Synthesis, Biological Activity, ADME and Molecular Docking Studies of Novel Ursolic Acid Derivatives as Potent Anticancer Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Studies
2.2.1. Cell Viability and Proliferation in MCF-7 and MDA-MB-231 Breast Cancer Cells
2.2.2. Proapoptotic Activity
2.2.3. Autophagic Activity
2.2.4. MMP Activity
2.2.5. Anti-Inflammatory Activity
2.3. ADME Prediction
2.4. Molecular Docking
3. Materials and Methods
3.1. General Procedures
3.2. Chemical Synthesis
3.2.1. General Procedure for the Synthesis of Compounds 3–12
Synthesis of 3β-Hydroxy-urs-12-en-28-oic Acid Methyl Ester (2)
Synthesis of Analogue 3—3β-((N-(t-Butoxycarbonyl)-5-benzyl-l-glutamyl)oxy)-urs-12-en-28-oic Acid Methyl Ester
Synthesis of Analogue 10—3β-(N-(t-Butoxycarbonyl)-l-alanyl-l-isoleucyloxy)-urs-12-en-28-oic Acid Methyl Ester
3.2.2. General Procedure for the Synthesis of Compounds 5a–12a
Synthesis of 5a—3β-(l-Histidyloxy)-urs-12-en-28-oic Acid Methyl Ester Hydrochloride
3.2.3. Synthesis of Compounds 3b and 4b
3.2.4. Synthesis of Compounds 3c and 4c
3.3. Biological Studies
3.3.1. Cell Culture
3.3.2. MTT Assay
3.3.3. [3H]-Thymidine Incorporation Assay
3.3.4. Determination of Bax, Caspase-7, LC3A, LC3B, Beclin-1, MMP-2, MMP-9, IL-6, and TNF-α
3.3.5. Statistical Analysis
3.4. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Zhang, H.; Nie, M.; Wang, W.; Liu, Z.; Chen, C.; Chen, H.; Liu, R.; Baloch, Z.; Ma, K. A novel synthetic ursolic acid derivative inhibits growth and induces apoptosis in breast cancer cell lines. Oncol. Lett. 2018, 15, 2323–2329. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Caetano Dos Santos, F.L.; Michalek, I.M.; Wojciechowska, U.; Didkowska, J. Changes in the survival of patients with breast cancer: Poland, 2000–2019. Breast Cancer Res. Treat. 2023, 197, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Lisiak, N.; Paszel-Jaworska, A.; Bednarczyk-Cwynar, B.; Zaprutko, L.; Kaczmarek, M.; Rybczyńska, M. Methyl 3-hydroxyamino-11-oxoolean-12-en-28-oate (HIMOXOL), a synthetic oleanolic acid derivative, induces both apoptosis and autophagy in MDA-MB-231 breast cancer cells. Chem.-Biol. Int. 2014, 208, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Van den Boogaard, W.M.C.; Komninos, D.S.J.; Vermeij, W.P. Chemotherapy Side-Effects: Not All DNA Damage Is Equal. Cancers 2022, 14, 627. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.; Sinclair, A.; Collins, H.; Rice, L.; Jelkmann, W. Progress in detecting cell-surface protein receptors: The erythropoietin receptor example. Ann. Hematol. 2014, 93, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Capello, M.; Lee, M.; Wang, H.; Babel, I.; Katz, M.H.; Fleming, J.B.; Maitra, A.; Wang, H.; Tian, W.; Taguchi, A.; et al. Carboxylesterase 2 as a Determinant of Response to Irinotecan and Neoadjuvant FOLFIRINOX Therapy in Pancreatic Ductal Adenocarcinoma. J. Natl. Cancer Inst. 2015, 107, djv132. [Google Scholar] [CrossRef]
- Gudoityte, E.; Arandarcikaite, O.; Mazeikiene, I.; Bendokas, V.; Liobikas, J. Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential. Int. J. Mol. Sci. 2021, 22, 4599. [Google Scholar] [CrossRef]
- Liu, J. Oleanolic acid and ursolic acid: Research perspectives. J. Ethnopharmacol. 2005, 100, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.M.; Cai, S.Q.; Cui, J.R.; Wang, R.Q.; Tu, P.F.; Hattori, M.; Daneshtalab, M. The cytotoxic activity of ursolic acid derivatives. Eur. J. Med. Chem. 2005, 40, 582–589. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Yang, J.J.; Lin, C.C. Effects of oleanolic acid and ursolic acid on inhibiting tumor growth and enhancing the recovery of hematopoietic system postirradiation in mice. Cancer Lett. 1997, 111, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, W.-J.; Yang, Q.-Y. Effects of ursolic acid and oleanolic acid on human colon carcinoma cell line HCT15. World J. Gastroenterol. 2002, 8, 493–495. [Google Scholar] [CrossRef]
- Anderson, D.; Liu, J.-J.; Nilsson, A.; Duan, R.-D. Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase. Anticancer Res. 2003, 23, 3317–3322. [Google Scholar]
- Choi, Y.H.; Baek, J.H.; Yoo, M.-A.; Chung, H.-Y.; Kim, N.D.; Kim, K.-W. Induction of apoptosis by ursolic acid through activation of caspases and downregulation of c-IAPs in human prostate epithelial cells. Int. J. Oncol. 2000, 17, 565–570. [Google Scholar] [CrossRef]
- Yin, R.; Li, T.; Tian, J.X.; Xi, P.; Liu, R.H. Ursolic acid, a potential anticancer compound for breast cancer therapy. Crit. Rev. Food Sci. Nutr. 2018, 58, 568–574. [Google Scholar] [CrossRef]
- Feng, X.-M.; Su, X.-L. Anticancer effect of ursolic acid via mitochondria-dependent pathways (Review). Oncol. Lett. 2019, 17, 4761–4767. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Abbasi, B.A.; Ahmad, R.; Mahmood, T.; Kanwal, S.; Ali, B.; Khalil, A.T.; Shah, S.A.; Alam, M.M.; Badshah, H. Ursolic acid a promising candidate in the therapeutics of breast cancer: Current status and future implications. Biomed. Pharm. 2018, 108, 752–756. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Soon, C.Y.; Tan, J.B.L.; Wong, S.K.; Hui, Y.W. Ursolic acid: An overview on its cytotoxic activities against breast and colorectal cancer cells. J. Integr. Med. 2019, 17, 155–160. [Google Scholar] [CrossRef]
- Bishayee, A.; Ahmed, S.; Brankov, N.; Perloff, M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci. 2011, 16, 980–996. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Hu, Y.-L.; Wang, H. Ursolic acid inhibits breast cancer growth by inhibiting proliferation, inducing autophagy and apoptosis, and suppressing inflammatory responses via the PI3K/AKT and NF-κB signaling pathways in vitro. Exp. Ther. Med. 2017, 14, 3623–3631. [Google Scholar] [CrossRef]
- Lewinska, A.; Adamczyk-Grochala, J.; Kwasniewicz, E.; Deregowska, A.; Wnuk, M. Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells. Apoptosis 2017, 22, 800–815. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chang, X.; Zhang, J.; Li, J.; Wang, N.; Yang, B.; Pan, B.; Zheng, Y.; Wang, X.; Ou, H.; et al. Ursolic Acid Inhibits Breast Cancer Metastasis by Suppressing Glycolytic Metabolism via Activating SP1/Caveolin-1 Signaling. Front. Oncol. 2021, 11, 745584. [Google Scholar] [CrossRef]
- Shan, J.-Z.; Xuan, Y.-Y.; Ruan, S.-Q.; Sun, M. Proliferation-inhibiting and apoptosis-inducing effects of ursolic acid and oleanolic acid on multi-drug resistance cancer cells in vitro. Chin. J. Integr. Med. 2011, 17, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-S.; Ren, T.-N.; Xi, T. Ursolic acid induces apoptosis by suppressing the expression of FoxM1 in MCF-7 human breast cancer cells. Med. Oncol. 2012, 29, 10–15. [Google Scholar] [CrossRef]
- Yeh, C.-T.; Wu, C.-H.; Yen, G.-C. Ursolic acid, a naturally occurring triterpenoid, suppresses migration and invasion of human breast cancer cells by modulating c-Jun N-terminal kinase, Akt and mammalian target of rapamycin signaling. Mol. Nutr. Food Res. 2010, 54, 1285–1295. [Google Scholar] [CrossRef]
- Kim, K.H.; Seo, H.S.; Choi, H.S.; Choi, I.; Shin, Y.C.; Ko, S.-G. Induction of apoptotic cell death by ursolic acid through mitochondrial death pathway and extrinsic death receptor pathway in MDA-MB-231 cells. Arch. Pharm. Res. 2011, 34, 1363–1372. [Google Scholar] [CrossRef]
- Kassi, E.; Sourlingas, T.G.; Spiliotaki, M.; Papoutsi, Z.; Pratsinis, H.; Aligiannis, N.; Moutsatsou, P. Ursolic Acid Triggers Apoptosis and Bcl-2 Downregulation in MCF-7 Breast Cancer Cells. Cancer Investig. 2009, 27, 723–733. [Google Scholar] [CrossRef]
- Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update. Int. J. Mol. Sci. 2020, 21, 5920. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.-L.; Liu, Y.-F.; Ying, T.-H.; Shieh, J.-C.; Hung, Y.-T.; Lee, H.-J.; Shen, C.-Y.; Cheng, C.-W. Inhibitory Effects of Ursolic Acid on the Stemness and Progression of Human Breast Cancer Cells by Modulating Argonaute-2. Int. J. Mol. Sci. 2023, 24, 366. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Jin, X.-Y.; Li, D.-D.; Wang, S.-F.; Tao, X.-B.; Chen, H. Design, synthesis and in vitro anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid. Bioorg. Med. Chem. Lett. 2017, 27, 4128–4132. [Google Scholar] [CrossRef] [PubMed]
- Leal, A.S.; Wang, R.; Salvador, J.A.R.; Jing, Y. Semisynthetic Ursolic Acid Fluorolactone Derivatives Inhibit Growth with Induction of p21waf1 and Induce Apoptosis with Upregulation of NOXA and Downregulation of c-FLIP in Cancer Cells. ChemMedChem 2012, 7, 1635–1646. [Google Scholar] [CrossRef]
- Rashid, S.; Dar, B.A.; Majeed, R.; Hamid, A.; Bhat, B.A. Synthesis and biological evaluation of ursolic acid-triazolyl derivatives as potential anti-cancer agents. Eur. J. Med. Chem. 2013, 66, 238–245. [Google Scholar] [CrossRef]
- Dar, B.A.; Lone, A.M.; Shah, W.A.; Qurishi, M.A. Synthesis and screening of ursolic acid-benzylidine derivatives as potential anti-cancer agents. Eur. J. Med. Chem. 2016, 111, 26–32. [Google Scholar] [CrossRef]
- Maniciula, D.; Roba, C.; Oprean, I.; Misca-Barbu, R. Synthesis of ursolic acid dipeptide derivates with potential biological activity. Rev. Chim. 2013, 64, 1454–1458. [Google Scholar]
- Gou, W.; Luo, N.; Yu, B.; Wu, H.; Wu, S.; Tian, C.; Guo, J.; Ning, H.; Bi, C.; Wei, H.; et al. Ursolic Acid Derivative UA232 Promotes Tumor Cell Apoptosis by Inducing Endoplasmic Reticulum Stress and Lysosomal Dysfunction. Int. J. Biol. Sci. 2022, 18, 2639–2651. [Google Scholar] [CrossRef]
- Nedopekina, D.A.; Gubaidullin, R.R.; Odinokov, V.N.; Maximchik, P.V.; Zhivotovsky, B.; Bel’skii, Y.P.; Khazanov, V.A.; Manuylova, A.V.; Gogvadze, V.; Spivak, A.Y. Mitochondria-targeted betulinic and ursolic acid derivatives: Synthesis and anticancer activity. Med. Chem. Commun. 2017, 8, 1934–1945. [Google Scholar] [CrossRef]
- Friedrich, S.; Serbian, I.; Hoenke, S.; Wolfram, R.K.; Csuk, R. Synthesis and cytotoxic evaluation of malachite green derived oleanolic and ursolic acid piperazineamides. Med. Chem. Res. 2020, 29, 926–933. [Google Scholar] [CrossRef]
- Chandrudu, S.; Simerska, P.; Toth, I. Chemical Methods for Peptide and Protein Production. Molecules 2013, 18, 4373–4388. [Google Scholar] [CrossRef]
- Sewald, N.; Jakubke, H. Peptides: Chemistry and Biology, 1st ed.; Wiley-VCH: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Wuts, P.G.M. Protection for the Amino Group. In Greene’s Protective Groups in Organic Synthesis, 5th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2014; p. 1132. [Google Scholar]
- Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging 2016, 8, 603–619. [Google Scholar] [CrossRef]
- Buzun, K.; Gornowicz, A.; Lesyk, R.; Bielawski, K.; Bielawska, A. Autophagy Modulators in Cancer Therapy. Int. J. Mol. Sci. 2021, 22, 5804. [Google Scholar] [CrossRef] [PubMed]
- Cerulli, R.A.; Shehaj, L.; Brown, H.; Pace, J.; Mei, Y.; Kritzer, J.A. Stapled Peptide Inhibitors of Autophagy Adapter LC3B. ChemBioChem 2020, 21, 2777–2785. [Google Scholar] [CrossRef]
- Huang, H. Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. Sensors 2018, 18, 3249. [Google Scholar] [CrossRef] [PubMed]
- Holanda, A.O.; Soares de Oliveira, A.R.; Cruz, K.J.; Severo, J.S.; Morais, J.B.S.; da Silva, B.B.; Marreiro, D.N. Zinc and metalloproteinases 2 and 9: What is their relation with breast cancer? Rev. Assoc. Med. Bras. 2017, 63, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Dofara, S.G.; Chang, S.-L.; Diorio, C. Gene Polymorphisms and Circulating Levels of MMP-2 and MMP-9: A Review of Their Role in Breast Cancer Risk. Anticancer Res. 2020, 40, 3619–3631. [Google Scholar] [CrossRef]
- Jezierska, A.; Motyl, T. Matrix metalloproteinase-2 involvement in breast cancer progression: A mini-review. Med. Sci. Monit. 2009, 15, RA32-40. [Google Scholar]
- Vassali, P. The pathophysiology of tumor necrosis factor. Annu. Rev. Immunol. 1992, 10, 411–452. [Google Scholar] [CrossRef]
- Lis, K.; Kuzawińska, O.; Bałkowiec-Iskra, E. State of the art paper. Tumor necrosis factor inhibitors—State of knowledge. Arch. Med. Sci. 2014, 10, 1175–1185. [Google Scholar] [CrossRef]
- Lipiński, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Matsson, P.; Doak, B.C.; Over, B.; Kihlberg, J. Cell permeability beyond the rule of 5. Adv. Drug Deliv. Rev. 2016, 101, 42–61. [Google Scholar] [CrossRef]
- Doak, B.C.; Over, B.; Giordanetto, F.; Kihlberg, J. Oral Druggable Space beyond the Rule of 5: Insights from Drugs and Clinical Candidates. Chem. Biol. 2014, 21, 1115–1142. [Google Scholar] [CrossRef]
- Qiang, Z.; Ye, Z.; Hauck, C.; Murphy, P.A.; McCoy, J.-A.; Widrlechner, M.P.; Reddy, M.B.; Hendrich, S. Permeability of rosmarinic acid in Prunella vulgaris and ursolic acid in Salvia officinalis extracts across Caco-2 cell monolayers. J. Ethnopharmacol. 2011, 137, 1107–1112. [Google Scholar] [CrossRef]
- Liao, Q.; Yang, W.; Jia, Y.; Chen, X.; Gao, Q.; Bi, K. LC-MS Determination and Pharmacokinetic Studies of Ursolic Acid in Rat Plasma after Administration of the Traditional Chinese Medicinal Preparation Lu-Ying Extract. Yakugaku Zasshi 2005, 125, 509–515. [Google Scholar] [CrossRef]
- Kim, H.-I.; Quan, F.-S.; Kim, J.-E.; Lee, N.-R.; Kim, H.J.; Jo, S.J.; Lee, C.-M.; Jang, D.S.; Inn, K.-S. Inhibition of estrogen signaling through depletion of estrogen receptor alpha by ursolic acid and betulinic acid from Prunella vulgaris var. lilacina. Biochem. Biophys. Res. Commun. 2014, 45, 282–287. [Google Scholar] [CrossRef]
- Şoica, C.; Voicu, M.; Ghiulai, R.; Dehelean, C.; Racoviceanu, R.; Trandafirescu, C.; Roșca, O.-J.; Nistor, G.; Mioc, M.; Mioc, A. Natural Compounds in Sex Hormone-Dependent Cancers: The Role of Triterpenes as Therapeutic Agents. Front. Endocrinol. 2021, 11, 612396. [Google Scholar] [CrossRef]
- Michalak, O.; Krzeczyński, P.; Cieślak, M.; Cmoch, P.; Cybulski, M.; Królewska-Golińska, K.; Kaźmierczak-Barańska, J.; Trzaskowski, B.; Ostrowska, K. Synthesis and anti-tumour, immunomodulating activity of diosgenin and tigogenin conjugates. J. Steroid Biochem. Mol. Biol. 2020, 198, 105573. [Google Scholar] [CrossRef]
- Pirrung, M.C. The Synthetic Organic Chemist’s Companion; John Wiley & Sons, Inc.: New York, NY, USA, 2006; pp. 171–172. [Google Scholar] [CrossRef]
- Gornowicz, A.; Szymanowski, W.; Czarnomysy, R.; Bielawski, K.; Bielawska, A. Anti-HER2 monoclonal antibodies intensify the susceptibility of human gastric cancer cells to etoposide by promoting apoptosis, but not autophagy. PLoS ONE 2021, 16, e0255585. [Google Scholar] [CrossRef]
- Gornowicz, A.; Szymanowska, A.; Mojzych, M.; Czarnomysy, R.; Bielawski, K.; Bielawska, A. The Anticancer Action of a Novel 1,2,4-Triazine Sulfonamide Derivative in Colon Cancer Cells. Molecules 2021, 26, 2045. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Li, M.-J.; Greenblatt, H.M.; Dym, O.; Albeck, S.; Pais, A.; Gunanathan, C.; Milstein, D.; Degani, H.; Sussman, J.L. Structure of Estradiol Metal Chelate and Estrogen Receptor Complex: The Basis for Designing a New Class of Selective Estrogen Receptor Modulators. J. Med. Chem. 2011, 54, 3575–3580. [Google Scholar] [CrossRef]
- Gangloff, M.; Ruff, M.; Eiler, S.; Duclaud, S.; Wurtz, J.M.; Moras, D. Crystal Structure of a Mutant hERα Ligand-Binding Domain Reveals Key Structural Features for the Mechanism of Partial Agonism. J. Biol. Chem. 2001, 276, 15059–15065. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 2016, 18, 12964–12975. [Google Scholar] [CrossRef]
- Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pKa prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 2007, 21, 681–691. [Google Scholar] [CrossRef]
Compound | IC50 (μM) | |
---|---|---|
MCF-7 | MDA-MB-231 | |
2 | >100 ± 3 | 32.5 ± 2 |
3c | >100 ± 3 | >100 ± 3 |
4c | 32 ± 1 | 15 ± 1 |
5a | 44 ± 2 | 17.5 ± 1 |
6a | 74 ± 2 | 22 ± 1 |
7a | 42 ± 1 | 14 ± 1 |
8a | 70 ± 2 | 22 ± 1 |
9a | >100 ± 3 | 30 ± 2 |
10a | 50 ± 2 | 17 ± 1 |
11a | 81 ± 2 | 17.5 ± 1 |
12a | 70 ± 2 | 17.5 ± 1 |
UA | 55 ± 2 | 32.5 ± 2 |
Compound | IC50 (μM) | |
---|---|---|
MCF-7 | MDA-MB-231 | |
2 | >100 ± 3 | 33.2 ± 2 |
3c | >100 ± 3 | >100 ± 3 |
4c | 32.46 ± 2 | 17.34 ± 1 |
5a | 41.89 ± 2 | 18.96 ± 1 |
6a | 71.86 ± 3 | 22.92 ± 2 |
7a | 40.2 ± 2 | 15.5 ± 1 |
8a | 71.65 ± 3 | 20.1 ± 2 |
9a | >100 ± 3 | 30.7 ± 2 |
10a | 52.21 ± 2 | 14.9 ± 1 |
11a | 78.2 ± 3 | 18.6 ± 1 |
12a | 69.4 ± 2 | 17.8 ± 1 |
UA | 53 ± 2 | 32.0 ± 2 |
Comp. | MW a | Dipole b | Vol c | SASA d | dHB e | aHB f | logP g | Metab h | P i | Ro3 j | Ro5 k | pKa l |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 456.7 | 3.8 | 1383.2 | 682.5 | 2 | 3.7 | 6.113 | 3 | 298 | 1 | 1 | — |
2 | 470.7 | 3.7 | 1459.6 | 723.2 | 1 | 3.7 | 6.585 | 3 | 3067 | 1 | 1 | — |
3c | 599.8 | 4.0 | 1808.5 | 896.8 | 3 | 7 | 4.221 | 6 | 11 | 2 | 1 | 7.48 |
4c | 557.8 | 3.8 | 1693.0 | 835.4 | 2 | 5.7 | 5.913 | 6 | 117 | 1 | 2 | 7.16 |
5a | 607.9 | 1.9 | 1827.8 | 899.2 | 3 | 6.5 | 6.356 | 6 | 130 | 1 | 2 | 7.97 |
6a | 583.9 | 3.0 | 1818.0 | 893.8 | 2 | 5 | 7.457 | 5 | 507 | 1 | 2 | 7.41 |
7a | 567.9 | 3.4 | 1758.0 | 870.6 | 1 | 5.5 | 7.079 | 3 | 552 | 1 | 2 | 7.76 |
8a | 583.9 | 3.4 | 1815.1 | 892.9 | 2 | 5 | 7.476 | 5 | 571 | 1 | 2 | 7.41 |
9a | 617.9 | 3.2 | 1884.9 | 929.2 | 2 | 5 | 8.097 | 6 | 515 | 1 | 2 | 7.03 |
10a | 655.0 | 7.1 | 1956.5 | 948.3 | 2.25 | 6.75 | 6.587 | 6 | 90 | 1 | 2 | 7.61 |
11a | 681.0 | 4.8 | 2074.3 | 1005.8 | 2 | 8 | 6.980 | 6 | 181 | 1 | 2 | 7.78 |
12a | 681.0 | 4.6 | 2064.4 | 997.5 | 2 | 8 | 6.955 | 6 | 1209 | 1 | 2 | 7.78 |
Ligand | Gibbs Free Energy of Binding (kcal/mol) | Ki (pM) |
---|---|---|
1 | −14.98 | 10.4 |
2 | −16.55 | 0.7 |
3c | −15.61 | 3.6 |
4c | −17.05 | 0.3 |
5a | −17.61 | 0.1 |
6a | −15.14 | 8.1 |
7a | −18.28 | 0.04 |
8a | −16.02 | 1.8 |
9a | −16.20 | 1.3 |
10a | −15.11 | 8.4 |
11a | −16.17 | 1.4 |
12a | −18.95 | 0.01 |
estradiol | −9.75 | 71,000 |
estradiol derivative a | −8.67 | 441,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalak, O.; Cybulski, M.; Szymanowski, W.; Gornowicz, A.; Kubiszewski, M.; Ostrowska, K.; Krzeczyński, P.; Bielawski, K.; Trzaskowski, B.; Bielawska, A. Synthesis, Biological Activity, ADME and Molecular Docking Studies of Novel Ursolic Acid Derivatives as Potent Anticancer Agents. Int. J. Mol. Sci. 2023, 24, 8875. https://doi.org/10.3390/ijms24108875
Michalak O, Cybulski M, Szymanowski W, Gornowicz A, Kubiszewski M, Ostrowska K, Krzeczyński P, Bielawski K, Trzaskowski B, Bielawska A. Synthesis, Biological Activity, ADME and Molecular Docking Studies of Novel Ursolic Acid Derivatives as Potent Anticancer Agents. International Journal of Molecular Sciences. 2023; 24(10):8875. https://doi.org/10.3390/ijms24108875
Chicago/Turabian StyleMichalak, Olga, Marcin Cybulski, Wojciech Szymanowski, Agnieszka Gornowicz, Marek Kubiszewski, Kinga Ostrowska, Piotr Krzeczyński, Krzysztof Bielawski, Bartosz Trzaskowski, and Anna Bielawska. 2023. "Synthesis, Biological Activity, ADME and Molecular Docking Studies of Novel Ursolic Acid Derivatives as Potent Anticancer Agents" International Journal of Molecular Sciences 24, no. 10: 8875. https://doi.org/10.3390/ijms24108875
APA StyleMichalak, O., Cybulski, M., Szymanowski, W., Gornowicz, A., Kubiszewski, M., Ostrowska, K., Krzeczyński, P., Bielawski, K., Trzaskowski, B., & Bielawska, A. (2023). Synthesis, Biological Activity, ADME and Molecular Docking Studies of Novel Ursolic Acid Derivatives as Potent Anticancer Agents. International Journal of Molecular Sciences, 24(10), 8875. https://doi.org/10.3390/ijms24108875