IPS (In-Plant System) Delivery of Double-Stranded Vitellogenin and Vitellogenin receptor via Hydroponics for Pest Control in Diaphorina citri Kuwayama (Hemiptera: Psyllidae)
Abstract
:1. Introduction
2. Results
2.1. Stability of dsRNA in M. odorifera Shoots
2.2. Gene Expressions of Vg4 and VgR and Ovarian Development
2.3. Effects of dsVg4 and dsVgR on the Morphology of Eggs and Nymphs
2.4. Comparison of Oviposition Suppression between dsVg4 and dsVgR
3. Discussion
4. Materials and Methods
4.1. Insect Rearing and Collection
4.2. Ovary Anatomy and Measurement
4.3. DsRNA Synthesis
4.4. Delivery and Stability of dsVg4 and dsVgR in M. odorifera Shoots
4.5. Interference Efficiency of dsVg4 and dsVgR Treatment and Ovarian Morphological Changes in D. citri
4.6. Interference of Vg and VgR on Oviposition in D. citri
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stockton, D.G.; Martini, X.; Stelinski, L.L. Male psyllids differentially learn in the context of copulation. Insects 2017, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.D.; Killiny, N. Effect of silencing a boule homologue on the survival and reproduction of Asian citrus psyllid Diaphorina citri. Physiol. Entomol. 2018, 43, 268–275. [Google Scholar] [CrossRef]
- Li, H.L.; Zheng, X.L.; Wang, X.Y.; Lu, W. Prophase of reproductive behavior and activity rhythm in adults of Diaphorina citri (Kuwayama). J. South. Agric. 2019, 50, 2009–2014. [Google Scholar]
- Li, H.L.; Wang, X.L.; Zheng, X.L.; Huang, Z.Y.; Lu, W. Review of reproductive behavior in Diaphorina citri (Kuwayama) (Homoptera: Liviidae). J. Plant Dis. Protect. 2020, 127, 601–606. [Google Scholar] [CrossRef]
- Tsai, J.H.; Liu, Y.H. Biology of Diaphorina citri (Homoptera: Psyllidae) on four host plants. J. Econ. Entomol. 2000, 93, 1721–1725. [Google Scholar] [CrossRef] [PubMed]
- Nava, D.E.; Torres, M.L.G.; Rodrigues, M.D.L.; Bento, J.M.S.; Parra, J.R.P. Biology of Diaphorina citri (Hem. Psyllidae) on different hosts and at different temperatures. J. Appl. Entomol. 2007, 131, 709–715. [Google Scholar] [CrossRef]
- De-León, J.H.; Sétamou, M.; Gastaminza, G.A.; Buenahora, J.; Ceceres, S.; Yamamoto, P.T.; Bouvet, J.P.; Logarzo, G.A. Two separate introductions of Asian citrus psyllid populations found in the American continents. Ann. Entomol. Soc. Am. 2011, 104, 1392–1398. [Google Scholar] [CrossRef]
- Abdullaha, A.B.M.; Leeb, D.W.; Jungc, J.; Kima, Y. Deletion mutant of sPLA2 using CRISPR/Cas9 exhibits immunosuppression, developmental retardation, and failure of oocyte development in legume pod borer, Maruca vitrata. Dev. Comp. Immunol. 2019, 103, 103500. [Google Scholar] [CrossRef]
- Fandino, R.A.; Haverkamp, A.; Bisch-Knaden, S.; Zhang, J.; Bucks, S.; Nguyen, T.A.T.; Schröder, K.; Werckenthin, A.; Rybak, J.; Stengl, M.; et al. Mutagenesis of odorant coreceptor Orco fully disrupts foraging but not oviposition behaviors in the hawkmoth Manduca sexta. Proc. Natl. Acad. Sci. USA 2019, 116, 15677–15685. [Google Scholar] [CrossRef]
- Hao, K.; Tu, X.B.; Ullah, H.; McNeill, M.R.; Zhang, Z.H. Novel Lom-dh genes play potential role in promoting egg diapause of Locusta migratoria L. Front. Physiol. 2019, 10, 767. [Google Scholar] [CrossRef]
- Lu, J.B.; Zhang, M.Q.; Li, L.C.; Zhang, C.X. DDC plays vital roles in the wing spot formation, egg production, and chorion tanning in the brown planthopper. Arch. Insect Biochem. Physiol. 2019, 101, e21552. [Google Scholar] [CrossRef]
- Ortega, Y.S.; Killiny, N. Silencing of sucrose hydrolase causes nymph mortality and disturbs adult osmotic homeostasis in Diaphorina citri (Hemiptera: Liviidae). Insect Biochem. Mol. Biol. 2019, 101, 131–143. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Sun, Y.; Zou, Z.W.; Huang, S.J. Resistance of Diaphorina citri to five conventional insecticides in Jiangxi province. Chin. J. Appl. Entomol. 2022, 6, 1556. [Google Scholar]
- Tufail, M.; Takeda, M. Molecular characteristics of insect vitellogenins. J. Insect Physiol. 2008, 54, 1447–1458. [Google Scholar] [CrossRef]
- Ibanez, F.; Levy, J.; Tamborindeguy., C. Identification and expression analyses of vitellogenin in Bactericera cockerelli (Šulc). J. Insect Physiol. 2017, 98, 205–213. [Google Scholar] [CrossRef]
- Xie, Y.F.; Shang, F.; Ding, B.Y.; Wu, Y.B.; Niu, J.Z.; Wei, D.; Dou, W.; Christiaens, O.; Smagghe, G.; Wang, J.J. Tudor knockdown disrupts ovary development in Bactrocera dorsalis. Insect Mol. Biol. 2019, 28, 136–144. [Google Scholar] [CrossRef]
- Peng, L.; Wang, Q.; Zou, M.M.; Qin, Y.D.; Vasseur, L.; Chu, L.N.; Zhai, Y.L.; Dong, S.J.; Liu, L.L.; He, W.Y.; et al. CRISPR/Cas9-mediated vitellogenin receptor knockout leads to functional deficiency in the reproductive development of Plutella xylostella. Front. Physiol. 2020, 10, 1585. [Google Scholar] [CrossRef]
- Lu, K.; Wang, Y.; Chen, X.; Zhang, X.Y.; Li, W.R.; Cheng, Y.B.; Li, Y.; Zhou, J.M.; You, K.K.; Song, Y.Y.; et al. Adipokinetic hormone receptor mediates trehalose homeostasis to promote vitellogenin uptake by oocytes in Nilaparvata lugens. Front. Physiol. 2019, 9, 1904. [Google Scholar] [CrossRef]
- Li, H.L.; Wang, X.Y.; Zheng, X.L.; Dong, Z.S.; Yi, X.L.; Lu, W. Transcriptome and proteome analysis of oviposition- and spermatogenesis-related genes of Diaphorina citri. Anim. Gene 2022, 23, 200120. [Google Scholar] [CrossRef]
- Killiny, N.; Kishk, A. Delivery of dsRNA through topical feeding for RNA interference in the citrus sap piercing-sucking hemipteran, Diaphorina citri. Arch. Insect Biochem. 2017, 95, e21394. [Google Scholar] [CrossRef]
- Marques, V.V.; Angelotti-Mendonça, J.; Roberto, S.R. Advances and challenges in RNA interference technology for citrus Huanglongbing vector control. Horticulturae 2021, 7, 277. [Google Scholar] [CrossRef]
- Andrade, E.C.; Hunter, W.B. RNAi feeding bioassay: Development of a non-transgenic approach to control Asian citrus psyllid and other hemipterans. Entomol. Exp. Appl. 2016, 162, 389–396. [Google Scholar] [CrossRef]
- Moriyama, M.; Hosokawa, T.; Tanahashi, M.; Nikoh, N.; Fukatsu, T. Suppression of bedbug’s reproduction by RNA interference of vitellogenin. PLoS ONE 2016, 11, e0153984. [Google Scholar] [CrossRef]
- Rika, U.S.; Ryo, M.; Kozo, F.; Hiroshi, S. Intracellular localization of vitellogenin receptor mRNA and protein during oogenesis of a parthenogenetic tick, Haemaphysalis longicornis. Parasite Vector 2019, 12, 205. [Google Scholar]
- Zhang, J.J.; Xi, G.S.; Zhao, J. Vitellogenin regulates estrogen-related receptor expression by crosstalk with the JH and IIS-TOR signaling pathway in Polyrhachis vicina Roger (Hymenoptera, Formicidae). Gen. Comp. Endocr. 2021, 310, 113836. [Google Scholar] [CrossRef]
- Bartlett, D.W.; Davis, M.E. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. Biotechnol. Bioeng. 2007, 97, 909–921. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Zhang, X.C.; Chen, L.F.; Li, J.H.; Yin, J.G.; Liu, Q.; Gong, P.T. Cloning and sequence analysis of a partial gene of Trichomonas vaginalis dsRNA virus. Chin. J. Parasitol. Parasit. Dis. 2006, 24, 389–390. [Google Scholar]
- Sun, G.X. Construction of Brassica Oleracea Expressing ds RNA and Its Resistance against Plutella xylostella. Doctor’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2020. [Google Scholar]
- Ghosh, S.K.; Hunter, W.B.; Park, A.L.; Gundersen-Rindal, D.E. Double-stranded RNA oral delivery methods to induce RNA interference in phloem and plant-sap-feeding hemipteran insects. J. Vis. Exp. 2018, 135, e57390. [Google Scholar]
- Garbutt, J.S.; Bellés, X.; Richards, E.H.; Reynolds, S.E. Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: Evidence from Manduca sexta and Blattella germanica. J. Insect Physiol. 2013, 59, 171–178. [Google Scholar] [CrossRef]
- Chen, J.Z.; Jiang, Y.X.; Li, M.W.; Li, J.W.; Zha, B.H.; Yang, G. Double-stranded RNA-degrading enzymes reduce the efficiency of RNA interference in Plutella xylostella. Insects 2021, 12, 712. [Google Scholar] [CrossRef]
- Swevers, L.; Broeck, J.V.; Smagghe, G. The possible impact of persistent virus infection on the function of the RNAi machinery in insects: A hypothesis. Front. Physiol. 2013, 4, 319. [Google Scholar] [CrossRef]
- Rasool, K.G.; Mehmood, K.; Tufail, M.; Husain, M.; Alwaneen, W.S.; Aldawood, A.S. Silencing of vitellogenin gene contributes to the promise of controlling red palm weevil, Rhynchophorus ferrugineus (Olivier). Sci. Rep. 2021, 11, 21695. [Google Scholar] [CrossRef]
- Yao, Q.; Xu, S.; Dong, Y.Z.; Que, Y.L.; Quan, L.F.; Chen, B.X. Characterization of vitellogenin and vitellogenin receptor of Conopomorpha sinensis bradley and their responses to sublethal concentrations of insecticide. Front. Physiol. 2018, 9, 1250. [Google Scholar] [CrossRef]
- Zhu, Z.D.; Tong, C.M.; Qiu, B.B.; Yang, H.G.; Xu, J.H.; Zheng, S.C.; Song, Q.S.; Feng, Q.L.; Deng, H.M. 20E-mediated regulation of BmKr-h1 by BmKRP promotes oocyte maturation. BMC Biol. 2021, 19, 39. [Google Scholar] [CrossRef]
- Chen, X.; Cao, Y.; Zhan, S.; Tan, A.; Palli, S.R.; Huang, Y. Disruption of sex-specific doublesex exons results in male- and female specific defects in the black cutworm, Agrotis ipsilon. Pest. Manag. Sci. 2019, 75, 1697–1706. [Google Scholar] [CrossRef]
- Lou, Y.H.; Shen, Y.; Li, D.T.; Huang, H.J.; Lu, J.B.; Zhang, C.X. A Mucin-like protein is essential for oviposition in Nilaparvata lugens. Front. Physiol. 2019, 10, 551. [Google Scholar] [CrossRef]
- Ellango, R.; Asokan, R.; Sharath Chandra, G.; Kumar, N.K.K.; Mahmood, R.; Ramamurthy, V.V. Tyrosine hydroxylase, a potential target for the RNAi-mediated management of diamondback moth (Lepidoptera: Plutellidae). BioOne 2018, 101, 1–5. [Google Scholar] [CrossRef]
- Lanno, S.M.; Lam, I.; Drum, Z.; Linde, S.C.; Gregory, S.M.; Shimshak, S.J.; Becker, M.V.; Brew, K.E.; Budhiraja, A.; Carter, E.A. Genomics analysis of l-DOPA exposure in Drosophila sechellia. G3 (Bethesda) 2019, 9, 3973–3980. [Google Scholar] [CrossRef]
- Li, H.L.; Wang, X.Y.; Zheng, X.L.; Lu, W. Research progress on oviposition-related genes in insects. J. Insect Sci. 2020, 20, 36. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Zhu, Y.K. Chitosan/doublestranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol. Biol. 2010, 19, 683–693. [Google Scholar] [CrossRef]
- Cong, L.; Yang, W.J.; Jiang, X.Z.; Niu, J.Z.; Shen, G.M.; Ran, C.; Wang, J.J. The essential role of vitellogenin receptor in ovary development and vitellogenin uptake in Bactrocera dorsalis (Hendel). Int. J. Mol. Sci. 2015, 16, 18368–18383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Mysore, K.; Flannery, E.; Michel, K.; David, W.; Severson, D.W.; Zhu, K.Y.; Molly, D.S. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae. J. Vis. Exp. 2015, 97, e52523. [Google Scholar]
- Li, H.H.; Kong, L.F.; Yu, R.; Yu, H.; Li, Q. Characterization, expression, and functional analysis of testis-specific serine/threonine kinase 1 (Tssk1) in the pen shell Atrina pectinata. Invertebr. Reprod. Dev. 2016, 60, 118–125. [Google Scholar] [CrossRef]
- Zhen, C.A.; Miao, L.; Gao, X.W. Sublethal effects of sulfoxaflor on biological characteristics and vitellogenin gene (AlVg) expression in the mirid bug, Apolygus lucorum (Meyer-Dür). Pestic. Biochem. Phys. 2018, 144, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Kim, S.J.; Park, C.J.; Nam, Y.K. Characterization of testis-specific serine/threonine kinase 1-like (TSSK1-like) gene and expression patterns in diploid and triploid Pacific abalone (Haliotis discus hannai; Gastropoda; Mollusca) males. PLoS ONE 2019, 14, e0226022. [Google Scholar] [CrossRef]
- Zhao, J.H.; Guo, H.S. RNA silencing: From discovery and elucidation to application and perspectives. J. Integr. Plant Biol. 2021, 64, 476–498. [Google Scholar] [CrossRef]
Day (d) | Treatments | Egg Length (µm) | Egg Width (µm) | Number of Mature Eggs | Mature Eggs Percentage (%) |
---|---|---|---|---|---|
5 d | DsVg4 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
DsVgR | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
DsGFP | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
10 d | DsVg4 | 136.30 ± 15.55 a | 62.58 ± 6.30 a | 1.03 ± 0.37 a | 8.33 ± 1.67 b |
DsVgR | 123.32 ± 30.03 a | 61.62 ± 6.59 a | 0.75 ± 0.25 a | 7.75 ± 0.5 b | |
DsGFP | 142.67 ± 45.99 a | 66.51 ± 21.81 a | 1.29 ± 0.46 a | 13.19 ± 0.14 a | |
15 d | DsVg4 | 47.99 ± 3.99 b | 28.02 ± 3.54 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
DsVgR | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 b | 0.00 ± 0.00 b | |
DsGFP | 249.16 ± 50.81 a | 108.29 ± 11.35 a | 5.33 ± 1.33 a | 16.08 ± 5.80 a | |
20 d | DsVg4 | 71.26 ± 13.52 b | 41.63 ± 4.97 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
DsVgR | 79.78 ± 9.61 b | 46.06 ± 8.52 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | |
DsGFP | 285.83 ± 37.97 a | 109.52 ± 8.12 a | 13.25 ± 0.75 a | 52.91 ± 19.29 a | |
25 d | DsVg4 | 75.17 ± 9.90 b | 43.79 ± 6.99 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
DsVgR | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 b | 0.00 ± 0.00 b | |
DsGFP | 293.71 ± 9.74 a | 124.24 ± 18.77 a | 11.38 ± 0.88 a | 23.36 ± 4.47 a | |
30 d | DsVg4 | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
DsVgR | 70.64 ± 8.87 b | 43.96 ± 0.24 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | |
DsGFP | 286.91 ± 37.67 a | 115.77 ± 7.93 a | 9.33 ± 3.00 a | 18.91 ± 6.42 a |
Treatment | Fecundity | Number of Eggs/Female | Total Number of Nymphs | Egg Hatchability (%) | Egg Deformity (%) | Nymph Deformity (%) |
---|---|---|---|---|---|---|
DsVg4 | 1379 | 45.97 ± 7.31 b | 1190 | 84.41 ± 6.50 b | 4.42 | 4.12 |
DsVgR | 638 | 20.80 ± 9.37 c | 594 | 81.11 ± 7.30 b | 6.80 | 1.35 |
DsGFP | 2804 | 93.47 ± 10.20 a | 2570 | 94. 89 ± 2.76 a | 0 | 0 |
Blank control | 2457 | 84.97 ± 12.28 a | 2380 | 96.67 ± 1.94 a | 0 | 0 |
Gene | Primer Name | Sequences of Primers (5′→3′) | Application |
---|---|---|---|
Vg4 | Vg4 F1 | CGCCAGGGTTTTCCCAGTCACGAC | dsRNA synthesis positive-F |
Vg4 R1 | GGGCAACCATTGAAAGACGTTGGAAG | ||
Vg4 F2 | GGGATGGCCATGAAACAATGGATTG | dsRNA synthesis negative-R | |
Vg4 R2 | GTATGTTGTGTGGAATTGTGAGCGG | ||
Vg4 F3 | ATGGCCATGAAACAATGGATTGA | PCR | |
Vg4 R3 | GGCAACCATTGAAAGACGTTGGA | ||
Vg4 F4 | GCCAGATACCCAACCCGTGAATAC | qRT-PCR | |
Vg4 R4 | AGGATAGCAGAGGTGTTGAGGTGAG | ||
VgR | VgR F1 | CGCCAGGGTTTTCCCAGTCACGAC | dsRNA synthesis positive-F |
VgR R1 | GGGAAAACTCGGAACATGGCAACAC | ||
VgR F2 | GGGATGGCAATGATGACTGTGGTG | dsRNA synthesis negative-R | |
VgR R2 | GTATGTTGTGTGGAATTGTGAGCGG | ||
VgR F3 | GATGGCAATGATGACTGTGGTGA | PCR | |
VgR R3 | AAAACTCGGAACATGGCAACACA | ||
VgR F4 | ACCTGCCAATGCCAAGTATGAGATG | qRT-PCR | |
VgR R4 | TTGATGGTCACATAGCCAGGAGTTG | ||
GFP | GFPT7 F1 | TTAATTGGGCCACCTATAGGGATGGCTAGCAAAGGAGAAGAACTCTTCACTGGAGTTG | dsRNA synthesis positive-F |
GFP R1 | GGGTCAGTTGTACAGTTCATCCATGCCATGTG | ||
GFP F2 | GGGATGGCTAGCAAAGGAGAAGAACTCTTCAC | dsRNA synthesis negative-R | |
GFPT7 R2 | TTAATTGGGCCACCTATAGGGTCAGTTGTACAGTTCATCCATGCCATGTGTAATCC | ||
GFP F3 | GGGATGGCTAGCAAAGGAGAAGAACTCTTCAC | PCR | |
GFP F3 | GGGTCAGTTGTACAGTTCATCCATGCCATGTG | ||
Actin | Actin F | TGTGACGAAGAAGTTGCTGC | qRT-PCR |
Actin R | TGGGGTATTTCAGGGTCAGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Mo, J.; Wang, X.; Pan, B.; Xu, S.; Li, S.; Zheng, X.; Lu, W. IPS (In-Plant System) Delivery of Double-Stranded Vitellogenin and Vitellogenin receptor via Hydroponics for Pest Control in Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Int. J. Mol. Sci. 2023, 24, 9497. https://doi.org/10.3390/ijms24119497
Li H, Mo J, Wang X, Pan B, Xu S, Li S, Zheng X, Lu W. IPS (In-Plant System) Delivery of Double-Stranded Vitellogenin and Vitellogenin receptor via Hydroponics for Pest Control in Diaphorina citri Kuwayama (Hemiptera: Psyllidae). International Journal of Molecular Sciences. 2023; 24(11):9497. https://doi.org/10.3390/ijms24119497
Chicago/Turabian StyleLi, Hailin, Junlan Mo, Xiaoyun Wang, Biqiong Pan, Shu Xu, Shuangrong Li, Xialin Zheng, and Wen Lu. 2023. "IPS (In-Plant System) Delivery of Double-Stranded Vitellogenin and Vitellogenin receptor via Hydroponics for Pest Control in Diaphorina citri Kuwayama (Hemiptera: Psyllidae)" International Journal of Molecular Sciences 24, no. 11: 9497. https://doi.org/10.3390/ijms24119497
APA StyleLi, H., Mo, J., Wang, X., Pan, B., Xu, S., Li, S., Zheng, X., & Lu, W. (2023). IPS (In-Plant System) Delivery of Double-Stranded Vitellogenin and Vitellogenin receptor via Hydroponics for Pest Control in Diaphorina citri Kuwayama (Hemiptera: Psyllidae). International Journal of Molecular Sciences, 24(11), 9497. https://doi.org/10.3390/ijms24119497