.; Fang, C.-C.; Yang, C.-C.; Hung, T.-F. In Situ Construction of Nitrogen-Doped and Zinc-Confined Microporous Carbon Enabling Efficient Na+-Storage Abilities. Int. J. Mol. Sci. 2023, 24, 8777. https://doi.org/10.3390/ijms24108777
Liao W-L, Abdelaal MM, Amirtha R-M, Fang C-C, Yang C-C, Hung T-F. In Situ Construction of Nitrogen-Doped and Zinc-Confined Microporous Carbon Enabling Efficient Na+-Storage Abilities. International Journal of Molecular Sciences. 2023; 24(10):8777. https://doi.org/10.3390/ijms24108777
Chicago/Turabian StyleLiao, Wan-Ling, Mohamed M. Abdelaal, Rene-Mary Amirtha, Chia-Chen Fang, Chun-Chen Yang, and Tai-Feng Hung. 2023. "In Situ Construction of Nitrogen-Doped and Zinc-Confined Microporous Carbon Enabling Efficient Na+-Storage Abilities" International Journal of Molecular Sciences 24, no. 10: 8777. https://doi.org/10.3390/ijms24108777
APA StyleLiao, W. -L., Abdelaal, M. M., Amirtha, R. -M., Fang, C. -C., Yang, C. -C., & Hung, T. -F. (2023). In Situ Construction of Nitrogen-Doped and Zinc-Confined Microporous Carbon Enabling Efficient Na+-Storage Abilities. International Journal of Molecular Sciences, 24(10), 8777. https://doi.org/10.3390/ijms24108777