Design, Synthesis, In Vitro Antifungal Activity and Mechanism Study of the Novel 4-Substituted Mandelic Acid Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Crystal Structure
2.3. In Vitro Antifungal Activity Analysis
2.4. Morphological Study of G. saubinetii Fungus with SEM
2.5. Morphological Study of G. saubinetii Fungus with FM
2.6. Mechanistic Study of the Antifungal Activity of E13
3. Materials and Methods
3.1. Instruments and Chemicals
3.2. Fungi
3.3. Crystallographic Analysis
3.4. General Procedure for the Synthesis of Intermediate B
3.5. General Synthesis Procedure for Intermediates C and D
3.6. General Synthesis Procedure for Target Compounds E1–E28
3.7. In Vitro Antifungal Activity
3.8. Morphological Observation of G. saubinetii by Scanning Electron Microscopy
3.9. Morphological Observation of G. saubinetii by Fluorescence Microscope
3.10. Determination of Cytoplasmic Content Leakage
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, L.; Jian, W.L.; Shang, J.B.; He, D.H. Synthesis and antifungal activities of novel thiophene-based stilbene derivatives bearing an 1,3,4-oxadiazole unit. Pest Manag. Sci. 2018, 75, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.H.; Yang, L.R.; Liu, X.X.; Yang, J.; Sun, X.L. Development of celecoxib-derived antifungals for crop protection. Bioorg. Chem. 2020, 97, 103670–103675. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Luo, L.; Wang, Z.X.; Ma, X.Y.; Gan, X.H. Design, Synthesis and Antifungal/Nematicidal Activity of Novel 1,2,4-Oxadiazole Derivatives Containing Amide Fragments. Int. J. Mol. Sci. 2022, 23, 1596. [Google Scholar] [CrossRef]
- Wang, L.L.; Li, C.; Zhang, Y.Y.; Qiao, C.H.; Ye, Y.H. Synthesis and biological evaluation of benzofuroxan derivatives as fungicides against phytopathogenic fungi. J. Agric. Food Chem. 2013, 61, 8632–8640. [Google Scholar] [CrossRef] [PubMed]
- Price, C.; Parker, J.; Warrilow, A.; Kelly, D.; Kelly, S. Azole fungicides–understanding resistance mechanisms in agricultural fungal pathogens. Pest Manag. Sci. 2015, 71, 1054–1058. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Q.; Zhu, X.Y.; Zhou, Y.; Li, Q.L.; Hu, Z.; Li, T.; Tao, J.; Dou, M.L.; Zhang, M.; Shao, Y.; et al. Discovery of N-aryl-pyridine-4-ones as novel potential agrochemical fungicides and bactericides. J. Agric. Food Chem. 2019, 67, 13904–13913. [Google Scholar] [CrossRef]
- Zhu, J.K.; Gao, J.M.; Yang, C.J.; Shang, X.F.; Zhao, Z.M.; Lawoe, R.K.; Zhou, R.; Sun, Y.; Yin, X.D.; Liu, Y.Q. Design, Synthesis, and antifungal evaluation of neocryptolepine derivatives against phytopathogenic fungi. J. Agric. Food Chem. 2020, 68, 2306–2315. [Google Scholar] [CrossRef]
- Yang, J.L.; Guan, A.Y.; Li, Z.N.; Zhang, P.F.; Liu, C.L. Design, synthesis, and structure−activity relationship of novel piropyrimidinamines as fungicides against Pseudoperonospora cubensis. J. Agric. Food Chem. 2020, 68, 6485–6492. [Google Scholar] [CrossRef]
- Ding, J.W.; Zhang, M.; Dai, H.X.; Lin, C.M. Enantioseparation of chiral mandelic acid derivatives by supercritical fluid chromatography. Chirality 2018, 30, 1245–1256. [Google Scholar] [CrossRef]
- Lukito, B.R.; Sekar, B.S.; Wu, S.; Li, Z. Whole cell-based cascade biotransformation for the production of (S)-mandelic acid from styrene, L-phenylalanine, glucose, or glycerol. Adv. Synth. Catal. 2019, 361, 3560. [Google Scholar] [CrossRef]
- Sajini, T.; John, S.; Mathew, B. Rational design and tailoring of imprinted polymeric enantioselective sensor layered on multiwalled carbon nanotubes for the chiral recognition of D-mandelic acid. Polym. Chem. 2019, 10, 5364–5384. [Google Scholar] [CrossRef]
- Keinath, A.P. Utility of a cucumber plant bioassay to assess fungicide efficacy against Pseudoperonospora cubensis. Plant Dis. 2016, 100, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Qu, T.; Shao, Y.Y.; Csinos, A.S.; Ji, P.S. Sensitivity of phytophthora nicotianae from tobacco to fluopicolide, mandipropamid, and oxathiapiprolin. Plant Dis. 2016, 100, 2119–2125. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.Y.; Zhou, L.; Zhou, J.; Wu, Z.B.; Xue, W.; Song, B.A.; Yang, S. Synthesis and antibacterial activity of pyridinium-tailored 2,5-substituted-1,3,4-oxadiazole thioether/sulfoxide/sulfone derivatives. Bioorg. Med. Chem. Lett. 2016, 26, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, F.; Li, Q.; Xu, S.; Zhao, X.Z.; Xue, P.L.; Feng, X. Antifungal activity of zedoary turmeric oil against Phytophthora capsica through damaging cell membrane. Pestic. Biochem. Phys. 2019, 159, 59–67. [Google Scholar] [CrossRef]
- Xiang, J.; Liu, D.Y.; Chen, J.X.; Hu, D.Y.; Song, B.A. Design and synthesis of novel 1,3,4-oxadiazole sulfone compounds containing 3,4-dichloroisothiazolylamide moiety and evaluation of rice bacterial activity. Pestic. Biochem. Phys. 2020, 170, 104695. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Shao, W.B.; Zhu, J.J.; Long, Z.Q.; Liu, L.W.; Wang, P.Y.; Li, Z.; Yang, S. Novel 1,3,4-oxadiazole-2-carbohydrazides as prospective agricultural antifungal agents potentially targeting succinate dehydrogenase. J. Agric. Food Chem. 2019, 67, 13892–13903. [Google Scholar] [CrossRef]
- Gan, X.H.; Hu, D.Y.; Li, P.; Wu, J.; Chen, X.W.; Xue, W.; Song, B.A. Design, synthesis, antiviral activity and three-dimensional quantitative structure–activity relationship study of novel 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety. Pest Manag. Sci. 2015, 72, 534–543. [Google Scholar] [CrossRef]
- Gan, X.H.; Hu, D.Y.; Chen, Z.; Wang, Y.J.; Song, B.A. Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazole-chalcone conjugate. Bioorg. Med. Chem. Lett. 2017, 27, 4298–4301. [Google Scholar] [CrossRef]
- Yang, G.Q.; Zheng, H.L.; Shao, W.B.; Liu, L.W.; Wu, Z.B. Study of the in vivo antiviral activity against TMV treated with novel 1-(t-butyl)-5-amino-4-pyrazole derivatives containing a 1,3,4-oxadiazole sulfide moiety. Pestic. Biochem. Phys. 2020, 171, 104740. [Google Scholar] [CrossRef]
- Chen, J.X.; Wei, C.Q.; Wu, S.K.; Luo, Y.Q.; Wu, R.; Hu, D.Y.; Song, B.A. Novel 1,3,4-oxadiazole thioether derivatives containing flexible-chain moiety: Design, synthesis, nematocidal activities, and pesticide-likeness analysis. Bioorg. Med. Chem. Lett. 2020, 30, 127028. [Google Scholar] [CrossRef]
- Puig, M.; Moragrega, C.; Ruz, L.; Calderón, C.E.; Cazorla, F.M.; Montesinos, E.; Llorente, I. Interaction of antifungal peptide BP15 with Stemphylium vesicarium, the causal agent of brown spot of pear. Fungal Biol. 2016, 120, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.D.; Ma, K.Y.; Wang, Y.T.; Sun, Y.; Shang, X.F.; Zhao, Z.M.; Wang, R.Y.; Chen, Y.J.; Zhu, J.K.; Liu, Y.Q. Design, synthesis, and antifungal evaluation of 8-hydroxyquinoline metal complexes against phytopathogenic fungi. J. Agric. Food Chem. 2020, 68, 11096–11104. [Google Scholar] [CrossRef] [PubMed]
- Hamdani, S.S.; Khan, B.A.; Ahmed, M.N.; Hameed, S.; Akhter, K.; Ayub, K.; Mahmood, T. Synthesis, crystal structures, computational studies and α-amylase inhibition of three novel 1,3,4-oxadiazole derivatives. J. Mol. Struct. 2019, 1200, 127085. [Google Scholar] [CrossRef]
- Zhang, M.; Dai, Z.C.; Qian, S.S.; Liu, J.Y.; Xiao, Y.; Lu, A.M.; Zhu, H.L.; Wang, J.X.; Ye, Y.H. Design, synthesis, antifungal, and antioxidant activities of (E)-6-((2-Phenyl- hydrazono) methyl) quinoxaline derivatives. J. Agric. Food Chem. 2014, 62, 9637–9643. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Luo, N.; Ding, M.H.; Bao, X.P. Synthesis, in vitro antibacterial and antifungal evaluation of novel 1,3,4-oxadiazole thioether derivatives bearing the 6-fluoroquinazolinylpiperidinyl moiety. Chin. Chem. Lett. 2020, 31, 434–438. [Google Scholar] [CrossRef]
- Cai, R.; Hu, M.M.; Zhang, Y.J.; Niu, C.; Yue, T.L.; Yuan, Y.H.; Wang, Z.L. Antifungal activity and mechanism of citral, limonene and eugenol against Zygosaccharomyces rouxii. LWT Food Sci. Technol. 2019, 106, 50–56. [Google Scholar] [CrossRef]
- Wang, M.W.; Zhu, H.H.; Wang, P.Y.; Zeng, D.; Wu, Y.Y.; Liu, L.W.; Wu, Z.B.; Li, Z.; Yang, S. Synthesis of thiazolium-labeled 1,3,4-oxadiazole thioethers as prospective antimicrobials: In vitro and in vivo bioactivity and mechanism of action. J. Agric. Food Chem. 2019, 67, 12696–12708. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Yang, N.; Deng, Y.M.; Tao, K.; Jin, H.; Hou, T.P. Mechanism of action of novel pyrazole carboxamide containing a diarylamine scaffold against Rhizoctonia solani. J. Agric. Food Chem. 2020, 68, 11068–11076. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Jiang, Z.Y.; Zhu, Q.; Zhong, G.H. Discovery of β-carboline oxadiazole derivatives as fungicidal agents against rice sheath blight. J. Agric. Food Chem. 2018, 66, 9598–9607. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Zhang, P.; Xie, S.N.; Yuan, X.L.; Hou, X.D.; Yan, N.; Fang, Y.D.; Du, Y.M. In vitro and in vivo antifungal activity and preliminary mechanism of cembratrien-diols against Botrytis cinerea. Ind. Crop. Prod. 2020, 154, 112745–112755. [Google Scholar] [CrossRef]
- Ma, D.Y.; Ji, D.C.; Zhang, Z.Q.; Li, B.Q.; Qin, G.Z.; Xu, Y.; Chen, T.; Tian, S.P. Efficacy of rapamycin in modulating autophagic activity of Botrytis cinerea for controlling gray mold. Postharvest Biol. Tec. 2019, 150, 158–165. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.Y.; Chen, T.; Xu, Y.; Tian, S.P. Antifungal effects of hinokitiol on development of Botrytis cinerea in vitro and in vivo. Postharvest Biol. Tec. 2020, 159, 111038. [Google Scholar] [CrossRef]
Compound No. | Inhibition Rate ± SD (%) | ||||||
---|---|---|---|---|---|---|---|
GS | VD | SS | FO | FP | TC | PC | |
E1 | 69.9 ± 2.0 | 73.8 ± 3.0 | 88.8 ± 2.3 | 59.1 ± 0.9 | 57.1 ± 0.5 | 65.8 ± 0.8 | 29.2 ± 1.3 |
E2 | 69.6 ± 1.1 | 69.4 ± 0.9 | 71.8 ± 3.9 | 10.9 ± 2.7 | 30.3 ± 0.8 | 45.8 ± 1.7 | 39.8 ± 0.5 |
E3 | 0 | 16.1 ± 0.5 | 11.3 ± 0.5 | 0 | 11.2 ± 0.5 | 48.3 ± 2.2 | 11.1 ± 1.8 |
E4 | 27.5 ± 2.0 | 22.1 ± 0.5 | 21.7 ± 4.0 | 0 | 15.6 ± 0.8 | 25.3 ± 2.4 | 23.7 ± 0.9 |
E5 | 24.5 ± 0.0 | 22.4 ± 1.1 | 11.9 ± 1.9 | 54.2 ± 0.5 | 58.2 ± 0.8 | 84.9 ± 0.5 | 36.6 ± 3.3 |
E6 | 64.1 ± 0.6 | 93.8 ± 1.9 | 49.4 ± 0.5 | 9.4 ± 4.1 | 33.1 ± 0.5 | 67.5 ± 1.7 | 32.8 ± 2.2 |
E7 | 75.3 ± 2.9 | 80.3 ± 2.8 | 72.4 ± 1.7 | 35.8 ± 0.5 | 56.6 ± 0.8 | 81.4 ± 1.3 | 62.3 ±0.9 |
E8 | 64.1 ± 1.0 | 50.6 ± 0.5 | 83.1 ± 2.6 | 11.2 ± 0.5 | 28.1 ± 1.0 | 24.7 ± 1.7 | 17.3 ± 0.5 |
E9 | 59.8 ± 0.5 | 83.0 ± 1.9 | 92.8 ± 0.5 | 8.2 ± 0.9 | 38.9 ± 1.3 | 19.7 ± 2.6 | 26.9 ± 1.3 |
E10 | 78.5 ± 0.3 | 91.8 ± 2.2 | 87.5 ± 0.0 | 69.4 ± 1.4 | 68.3 ± 0.5 | 81.1 ± 1.1 | 53.8 ± 1.0 |
E11 | 65.7 ± 0.0 | 75.2 ± 0.5 | 68.8 ± 2.7 | 8.8 ± 2.3 | 21.0 ± 3.1 | 41.4 ± 5.4 | 5.0 ± 0.5 |
E12 | 48.7 ± 0.6 | 65.2 ± 0.5 | 54.5 ± 1.8 | 33.3 ± 1.4 | 38.3 ± 0.5 | 28.1 ± 1.3 | 46.5 ± 0.9 |
E13 | 78.3 ± 0.9 | 100 | 92.5 ± 0.8 | 70.3 ± 0.5 | 69.7 ± 0.8 | 87.5 ± 0.0 | 76.3 ± 1.5 |
E14 | 80.2 ± 0.9 | 95.9 ± 1.4 | 71.9 ± 3.8 | 68.8 ± 1.1 | 69.1 ± 1.3 | 66.9 ± 0.5 | 70.2 ± 1.8 |
E15 | 37.9 ± 0.6 | 23.6 ± 0.0 | 34.2 ± 1.4 | 27.3 ± 1.6 | 49.5 ± 2.4 | 60.8 ± 1.7 | 61.1 ± 2.0 |
E16 | 42.3 ± 1.3 | 39.3 ± 1.0 | 24.9 ± 1.1 | 27.0 ± 1.0 | 31.8 ± 0.8 | 49.2 ± 0.7 | 35.1 ± 0.9 |
E17 | 69.5 ± 2.2 | 83.3 ± 2.2 | 89.7 ± 0.5 | 10.0 ± 1.8 | 12.3 ± 0.7 | 18.1 ± 0.5 | 58.2 ± 1.0 |
E18 | 73.3 ± 1.7 | 81.3 ± 1.8 | 69.0 ± 0.9 | 0 | 24.3 ± 2.5 | 48.1 ± 0.5 | 37.7 ± 1.5 |
E19 | 66.0 ± 2.5 | 67.9 ± 0.0 | 69.7 ± 0.5 | 52.4 ± 1.0 | 39.3 ± 0.9 | 57.3 ± 0.8 | 48.8 ± 0.5 |
E20 | 76.0 ± 1.9 | 94.4 ± 0.0 | 80.5 ± 0.5 | 69.0 ± 2.5 | 69.7 ± 1.7 | 65.9 ± 1.0 | 74.2 ± 0.9 |
E21 | 65.1 ± 0.6 | 81.8 ± 1.9 | 77.3 ± 0.5 | 24.9 ± 2.6 | 60.9 ± 0.5 | 61.2 ± 1.1 | 8.5 ± 1.0 |
E22 | 71.6 ± 1.1 | 64.2 ± 0.6 | 67.9 ± 0.5 | -- | -- | -- | -- |
E23 | 72.2 ± 1.0 | 80.6 ± 0.6 | 52.5 ± 0.5 | -- | -- | -- | -- |
E24 | 74.1 ± 1.0 | 81.6 ± 0.6 | 65.1 ± 2.8 | -- | -- | -- | -- |
E25 | 71.9 ± 0.6 | 78.2 ± 1.6 | 57.1 ± 1.1 | -- | -- | -- | -- |
E26 | 73.8 ± 0.6 | 80.9 ± 1.0 | 61.7 ± 1.4 | -- | -- | -- | -- |
E27 | 74.4 ± 2.0 | 68.6 ± 1.5 | 74.1 ± 0.9 | -- | -- | -- | -- |
E28 | 76.0 ± 1.0 | 74.6 ± 0.6 | 67.9 ± 0.5 | -- | -- | -- | -- |
MP | 19.1 ± 0.4 | 27.2 ± 0.9 | 14.0 ± 0.5 | 26.5 ± 0.9 | 27.5 ± 1.1 | 23.6 ± 1.9 | 25.2 ± 1.0 |
HY | -- | -- | -- | -- | -- | 79.3 ± 1.6 | 69.6 ± 0.5 |
Compound No. | EC50 (mg/L) | ||||
---|---|---|---|---|---|
GS | VD | SS | TC | PC | |
E1 | 47.4 ± 2.6 | 50.7 ± 2.8 | 23.0 ± 1.5 | -- | -- |
E2 | 37.3 ± 1.4 | 37.2 ± 1.2 | 27.1 ± 1.5 | -- | -- |
E5 | -- | -- | -- | 18.5 ± 0.4 | -- |
E6 | 49.9 ± 0.4 | 12.7 ± 0.5 | 90.5 ± 3.5 | -- | -- |
E7 | 30.6 ± 3.0 | 14.3 ± 0.1 | 40.1 ± 2.7 | 5.7 ± 0.2 | -- |
E8 | 79.1 ± 2.6 | >100 | 13.8 ± 3.1 | -- | -- |
E9 | 24.6 ± 0.7 | 29.0 ± 2.1 | 10.3 ± 1.0 | -- | -- |
E10 | 29.4 ± 0.6 | 37.2 ± 1.0 | 21.9 ± 0.4 | 36.3 ± 1.3 | -- |
E13 | 20.4 ± 1.3 | 18.5 ± 1.2 | 33.5 ± 1.8 | 7.1 ± 0.1 | 42.9 ± 0.7 |
E14 | 21.5 ± 1.0 | 23.1 ± 0.8 | 37.6 ± 1.9 | -- | 49.3 ± 1.4 |
E17 | 22.0 ± 1.5 | 16.1 ± 0.2 | 27.9 ± 0.2 | -- | -- |
E18 | 24.5 ± 0.9 | 15.8 ± 1.4 | 8.0 ± 0.3 | -- | -- |
E19 | 56.1 ± 0.9 | 65.7 ± 0.7 | 47.8 ± 1.7 | -- | -- |
E20 | 31.6 ± 0.6 | 29.6 ± 2.3 | 39.1 ± 1.1 | -- | 50.9 ± 1.4 |
E21 | 27.3 ± 2.0 | 13.4 ± 0.6 | 36.3 ± 0.3 | 37.6 ± 1.0 | -- |
E22 | 51.1 ± 0.2 | 61.3 ± 1.6 | 48.5 ± 0.4 | -- | -- |
E23 | 32.5 ± 0.9 | 32.3 ± 0.4 | 81.4 ± 2.1 | -- | -- |
E24 | 30.8 ± 1.5 | 38.5 ± 1.0 | 51.6 ± 5.4 | -- | -- |
E25 | 31.3 ± 1.5 | 33.7 ± 3.5 | 75.2 ± 3.4 | -- | -- |
E26 | 32.7 ± 1.1 | 30.4 ± 1.3 | 54.0 ± 1.8 | -- | -- |
E27 | 25.2 ± 1.0 | 43.0 ± 1.6 | 37.2 ± 0.8 | -- | -- |
E28 | 24.2 ± 0.4 | 26.9 ± 0.2 | 47.9 ± 0.2 | -- | -- |
MP | >100 | >100 | >100 | -- | -- |
HY | -- | -- | -- | 13.8 ± 1.5 | 17.9 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Song, D.; Shi, H.; Chen, K.; Wu, Z.; Chai, H. Design, Synthesis, In Vitro Antifungal Activity and Mechanism Study of the Novel 4-Substituted Mandelic Acid Derivatives. Int. J. Mol. Sci. 2023, 24, 8898. https://doi.org/10.3390/ijms24108898
Chen B, Song D, Shi H, Chen K, Wu Z, Chai H. Design, Synthesis, In Vitro Antifungal Activity and Mechanism Study of the Novel 4-Substituted Mandelic Acid Derivatives. International Journal of Molecular Sciences. 2023; 24(10):8898. https://doi.org/10.3390/ijms24108898
Chicago/Turabian StyleChen, Biao, Dandan Song, Huabin Shi, Kuai Chen, Zhibing Wu, and Huifang Chai. 2023. "Design, Synthesis, In Vitro Antifungal Activity and Mechanism Study of the Novel 4-Substituted Mandelic Acid Derivatives" International Journal of Molecular Sciences 24, no. 10: 8898. https://doi.org/10.3390/ijms24108898
APA StyleChen, B., Song, D., Shi, H., Chen, K., Wu, Z., & Chai, H. (2023). Design, Synthesis, In Vitro Antifungal Activity and Mechanism Study of the Novel 4-Substituted Mandelic Acid Derivatives. International Journal of Molecular Sciences, 24(10), 8898. https://doi.org/10.3390/ijms24108898