Potency Assays for Mesenchymal Stromal Cell Secretome-Based Products for Tissue Regeneration
Abstract
:1. Introduction
2. MSC Secretome-Based Products: A Pharmaceutical Classification
The Eurasian Economic Union | The European Union | The United States of America | ||||
---|---|---|---|---|---|---|
Terms | Biological medicinal products | Medicinal products | Advanced therapy medicinal products (ATMP) | Biological medicinal products | Human cells, tissues, and cellular and tissue-based products (HCT’Ps) | Biological medicinal products |
Reasons for qualifying | Contain a biological active substance that is produced by or extracted from a biological source and that needs, for its characterization and the determination of its quality, a combination of physicochemical-biological testing together with the production process and its control | Are intended to treat, prevent, or diagnose a disease, or to restore, correct, or modify physiological functions by exerting a pharmacological, immunological, or metabolic action | Include a wide range of products such as vaccines, blood and blood components, allergenics, somatic cells, gene therapy, tissues, and recombinant therapeutic proteins. Biologics can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, or may be living entities such as cells and tissues. | |||
Reasons for not qualifying | ATMP should contain or consist either of cells or tissues that have been subject to substantial manipulation so that biological characteristics, physiological functions, or structural properties relevant for the intended clinical use have been altered, or of cells or tissues that are not intended to be used for the same essential function(s) in the recipient and donor. | Are produced from recombinant or non-recombinant cell-culture expression systems and can be highly purified and characterized using an appropriate set of analytical procedures. | Contain or consist of human cells or tissues that are intended for implantation, transplantation, infusion, or transfer into a human recipient. The HCT/Ps are minimally manipulated | Biological products mean a virus, therapeutic serum, toxin, antitoxin, vaccine, blood, blood component or derivative, allergenic product, protein, analogous product, or arsphenamine or derivative of arsphenamine (or any other trivalent organic arsenic compound) that is applicable to the prevention, treatment, or cure of a disease or condition in human beings. | ||
References | [33] | [35] | [36,37] | [28] | [38] | [27,39] |
3. Development of Potency Assays for MSC Secretome-Based Products for Tissue Regeneration
4. Stem Cell Niche Recovery as a Promising Endpoint for Potency Assays of MSC Secretome-Based Products
5. Spermatogonial Stem Cell Niche as a Promising Target to Assess Potency of MSC Secretome-Based Products for Idiopathic Male Infertility
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mannino, G.; Russo, C.; Maugeri, G.; Musumeci, G.; Vicario, N.; Tibullo, D.; Giuffrida, R.; Parenti, R.; Lo Furno, D. Adult Stem Cell Niches for Tissue Homeostasis. J. Cell. Physiol. 2022, 237, 239–257. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, S.; Qu, J.; Belmonte, J.C.I.; Liu, G.-H. Rejuvenation of Tissue Stem Cells by Intrinsic and Extrinsic Factors. Stem Cells Transl. Med. 2022, 11, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Kurtova, A.V.; Heinlein, M.; Haas, S.; Velten, L.; Dijkgraaf, G.J.P.; Storm, E.E.; Kljavin, N.M.; Boumahdi, S.; Himmels, P.; Herault, A.; et al. Disruption of Stem Cell Niche-Confined R-Spondin 3 Expression Leads to Impaired Hematopoiesis. Blood Adv. 2023, 7, 491–507. [Google Scholar] [CrossRef]
- Goula, A.; Gkioka, V.; Michalopoulos, E.; Katsimpoulas, M.; Noutsias, M.; Sarri, E.F.; Stavropoulos, C.; Kostakis, A. Advanced Therapy Medicinal Products Challenges and Perspectives in Regenerative Medicine. J. Clin. Med. Res. 2020, 12, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.W.; Williams, D.A.; Watt, F.M. Modulating the Stem Cell Niche for Tissue Regeneration. Nat. Biotechnol. 2014, 32, 795–803. [Google Scholar] [CrossRef]
- Sagaradze, G.D.; Basalova, N.A.; Efimenko, A.Y.; Tkachuk, V.A. Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. Front. Cell Dev. Biol. 2020, 8, 576176. [Google Scholar] [CrossRef]
- Levy, O.; Kuai, R.; Siren, E.M.J.; Bhere, D.; Milton, Y.; Nissar, N.; De Biasio, M.; Heinelt, M.; Reeve, B.; Abdi, R.; et al. Shattering Barriers toward Clinically Meaningful MSC Therapies. Sci. Adv. 2020, 6, eaba6884. [Google Scholar] [CrossRef] [PubMed]
- Clinical Trials. Available online: https://clinicaltrials.gov/ct2/results?term=mesenchymal+stem+cells&Search=Apply&recrs=a&age_v=&gndr=&type=&rslt (accessed on 31 March 2023).
- Seo, Y.; Nguyen, T.T.; Oh, S.J.; Jeong, J.H.; Kim, H.S. Formulation of secretome derived from mesenchymal stem cells for inflammatory skin diseases. J. Pharm. Investig. 2023, 53, 235–248. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, H.; Song, Y. The safety of MSC therapy over the past 15 years: A meta-analysis. Stem Cell Res Ther. 2021, 12, 545. [Google Scholar] [CrossRef]
- Yamamoto, T.; Arita, M.; Tamura, T.; Saito, M.; Katayama, H.; Kuroda, H.; Suzuki, T.; Kawamata, S. A Novel Approach for Determining the Critical Quality Attributes of Mesenchymal Stem Cells by Specifying Cell Population with Replication Potential. Stem Cells Transl. Med. 2023, 12, 169–182. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, Z.; Weng, J.; Pei, D.; Du, X.; He, C.; Lai, P. Challenges and Advances in Clinical Applications of Mesenchymal Stromal Cells. J. Hematol. Oncol. 2021, 14, 24. [Google Scholar] [CrossRef]
- Teixeira, F.G.; Salgado, A.J. Mesenchymal Stem Cells Secretome: Current Trends and Future Challenges. Neural Regen. Res. 2020, 15, 75–77. [Google Scholar] [CrossRef]
- Zhuang, W.-Z.; Lin, Y.-H.; Su, L.-J.; Wu, M.-S.; Jeng, H.-Y.; Chang, H.-C.; Huang, Y.-H.; Ling, T.-Y. Mesenchymal Stem/stromal Cell-Based Therapy: Mechanism, Systemic Safety and Biodistribution for Precision Clinical Applications. J. Biomed. Sci. 2021, 28, 28. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ding, Y.; Liu, Z.; Liang, X. Senescence in Mesenchymal Stem Cells: Functional Alterations, Molecular Mechanisms, and Rejuvenation Strategies. Front. Cell Dev. Biol. 2020, 8, 258. [Google Scholar] [CrossRef]
- Sun, D.Z.; Abelson, B.; Babbar, P.; Damaser, M.S. Harnessing the Mesenchymal Stem Cell Secretome for Regenerative Urology. Nat. Rev. Urol. 2019, 16, 363–375. [Google Scholar] [CrossRef]
- Baranovskii, D.S.; Klabukov, I.D.; Arguchinskaya, N.V.; Yakimova, A.O.; Kisel, A.A.; Yatsenko, E.M.; Ivanov, S.A.; Shegay, P.V.; Kaprin, A.D. Adverse events, side effects and complications in mesenchymal stromal cell-based therapies. Stem Cell Investig. 2022, 9, 7. [Google Scholar] [CrossRef]
- Qi, C.; Liu, X.; Zhi, D.; Tai, Y.; Liu, Y.; Sun, Q.; Wang, K.; Wang, S.; Midgley, A.C.; Kong, D. Exosome-mimicking nanovesicles derived from efficacy-potentiated stem cell membrane and se-cretome for regeneration of injured tissue. Nano Res. 2022, 15, 1680–1690. [Google Scholar] [CrossRef]
- Malvicini, R.; Santa-Cruz, D.; De Lazzari, G.; Tolomeo, A.M.; Sanmartin, C.; Muraca, M.; Yannarelli, G.; Pacienza, N. Macrophage Bioassay Standardization to Assess the Anti-Inflammatory Activity of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles. Cytotherapy 2022, 24, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Monakova, A.; Sagaradze, G.; Basalova, N.; Popov, V.; Balabanyan, V.; Efimenko, A. Novel Potency Assay for MSC Secretome-Based Treatment of Idiopathic Male Infertility Employed Leydig Cells and Revealed Vascular Endothelial Growth Factor as a Promising Potency Marker. Int. J. Mol. Sci. 2022, 23, 9414. [Google Scholar] [CrossRef]
- Sagaradze, G.D.; Grigorieva, O.A.; Efimenko, A.Y.; Chaplenko, A.A.; Suslina, S.N.; Sysoeva, V.Y.; Kalinina, N.I.; Akopyan, Z.A.; Tkachuk, V.A. Therapeutic Potential of Human Mesenchymal Stromal Cells Secreted Components: A Problem with Standartization. Biomeditsinskaya Khimiya 2015, 61, 750–759. [Google Scholar] [CrossRef]
- Wiest, E.F.; Zubair, A.C. Challenges of Manufacturing Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Regenerative Medicine. Cytotherapy 2020, 22, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Lener, T.; Gimona, M.; Aigner, L.; Börger, V.; Buzas, E.; Camussi, G.; Chaput, N.; Chatterjee, D.; Court, F.A.; Del Portillo, H.A.; et al. Applying Extracellular Vesicles Based Therapeutics in Clinical Trials—an ISEV Position Paper. J. Extracell. Vesicles 2015, 4, 30087. [Google Scholar] [CrossRef]
- Gimona, M.; Brizzi, M.F.; Choo, A.B.H.; Dominici, M.; Davidson, S.M.; Grillari, J.; Hermann, D.M.; Hill, A.F.; de Kleijn, D.; Lai, R.C.; et al. Critical Considerations for the Development of Potency Tests for Therapeutic Applications of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles. Cytotherapy 2021, 23, 373–380. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/glossary/medicinal-product#:~:text=A substance or combination of,pharmacological%2C immunological or metabolic action (accessed on 31 March 2023).
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress. Npj Regen. Med. 2019, 4, 22. [Google Scholar] [CrossRef]
- CFR-Code of Federal Regulations. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=600.3 (accessed on 31 March 2023).
- European Medicines Agency. Guideline on the Requirements for Quality Documentation Concerning Biological Investigational Medicinal Products in Clinical Trials. 2022, Volume 31. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-requirements-quality-documentation-concerning-biological-investigational-medicinal_en-2.pdf (accessed on 21 May 2023).
- Visan, K.S.; Lobb, R.J.; Ham, S.; Lima, L.G.; Palma, C.; Edna, C.P.Z.; Wu, L.-Y.; Gowda, H.; Datta, K.K.; Hartel, G.; et al. Comparative Analysis of Tangential Flow Filtration and Ultracentrifugation, Both Combined with Subsequent Size Exclusion Chromatography, for the Isolation of Small Extracellular Vesicles. J. Extracell. vesicles 2022, 11, e12266. [Google Scholar] [CrossRef] [PubMed]
- Mocchi, M.; Bari, E.; Marrubini, G.; Bonda, A.F.; Perteghella, S.; Tartara, F.; Cofano, F.; Perna, G.D.; Giovannelli, L.; Mandracchia, D.; et al. Freeze-Dried Mesenchymal Stem Cell-Secretome Pharmaceuticalization: Optimization of Formulation and Manufacturing Process Robustness. Pharmaceutics 2021, 13, 1129. [Google Scholar] [CrossRef] [PubMed]
- Braga, C.L.; da Silva, L.R.; Santos, R.T.; de Carvalho, L.R.P.; Mandacaru, S.C.; de Oliveira Trugilho, M.R.; Rocco, P.R.M.; Cruz, F.F.; Silva, P.L. Proteomics Profile of Mesenchymal Stromal Cells and Extracellular Vesicles in Normoxic and Hypoxic Conditions. Cytotherapy 2022, 24, 1211–1224. [Google Scholar] [CrossRef]
- Kalinina, N.; Kharlampieva, D.; Loguinova, M.; Butenko, I.; Pobeguts, O.; Efimenko, A.; Ageeva, L.; Sharonov, G.; Ischenko, D.; Alekseev, D.; et al. Characterization of Secretomes Provides Evidence for Adipose-Derived Mesenchymal Stromal Cells Subtypes. Stem Cell Res. Ther. 2015, 6, 221. [Google Scholar] [CrossRef]
- Acts in the Sphere of Circulation of Medicinal Products. Available online: https://eec.eaeunion.org/en/comission/department/deptexreg/ls1/drug_products.php (accessed on 31 March 2023).
- Somatic, H.; Therapy, G. FDA Report: Guidance for Industry: Guidance for Human Somatic Cell Therapy and Gene Therapy. Hum. Gene Ther. 1998, 9, 1513–1524. [Google Scholar] [CrossRef]
- European Medicines Agency. Reflection Paper on Classification of Advanced Therapy Medicinal Products. 2015. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-classification-advanced-therapy-medicinal-products_en-0.pdf (accessed on 21 May 2023).
- Scientific Recommendations on Classification of Advanced Therapy Medicinal Products. Available online: https://www.ema.europa.eu/en/human-regulatory/marketing-authorisation/advanced-therapies/advanced-therapy-classification/scientific-recommendations-classification-advanced-therapy-medicinal-products (accessed on 31 March 2023).
- Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001. Pharm. Policy Law 2009, 11, 411–499. [CrossRef]
- Regulatory Considerations for Human Cells, Tissues, and Cellular and Tissue-Based Products: Minimal Manipulation and Homologous Use. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/regulatory-considerations-human-cells-tissues-and-cellular-and-tissue-based-products-minimal (accessed on 31 March 2023).
- What Are “Biologics” Questions and Answers. Available online: https://www.fda.gov/about-fda/center-biologics-evaluation-and-research-cber/what-are-biologics-questions-and-answers (accessed on 31 March 2023).
- European Medicines Agency. Guideline on Human Cell-Based Medicinal Products. 2008. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-human-cell-based-medicinal-products_en.pdf (accessed on 21 May 2023).
- USP. General Chapters <1032>Biologics. 2012, p. 2814. Available online: https://doi.usp.org/USPNF/USPNF_M1354_01_01.html (accessed on 21 May 2023).
- Thej, C.; Ramadasse, B.; Walvekar, A.; Majumdar, A.S.; Balasubramanian, S. Development of a Surrogate Potency Assay to Determine the Angiogenic Activity of Stempeucel®, a Pooled, Ex-Vivo Expanded, Allogeneic Human Bone Marrow Mesenchymal Stromal Cell Product. Stem Cell Res. Ther. 2017, 8, 47. [Google Scholar] [CrossRef]
- Lipat, A.J.; Cottle, C.; Pirlot, B.M.; Mitchell, J.; Pando, B.; Helmly, B.; Kosko, J.; Rajan, D.; Hematti, P.; Chinnadurai, R. Chemokine Assay Matrix Defines the Potency of Human Bone Marrow Mesenchymal Stromal Cells. Stem Cells Transl. Med. 2022, 11, 971–986. [Google Scholar] [CrossRef]
- USP. General Chapters <1041>Biologics. 2012. Available online: https://doi.usp.org/USPNF/USPNF_M99760_03_01.html (accessed on 21 May 2023).
- Giannasi, C.; Niada, S.; Della Morte, E.; Casati, S.; Orioli, M.; Gualerzi, A.; Brini, A.T. Towards Secretome Standardization: Identifying Key Ingredients of MSC-Derived Therapeutic Cocktail. Stem Cells Int. 2021, 2021, 3086122. [Google Scholar] [CrossRef]
- European Medicines Agency. ICH Topic Q 6 B Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products. 1999. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-6-b-test-procedures-acceptance-criteria-biotechnological/biological-products-step-5_en.pdf (accessed on 21 May 2023).
- Lui, P.P.Y.; Leung, Y.T. Practical Considerations for Translating Mesenchymal Stromal Cell-Derived Extracellular Vesicles from Bench to Bed. Pharmaceutics 2022, 14, 1684. [Google Scholar] [CrossRef] [PubMed]
- Swartz, M. A Guide to Analytical Method Validation. Poster 2006, No. 6, 2006. Available online: https://www.waters.com/webassets/cms/library/docs/720001826en.pdf (accessed on 21 May 2023).
- International Conference for Harmonisation. ICH Harmonised Tripartite Guideline Q 2 (R1): Validation of Analytical Procedures, 2005. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (accessed on 21 May 2023).
- Carballo-Uicab, G.; Linares-Trejo, J.E.; Mellado-Sánchez, G.; López-Morales, C.A.; Velasco-Velázquez, M.; Pavón, L.; Estrada-Parra, S.; Pérez-Tapia, S.M.; Medina-Rivero, E. Validation of a Cell Proliferation Assay to Assess the Potency of a Dialyzable Leukocyte Extract Intended for Batch Release. Molecules 2019, 24, 3426. [Google Scholar] [CrossRef] [PubMed]
- Piede, N.; Bremm, M.; Farken, A.; Pfeffermann, L.-M.; Cappel, C.; Bonig, H.; Fingerhut, T.; Puth, L.; Vogelsang, K.; Peinelt, A.; et al. Validation of an ICH Q2 Compliant Flow Cytometry-Based Assay for the Assessment of the Inhibitory Potential of Mesenchymal Stromal Cells on T Cell Proliferation. Cells 2023, 12, 850. [Google Scholar] [CrossRef]
- Booth, B.P.; Simon, W.C. Analytical Method Validation. In New Drug Development; CRC Press: Boca Raton, FL, USA, 2016; pp. 138–159. [Google Scholar] [CrossRef]
- Yu, B.; Yang, H. Evaluation of Different Estimation Methods for Accuracy and Precision in Biological Assay Validation. PDA J. Pharm. Sci. Technol. 2017, 71, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Sagaradze, G.; Monakova, A.; Basalova, N.; Popov, V.; Balabanyan, V.; Efimenko, A. Regenerative Medicine for Male Infertility: A Focus on Stem Cell Niche Injury Models. Biomed. J. 2022, 45, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Sagaradze, G.; Basalova, N.; Kirpatovsky, V.; Ohobotov, D.; Nimiritsky, P.; Grigorieva, O.; Popov, V.; Kamalov, A.; Tkachuk, V.; Efimenko, A. A Magic Kick for Regeneration: Role of Mesenchymal Stromal Cell Secretome in Spermatogonial Stem Cell Niche Recovery. Stem Cell Res. Ther. 2019, 10, 342. [Google Scholar] [CrossRef]
- Li, J.; Ma, J.; Zhang, Q.; Gong, H.; Gao, D.; Wang, Y.; Li, B.; Li, X.; Zheng, H.; Wu, Z.; et al. Spatially Resolved Proteomic Map Shows That Extracellular Matrix Regulates Epidermal Growth. Nat. Commun. 2022, 13, 4012. [Google Scholar] [CrossRef]
- Martín-Alonso, M.; Iqbal, S.; Vornewald, P.M.; Lindholm, H.T.; Damen, M.J.; Martínez, F.; Hoel, S.; Díez-Sánchez, A.; Altelaar, M.; Katajisto, P.; et al. Smooth Muscle-Specific MMP17 (MT4-MMP) Regulates the Intestinal Stem Cell Niche and Regeneration after Damage. Nat. Commun. 2021, 12, 6741. [Google Scholar] [CrossRef] [PubMed]
- Phinney, D.G.; Lee, R.H.; Boregowda, S.V. Revisiting the Mesenchymal “Stem vs. Stromal” Cell Dichotomy and Its Implications for Development of Improved Potency Metrics. Stem Cells 2023, 41, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Raghavan Chinnadurai and others, Potency Analysis of Mesenchymal Stromal Cells Using a Phospho-STAT Matrix Loop Analytical Approach. Stem Cells 2019, 37, 1119–1125. [CrossRef]
- Bonfield, T.L.; Sutton, M.T.; Fletcher, D.R.; Reese-Koc, J.; Roesch, E.A.; Lazarus, H.M.; Chmiel, J.F.; Caplan, A.I. Human Mesenchymal Stem Cell (hMSC) Donor Potency Selection for the “First in Cystic Fibrosis” Phase I Clinical Trial (CEASE-CF). Pharmaceuticals 2023, 16, 220. [Google Scholar] [CrossRef]
- Hicks, M.R.; Pyle, A.D. The Emergence of the Stem Cell Niche. Trends Cell Biol. 2023, 33, 112–123. [Google Scholar] [CrossRef]
- Borrett, M.J.; Innes, B.T.; Jeong, D.; Tahmasian, N.; Storer, M.A.; Bader, G.D.; Kaplan, D.R.; Miller, F.D. Single-Cell Profiling Shows Murine Forebrain Neural Stem Cells Reacquire a Developmental State When Activated for Adult Neurogenesis. Cell Rep. 2020, 32, 108022. [Google Scholar] [CrossRef]
- Cheung, T.H.; Rando, T.A. Molecular Regulation of Stem Cell Quiescence. Nat. Rev. Mol. Cell Biol. 2013, 14, 329–340. [Google Scholar] [CrossRef]
- Horvath-Pereira, B.d.O.; Almeida, G.H.D.R.; da Silva Júnior, L.N.; do Nascimento, P.G.; Horvath Pereira, B.d.O.; Fireman, J.V.B.T.; Pereira, M.L.D.R.F.; Carreira, A.C.O.; Miglino, M.A. Biomaterials for Testicular Bioengineering: How Far Have We Come and Where Do We Have to Go? Front. Endocrinol. 2023, 14, 1085872. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, L.; Smith, L.B.; Rebourcet, D. Sertoli Cells as Key Drivers of Testis Function. Semin. Cell Dev. Biol. 2022, 121, 2–9. [Google Scholar] [CrossRef]
- Yoshida, S. Open Niche Regulation of Mouse Spermatogenic Stem Cells. Dev. Growth Differ. 2018, 60, 542–552. [Google Scholar] [CrossRef]
- Oliver, E.; Stukenborg, J.-B. Rebuilding the Human Testis in Vitro. Andrology 2020, 8, 825–834. [Google Scholar] [CrossRef]
- Skibber, M.A.; Olson, S.D.; Prabhakara, K.S.; Gill, B.S.; Cox, C.S.J. Enhancing Mesenchymal Stromal Cell Potency: Inflammatory Licensing via Mechanotransduction. Front. Immunol. 2022, 13, 874698. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Murono, E.P. A Sertoli Cell-Secreted Paracrine Factor(s) Stimu-lates Proliferation and Inhibits Steroidogenesis of Rat Leydig Cells. Mol. Cell. Endocrinol. 1994, 106, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Kregel, K.C.; Zhang, H.J. An Integrated View of Oxidative Stress in Ag-ing: Basic Mechanisms, Functional Effects, and Pathological Considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R18–R36. [Google Scholar] [CrossRef] [PubMed]
- Di Persio, S.; Tekath, T.; Siebert-Kuss, L.M.; Cremers, J.-F.; Wistuba, J.; Li, X.; Meyer Zu Hörste, G.; Drexler, H.C.A.; Wyrwoll, M.J.; Tüttelmann, F.; et al. Single-Cell RNA-Seq Unravels Alterations of the Human Spermatogonial Stem Cell Compartment in Patients with Impaired Spermatogenesis. Cell reports. Med. 2021, 2, 100395. [Google Scholar] [CrossRef]
- Di Persio, S.; Neuhaus, N. Human Spermatogonial Stem Cells and Their Niche in Male (In)fertility: Novel Concepts from Single-Cell RNA-Sequencing. Hum. Reprod. 2023, 38, 1–13. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, Y.; Duan, T.; Zhou, Q. The Role of Macrophages in Reproductive-Related Diseases. Heliyon 2022, 8, e11686. [Google Scholar] [CrossRef]
- DeFalco, T.; Potter, S.J.; Williams, A.V.; Waller, B.; Kan, M.J.; Capel, B. Macrophages Contribute to the Spermatogonial Niche in the Adult Testis. Cell Rep. 2015, 12, 1107–1119. [Google Scholar] [CrossRef]
- Lukyanenko, Y.O.; Chen, J.J.; Hutson, J.C. Production of 25-Hydroxycholesterol by Testicular Macrophages and Its Effects on Leydig Cells. Biol. Reprod. 2001, 64, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Fijak, M.; Hossain, H.; Markmann, M.; Nüsing, R.M.; Lochnit, G.; Hartmann, M.F.; Wudy, S.A.; Zhang, L.; Gu, H.; et al. Characterization of the Micro-Environment of the Testis That Shapes the Phenotype and Function of Testicular Macrophages. J. Immunol. 2017, 198, 4327–4340. [Google Scholar] [CrossRef]
- Winnall, W.R.; Muir, J.A.; Hedger, M.P. Rat Resident Testicular Macro-phages Have an Alternatively Activated Phenotype and Constitutively Produce Inter-leukin-10 in Vitro. J. Leukoc. Biol. 2011, 90, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Braun, R.E. Cyclical Expression of GDNF Is Required for Spermatogonial Stem Cell Homeostasis. Development 2018, 145, dev151555. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-Y.; Willis, W.D.; Eddy, E.M. Targeting the Gdnf Gene in Peritubular Myoid Cells Disrupts Undifferentiated Spermatogonial Cell Development. Proc. Natl. Acad. Sci. 2016, 113, 1829–1834. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.L.; Henkel, R.; Vij, S.; Arafa, M.; Panner Selvam, M.K.; Shah, R. Male Infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Mazzilli, R.; Rucci, C.; Vaiarelli, A.; Cimadomo, D.; Ubaldi, F.M.; Foresta, C.; Ferlin, A. Male Factor Infertility and Assisted Reproductive Technologies: Indications, Minimum Access Criteria and Outcomes. J. Endocrinol. Investig. 2023, 46, 1079–1085. [Google Scholar] [CrossRef]
- Shahid, M.N.; Khan, T.M.; Neoh, C.F.; Lean, Q.Y.; Bukhsh, A.; Karuppannan, M. Effectiveness of Pharmacological Intervention Among Men with Infertility: A Systematic Review and Network Meta-Analysis. Front. Pharmacol. 2021, 12, 638628. [Google Scholar] [CrossRef] [PubMed]
- Cannarella, R.; Condorelli, R.A.; Mongioì, L.M.; Barbagallo, F.; Calogero, A.E.; La Vignera, S. Effects of the Selective Estrogen Receptor Modulators for the Treatment of Male Infertility: A Systematic Review and Meta-Analysis. Expert Opin. Pharmacother. 2019, 20, 1517–1525. [Google Scholar] [CrossRef]
- Huijben, M.; Huijsmans, R.L.N.; Lock, M.T.W.T.; de Kemp, V.F.; de Kort, L.M.O.; van Breda, J.H.M.K. Clomiphene Citrate for Male Infertility: A Systematic Review and Meta-Analysis. Andrology 2023, in press. [Google Scholar] [CrossRef]
- Gundewar, T.; Kuchakulla, M.; Ramasamy, R. A Paradoxical Decline in Semen Parameters in Men Treated with Clomiphene Citrate: A Systematic Review. Andrologia 2021, 53, e13848. [Google Scholar] [CrossRef]
- Izadi, M.; Dehghan Marvast, L.; Rezvani, M.E.; Zohrabi, M.; Aliabadi, A.; Mousavi, S.A.; Aflatoonian, B. Mesenchymal Stem-Cell Derived Exosome Therapy as a Potential Future Approach for Treatment of Male Infertility Caused by Chlamydia Infection. Front. Microbiol. 2021, 12, 785622. [Google Scholar] [CrossRef]
- Ismail, H.Y.; Hussein, S.; Shaker, N.A.; Rizk, H.; Wally, Y.R. Stem Cell Treatment Trials for Regeneration of Testicular Tissue in Laboratory Animals. Reprod. Sci. 2023. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.-T.; Xiong, C.-L.; Liu, T.-S.; Shen, S.-L.; Rao, J.-P.; Qiu, F. Secretions Released from Mesenchymal Stem Cells Improve Spermatogenesis Restoration of Cytotoxic Treatment with Busulfan in Azoospermia Mice. Andrologia 2021, 53, e14144. [Google Scholar] [CrossRef]
- Figueiredo, A.F.A.; França, L.R.; Hess, R.A.; Costa, G.M.J. Sertoli Cells Are Capable of Proliferation into Adulthood in the Transition Region between the Seminiferous Tubules and the Rete Testis in Wistar Rats. Cell Cycle 2016, 15, 2486–2496. [Google Scholar] [CrossRef]
- Sagaradze, G.D.; Basalova, N.A.; Kirpatovsky, V.I.; Ohobotov, D.A.; Grigorieva, O.A.; Balabanyan, V.Y.; Kamalov, A.A.; Efimenko, A.Y. Application of Rat Cryptorchidism Model for the Evaluation of Mesenchymal Stromal Cell Secretome Regenerative Potential. Biomed. Pharmacother. 2019, 109, 1428–1436. [Google Scholar] [CrossRef] [PubMed]
- Hwang, G.-S.; Wang, S.-W.; Tseng, W.-M.; Yu, C.-H.; Wang, P.S. Effect of Hypoxia on the Release of Vascular Endothelial Growth Factor and Testosterone in Mouse TM3 Leydig Cells. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1763–E1769. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T. Overview of Single-Cell RNA Sequencing Analysis and Its Application to Spermatogenesis Research. Reprod. Med. Biol. 2023, 22, e12502. [Google Scholar] [CrossRef]
- Wright, W.W. The Regulation of Spermatogonial Stem Cells in an Adult Testis by Glial Cell Line-Derived Neurotrophic Factor. Front. Endocrinol. 2022, 13, 896390. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagaradze, G.; Monakova, A.; Efimenko, A. Potency Assays for Mesenchymal Stromal Cell Secretome-Based Products for Tissue Regeneration. Int. J. Mol. Sci. 2023, 24, 9379. https://doi.org/10.3390/ijms24119379
Sagaradze G, Monakova A, Efimenko A. Potency Assays for Mesenchymal Stromal Cell Secretome-Based Products for Tissue Regeneration. International Journal of Molecular Sciences. 2023; 24(11):9379. https://doi.org/10.3390/ijms24119379
Chicago/Turabian StyleSagaradze, Georgy, Anna Monakova, and Anastasia Efimenko. 2023. "Potency Assays for Mesenchymal Stromal Cell Secretome-Based Products for Tissue Regeneration" International Journal of Molecular Sciences 24, no. 11: 9379. https://doi.org/10.3390/ijms24119379
APA StyleSagaradze, G., Monakova, A., & Efimenko, A. (2023). Potency Assays for Mesenchymal Stromal Cell Secretome-Based Products for Tissue Regeneration. International Journal of Molecular Sciences, 24(11), 9379. https://doi.org/10.3390/ijms24119379